GLOBAL COMPACTNESS FOR A CLASS OF QUASI-LINEAR ELLIPTIC PROBLEMS

CARLO MERCURI AND MARCO SQUASSINA

Abstract

We prove a global compactness result for Palais-Smale sequences associated with a class of quasi-linear elliptic equations on exterior domains.

1. Introduction and main result

Let Ω be a smooth domain of \mathbb{R}^{N} with a bounded complement and $N>p>m>1$. The main goal of this paper is to obtain a global compactness result for the Palais-Smale sequences of the energy functional associated with the following quasi-linear elliptic equation

$$
\begin{equation*}
-\operatorname{div}\left(L_{\xi}(D u)\right)-\operatorname{div}\left(M_{\xi}(u, D u)\right)+M_{s}(u, D u)+V(x)|u|^{p-2} u=g(u) \quad \text { in } \Omega, \tag{1.1}
\end{equation*}
$$

where $u \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$, meant as the completion of the space $\mathcal{D}(\Omega)$ of smooth functions with compact support, with respect to the norm $\|u\|_{W^{1, p}(\Omega) \cap D^{1, m}(\Omega)}=\|u\|_{p}+\|u\|_{m}$, having set $\|u\|_{p}:=\|u\|_{W^{1, p}(\Omega)}$ and $\|u\|_{m}:=\|D u\|_{L^{m}(\Omega)}$. We assume that V is a continuous function on Ω,

$$
\lim _{|x| \rightarrow \infty} V(x)=V_{\infty} \quad \text { and } \quad \inf _{x \in \Omega} V(x)=V_{0}>0
$$

As known, lack of compactness may occur due to the lack of compact embeddings for Sobolev spaces on Ω and since the limiting equation on \mathbb{R}^{N}

$$
\begin{equation*}
-\operatorname{div}\left(L_{\xi}(D u)\right)-\operatorname{div}\left(M_{\xi}(u, D u)\right)+M_{s}(u, D u)+V_{\infty}|u|^{p-2} u=g(u) \quad \text { in } \mathbb{R}^{N}, \tag{1.2}
\end{equation*}
$$

with $u \in W^{1, p}\left(\mathbb{R}^{N}\right) \cap D^{1, m}\left(\mathbb{R}^{N}\right)$, is invariant by translations. A particular case of (1.1) is

$$
\begin{equation*}
-\Delta_{p} u-\operatorname{div}\left(a(u)|D u|^{m-2} D u\right)+\frac{1}{m} a^{\prime}(u)|D u|^{m}+V(x)|u|^{p-2} u=|u|^{\sigma-2} u \quad \text { in } \Omega, \tag{1.3}
\end{equation*}
$$

where $\Delta_{p} u:=\operatorname{div}\left(|D u|^{p-2} D u\right)$, for a suitable function $a \in C^{1}\left(\mathbb{R} ; \mathbb{R}^{+}\right)$, or the even simpler case where a is constant, namely

$$
\begin{equation*}
-\Delta_{p} u-\Delta_{m} u+V(x)|u|^{p-2} u=|u|^{\sigma-2} u \quad \text { in } \Omega . \tag{1.4}
\end{equation*}
$$

Since the pioneering work of Benci and Cerami [2] dealing with the case $L(\xi)=|\xi|^{2} / 2$ and $M(s, \xi) \equiv 0$, many papers have been written on this subject, see for instance the bibliography of [12]. Quite recently, in [12], the case $L(\xi)=|\xi|^{p} / p$ and $M(s, \xi) \equiv 0$ was investigated. The main point in the present contribution is the fact that we allow, under suitable assumptions, a quasi-linear term $M(u, D u)$ depending on the unknown u itself. The typical tools exploited in $[2,12]$, in addition to the point-wise convergence of the gradients, are some decomposition (splitting) results both for the energy functional and for the equation, along a given bounded Palais-Smale sequence $\left(u_{n}\right)$. To this regard, the explicit dependence on u in the term $M(u, D u)$ requires a rather careful analysis. In particular, we can handle it for

$$
\nu|\xi|^{m} \leq M(s, \xi) \leq C|\xi|^{m}, \quad p-1 \leq m<p-1+p / N .
$$

[^0]The restriction on m, together with the sign condition (1.9) provides, thanks to the presence of L, the needed a priori regularity on the weak limit of $\left(u_{n}\right)$, see Theorems 3.2 and 3.4.
Besides the aforementioned motivations, which are of mathematical interest, it is worth pointing out that in recent years, some works have been devoted to quasi-linear operators with double homogeneity, which arise from several problems of Mathematical Physics. For instance, the reaction diffusion problem $u_{t}=-\operatorname{div}(\mathbb{D}(u) D u)+\ell(x, u)$, where $\mathbb{D}(u)=d_{p}|D u|^{p-2}+d_{m}|D u|^{m-2}$, $d_{p}>0$ and $d_{m}>0$, admitting a rather wide range of applications in biophysics [10], plasma physics [16] and in the study of chemical reactions [1]. In this framework, u typically describes a concentration and $\operatorname{div}(\mathbb{D}(u) D u)$ corresponds to the diffusion with a coefficient $\mathbb{D}(u)$, whereas $\ell(x, u)$ plays the rǒle of reaction and relates to source and loss processes. We refer the interested reader to [5] and to the reference therein. Furthermore, a model for elementary particles proposed by Derrick [9] yields to the study of standing wave solutions $\psi(x, t)=u(x) e^{\mathrm{i} \omega t}$ of the following nonlinear Schrödinger equation

$$
\mathrm{i} \psi_{t}+\Delta_{2} \psi-b(x) \psi+\Delta_{p} \psi-V(x)|\psi|^{p-2} \psi+|\psi|^{\sigma-2} \psi=0 \quad \text { in } \mathbb{R}^{N},
$$

for which we refer the reader e.g. to [3].
In order to state the first main result, assume $N>p>m \geq 2$ and

$$
\begin{equation*}
p-1 \leq m<p-1+p / N, \quad p<\sigma<p^{*}, \tag{1.5}
\end{equation*}
$$

and consider the C^{2} functions $L: \mathbb{R}^{N} \rightarrow \mathbb{R}$ and $M: \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that both the functions $\xi \mapsto L(\xi)$ and $\xi \mapsto M(s, \xi)$ are strictly convex and

$$
\begin{equation*}
\nu|\xi|^{p} \leq|L(\xi)| \leq C|\xi|^{p}, \quad\left|L_{\xi}(\xi)\right| \leq C|\xi|^{p-1}, \quad\left|L_{\xi \xi}(\xi)\right| \leq C|\xi|^{p-2}, \tag{1.6}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{N}$. Furthermore, we assume

$$
\begin{align*}
\nu|\xi|^{m} \leq\left. M(s, \xi)|\leq C| \xi\right|^{m}, & \left|M_{s}(s, \xi)\right| \leq C|\xi|^{m}, \quad\left|M_{\xi}(s, \xi)\right| \leq C|\xi|^{m-1} \tag{1.7}\\
\left|M_{s s}(s, \xi)\right| \leq C|\xi|^{m}, & \left|M_{s \xi}(s, \xi)\right| \leq C|\xi|^{m-1}, \quad\left|M_{\xi \xi}(s, \xi)\right| \leq C|\xi|^{m-2} \tag{1.8}
\end{align*}
$$

for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$ and that the sign condition (cf. [14])

$$
\begin{equation*}
M_{s}(s, \xi) s \geq 0 \tag{1.9}
\end{equation*}
$$

holds for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$. Also, $G: \mathbb{R} \rightarrow \mathbb{R}$ is a C^{2} function with $G^{\prime}(s):=g(s)$ and

$$
\begin{equation*}
\left|G^{\prime}(s)\right| \leq C|s|^{\sigma-1}, \quad\left|G^{\prime \prime}(s)\right| \leq C|s|^{\sigma-2}, \tag{1.10}
\end{equation*}
$$

for all $s \in \mathbb{R}$. We define

$$
\begin{equation*}
j(s, \xi):=L(\xi)+M(s, \xi)-G(s), \tag{1.11}
\end{equation*}
$$

and on $W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ with $\|u\|_{W^{1, p}(\Omega) \cap D^{1, m}(\Omega)}=\|u\|_{p}+\|u\|_{m}$ the functional

$$
\phi(u):=\int_{\Omega} j(u, D u)+\int_{\Omega} V(x) \frac{|u|^{p}}{p} .
$$

Finally, on $W^{1, p}\left(\mathbb{R}^{N}\right) \cap D^{1, m}\left(\mathbb{R}^{N}\right)$ with $\|u\|_{W^{1, p}\left(\mathbb{R}^{N}\right) \cap D^{1, m}\left(\mathbb{R}^{N}\right)}=\|u\|_{p}+\|u\|_{m}$ we define

$$
\phi_{\infty}(u):=\int_{\mathbb{R}^{N}} j(u, D u)+\int_{\mathbb{R}^{N}} V_{\infty} \frac{|u|^{p}}{p} .
$$

See Section 2 for some properties of the functionals ϕ and ϕ_{∞}.
The first main global compactness type result is the following

Theorem 1.1. Assume that (1.5)-(1.11) hold and let $\left(u_{n}\right) \subset W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ be a bounded sequence such that

$$
\phi\left(u_{n}\right) \rightarrow c \quad \phi^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in }\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*}
$$

Then, up to a subsequence, there exists a weak solution $v_{0} \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ of

$$
-\operatorname{div}\left(L_{\xi}(D u)\right)-\operatorname{div}\left(M_{\xi}(u, D u)\right)+M_{s}(u, D u)+V(x)|u|^{p-2} u=g(u) \quad \text { in } \Omega,
$$

a finite sequence $\left\{v_{1}, \ldots, v_{k}\right\} \subset W^{1, p}\left(\mathbb{R}^{N}\right) \cap D^{1, m}\left(\mathbb{R}^{N}\right)$ of weak solutions of

$$
-\operatorname{div}\left(L_{\xi}(D u)\right)-\operatorname{div}\left(M_{\xi}(u, D u)\right)+M_{s}(u, D u)+V_{\infty}|u|^{p-2} u=g(u) \quad \text { in } \mathbb{R}^{N}
$$

and k sequences $\left(y_{n}^{i}\right) \subset \mathbb{R}^{N}$ satisfying

$$
\begin{gathered}
\left|y_{n}^{i}\right| \rightarrow \infty, \quad\left|y_{n}^{i}-y_{n}^{j}\right| \rightarrow \infty, \quad i \neq j, \quad \text { as } n \rightarrow \infty, \\
\| u_{n}-v_{0}-\sum_{i=1}^{k} v_{i}\left(\left(\cdot-y_{n}^{i}\right) \|_{W^{1, p}\left(\mathbb{R}^{N}\right) \cap D^{1, m}\left(\mathbb{R}^{N}\right)} \rightarrow 0, \quad \text { as } n \rightarrow \infty,\right. \\
\left\|u_{n}\right\|_{p}^{p} \rightarrow \sum_{i=0}^{k}\left\|v_{i}\right\|_{p}^{p}, \quad\left\|u_{n}\right\|_{m}^{m} \rightarrow \sum_{i=0}^{k}\left\|v_{i}\right\|_{m}^{m}, \quad \text { as } n \rightarrow \infty,
\end{gathered}
$$

as well as

$$
\phi\left(v_{0}\right)+\sum_{i=1}^{k} \phi_{\infty}\left(v_{i}\right)=c .
$$

Let us now come to a statement for the cases $1<m \leq 2$ or $1<p \leq 2$. Let us define

$$
\begin{aligned}
\mathfrak{L}(\xi, h) & :=\frac{\left|L_{\xi}(\xi+h)-L_{\xi}(\xi)\right|}{|h|^{p-1}}, \quad \text { if } 1<p<2, \\
\mathfrak{G}(s, t) & :=\frac{\left|G^{\prime}(s+t)-G^{\prime}(s)\right|}{|t|^{\sigma-1}}, \quad \text { if } 1<\sigma<2, \\
\mathfrak{M}(s, \xi, h) & :=\frac{\left|M_{\xi}(s, \xi+h)-M_{\xi}(s, \xi)\right|}{|h|^{m-1}}, \quad \text { if } 1<m<2 .
\end{aligned}
$$

If either $p<2, \sigma<2$ or $m<2$, we shall weaken the twice differentiability assumptions, by requiring $L_{\xi} \in C^{1}\left(\mathbb{R}^{N} \backslash\{0\}\right), G^{\prime} \in C^{1}(\mathbb{R} \backslash\{0\}), M_{\xi} \in C^{1}\left(\mathbb{R} \times\left(\mathbb{R}^{N} \backslash\{0\}\right)\right), M_{s \xi} \in C^{0}\left(\mathbb{R} \times \mathbb{R}^{N}\right)$ and $M_{s s} \in C^{0}\left(\mathbb{R} \times \mathbb{R}^{N}\right)$. Moreover we assume the same growth conditions for L, M, G and their derivatives, replacing only the growth assumptions for $L_{\xi \xi}, M_{\xi \xi}, G^{\prime \prime}$ by the following hypotheses:

$$
\begin{align*}
& \sup _{h \neq 0, \xi \in \mathbb{R}^{N}} \mathfrak{L}(\xi, h)<\infty, \tag{1.12}\\
& \sup _{t \neq 0, s \in \mathbb{R}} \mathfrak{G}(s, t)<\infty, \tag{1.13}\\
& \sup _{h \neq 0,(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}} \mathfrak{M}(s, \xi, h)<\infty . \tag{1.14}
\end{align*}
$$

Conditions (1.12)-(1.13), in some more concrete situations, follow immediately by homogeneity of L_{ξ} and G^{\prime} (see, for instance, [12, Lemma 3.1]). Similarly, (1.14) is satisfied for instance when M is of the form $M(s, \xi)=a(s) \mu(\xi)$, being $a: \mathbb{R} \rightarrow \mathbb{R}^{+}$a bounded function and $\mu: \mathbb{R}^{N} \rightarrow \mathbb{R}^{+}$a C^{1} strictly convex function such that μ_{ξ} is homogeneous of degree $m-1$.

Theorem 1.2. Under the additional assumptions (1.12)-(1.14) in the sub-quadratic cases, the assertion of Theorem 1.1 holds true.

As a consequence of the above results we have the following compactness criterion.

Corollary 1.3. Assume (2.1) below for some $\delta>0$ and $\mu>p$. Under the hypotheses of Theorem 1.1 or 1.2, if $c<c^{*}$, then $\left(u_{n}\right)$ is relatively compact in $W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ where

$$
c^{*}:=\min \left\{\frac{\delta}{\mu}, \frac{\mu-p}{\mu p} V_{\infty}\right\}\left[\frac{\min \left\{\nu, V_{\infty}\right\}}{C_{g} S_{p, \sigma}}\right]^{\frac{p}{\sigma-p}},
$$

and $S_{p, \sigma}$ and C_{g} are constants such that $S_{p, \sigma}\|u\|_{p}^{\sigma} \geq\|u\|_{L^{\sigma}\left(\mathbb{R}^{N}\right)}^{\sigma}$ and $|g(s)| \leq C_{g}|s|^{\mid \sigma-1}$.
Remark 1.4. It would be interesting to get a global compactness result in the case $L=0$ and $p=m$, namely for the model case

$$
\begin{equation*}
-\operatorname{div}\left(a(u)|D u|^{m-2} D u\right)+\frac{1}{m} a^{\prime}(u)|D u|^{m}+V(x)|u|^{m-2} u=|u|^{\sigma-2} u \quad \text { in } \Omega . \tag{1.15}
\end{equation*}
$$

Notice that, even assuming a^{\prime} bounded, $a^{\prime}(u)|D u|^{m}$ is merely in $L^{1}(\Omega)$ for $W_{0}^{1, m}(\Omega)$ distributional solutions. In general, in this setting, the splitting properties of the equation are hard to formulate in a reasonable fashion.

Remark 1.5. The restriction of between m and p in assumption (1.5) is no longer needed in the case where M is independent of the first variable s, namely $M_{s} \equiv 0$.

Remark 1.6. We prove the above theorems under the a-priori boundedness assumption of $\left(u_{n}\right)$. This occurs in a quite large class of problems, as Proposition 2.2 shows.

Remark 1.7. With no additional effort, we could cover the case where an additional term $W(x)|u|^{m-2} u$ appears in (1.1) and the functional framework turns into $W_{0}^{1, p}(\Omega) \cap W_{0}^{1, m}(\Omega)$.

In the spirit of [11], we also get the following
Corollary 1.8. Let $N>p \geq m>1$ and assume that $\xi \mapsto L(\xi)$ is p-homogeneous, $\xi \mapsto M(\xi)$ is m-homogeneous, $L(\xi) \geq|\xi|^{p}, M(\xi) \geq|\xi|^{m}$ (we put $\nu=1$) and set

$$
\begin{align*}
& \mathbb{S}_{\Omega}:=\inf _{\|u\|_{L^{\sigma}(\Omega)}=1} \int_{\Omega} L(D u)+M(D u)+V(x)|u|^{p}, \tag{1.16}\\
& \mathbb{S}_{\mathbb{R}^{N}}:=\inf _{\|u\|_{L^{\sigma}\left(\mathbb{R}^{N}\right)}=1} \int_{\mathbb{R}^{N}}|D u|^{p}+|u|^{p},
\end{align*}
$$

with $V(x) \rightarrow 1$ as $|x| \rightarrow \infty$. Assume furthermore that

$$
\begin{equation*}
\mathbb{S}_{\Omega}<\left(\frac{\sigma-p}{\sigma-m} \frac{m}{p}\right)^{\frac{\sigma-p}{\sigma}} \mathbb{S}_{\mathbb{R}^{N}} . \tag{1.17}
\end{equation*}
$$

Then (1.16) admits a minimizer.
Remark 1.9. We point out that, some conditions guaranteeing the nonexistence of nontrivial solutions in the star-shaped case $\Omega=\mathbb{R}^{N}$ can be provided. For the sake of simplicity, assume that L is p-homogeneous and that $\xi \mapsto M(s, \xi)$ is m-homogeneous. Then, in view of [13, Theorem 3], that holds for C^{1} solutions by virtue of the results of [8], we have that (1.1) admits no nontrivial C^{1} solution well behaved at infinity, namely satisfying condition (19) of [13], provided that there exists a number $a \in \mathbb{R}^{+}$such that a.e. in \mathbb{R}^{N} and for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$

$$
\begin{aligned}
(N-p(a+1)) L(\xi) & +(N-m(a+1)) M(s, \xi)+(a s g(s)-N G(s)) \\
& +\frac{(N-a p) V(x)+x \cdot D V(x)}{p}|s|^{p}-a M_{s}(s, \xi) s \geq 0,
\end{aligned}
$$

holding, for instance, if there exists $0 \leq a \leq \frac{N-p}{p}$ such that

$$
\operatorname{asg}(s)-N G(s) \geq 0, \quad(N-a p) V(x)+x \cdot D V(x) \geq 0, \quad M_{s}(s, \xi) s \leq 0,
$$

for a.e. $x \in \mathbb{R}^{N}$ and for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$. Also, in the more particular case where $g(s)=|s|^{\sigma-2} s$ and $V(x)=V_{\infty}>0$, then the above conditions simply rephrase into

$$
\sigma \geq p^{*}, \quad M_{s}(s, \xi) s \leq 0,
$$

for every $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$. In fact, in (1.9), we consider the opposite assumption on M_{s}.

2. Some preliminary facts

It is a standard fact that, under condition (1.6) and (1.10), the functionals

$$
u \mapsto \int_{\Omega} L(D u), \quad u \mapsto \int_{\Omega} V(x)|u|^{p}, \quad u \mapsto \int_{\Omega} G(u)
$$

are C^{1} on $W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$. Analogously, although M depends explicitly on s, the functional

$$
\mathbb{M}: W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega) \rightarrow \mathbb{R}, \quad \mathbb{M}(u)=\int_{\Omega} M(u, D u)
$$

admits, thanks to condition (1.5), directional derivatives along any $v \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ and

$$
\mathbb{M}^{\prime}(u)(v)=\int_{\Omega} M_{\xi}(u, D u) \cdot D v+\int_{\Omega} M_{s}(u, D u) v
$$

as it can be easily verified observing that $p \leq \frac{p}{p-m} \leq p^{*}$ and that, for $u \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$, by Young's inequality, for some constant C it holds

$$
\begin{aligned}
\left|M_{\xi}(u, D u) \cdot D v\right| & \leq C|D u|^{m}+C|D v|^{m} \in L^{1}(\Omega), \\
\left|M_{s}(u, D u) v\right| & \leq C|D u|^{p}+C|v|^{\frac{p}{p-m}} \in L^{1}(\Omega) .
\end{aligned}
$$

Furthermore, if $u_{k} \rightarrow u$ in $W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ as $k \rightarrow \infty$ then $\mathbb{M}^{\prime}\left(u_{k}\right) \rightarrow \mathbb{M}^{\prime}(u)$ in the dual space $\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*}$, as $k \rightarrow \infty$. Indeed, for $\|v\|_{W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)} \leq 1$, we have

$$
\begin{aligned}
& \left|\mathbb{M}^{\prime}\left(u_{k}\right)(v)-\mathbb{M}^{\prime}(u)(v)\right| \\
& \leq \int_{\Omega}\left|M_{\xi}\left(u_{k}, D u_{k}\right)-M_{\xi}(u, D u) \| D v\right|+\int_{\Omega}\left|M_{s}\left(u_{k}, D u_{k}\right)-M_{s}(u, D u)\right||v| \\
& \leq\left\|M_{\xi}\left(u_{k}, D u_{k}\right)-M_{\xi}(u, D u)\right\|_{L^{m^{\prime}}}\|D v\|_{L^{m}}+\left\|M_{s}\left(u_{k}, D u_{k}\right)-M_{s}(u, D u)\right\|_{L^{p / m}}\|v\|_{L^{p /(p-m)}} \\
& \leq\left\|M_{\xi}\left(u_{k}, D u_{k}\right)-M_{\xi}(u, D u)\right\|_{L^{m^{\prime}}}+\left\|M_{s}\left(u_{k}, D u_{k}\right)-M_{s}(u, D u)\right\|_{L^{p / m}} .
\end{aligned}
$$

This yields the desired convergence, using (1.7) and the Dominated Convergence Theorem. Notice that the same argument carried out before applies either to integrals defined on Ω or on \mathbb{R}^{N}. Hence the following proposition is proved.
Proposition 2.1. In the hypotheses of Theorems 1.1 and 1.2, the functionals ϕ and ϕ_{∞} are C^{1}.
In addition to the assumptions on L, M and g, G set in the introduction, assume now that there exist positive numbers $\delta>0$ and $\mu>p$ such that

$$
\begin{equation*}
\mu M(s, \xi)-M_{s}(s, \xi) s-M_{\xi}(s, \xi) \cdot \xi \geq \delta|\xi|^{m}, \quad \mu L(\xi)-L_{\xi}(\xi) \cdot \xi \geq \delta|\xi|^{p}, \quad s g(s)-\mu G(s) \geq 0 \tag{2.1}
\end{equation*}
$$

for any $s \in \mathbb{R}$ and all $\xi \in \mathbb{R}^{N}$. This hypothesis is rather well established in the framework of quasi-linear problems (cf. [14]) and it allows an arbitrary Palais-Smale sequence (u_{n}) to be bounded in $W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$, as shown in the following

Proposition 2.2. Let j be as in (1.11) and assume that (1.5) holds. Let $\left(u_{n}\right) \subset W_{0}^{1, p}(\Omega) \cap$ $D_{0}^{1, m}(\Omega)$ be a sequence such that

$$
\phi\left(u_{n}\right) \rightarrow c \quad \phi^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in }\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*}
$$

Then, if condition (2.1) holds, $\left(u_{n}\right)$ is bounded in $W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$.
Proof. Let $\left(w_{n}\right) \subset\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*}$ with $w_{n} \rightarrow 0$ as $n \rightarrow \infty$ be such that $\phi^{\prime}\left(u_{n}\right)(v)=\left\langle w_{n}, v\right\rangle$, for every $v \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$. Whence, by choosing $v=u_{n}$, it follows

$$
\int_{\Omega} j_{\xi}\left(u_{n}, D u_{n}\right) \cdot D u_{n}+\int_{\Omega} j_{s}\left(u_{n}, D u_{n}\right) u_{n}+\int_{\Omega} V(x)\left|u_{n}\right|^{p}=\left\langle w_{n}, u_{n}\right\rangle .
$$

Combining this equation with $\mu \phi\left(u_{n}\right)=\mu c+o(1)$ as $n \rightarrow \infty$, namely

$$
\int_{\Omega} \mu j\left(u_{n}, D u_{n}\right)+\frac{\mu}{p} \int_{\Omega} V(x)\left|u_{n}\right|^{p}=\mu c+o(1)
$$

recalling the definition of j, and using condition (2.1), yields

$$
\frac{\mu-p}{p} \int_{\Omega} V(x)\left|u_{n}\right|^{p}+\delta \int_{\Omega}\left|D u_{n}\right|^{p}+\delta \int_{\Omega}\left|D u_{n}\right|^{m} \leq \mu c+\left\|w_{n}\right\|\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)}+o(1),
$$

as $n \rightarrow \infty$, implying, due to $V \geq V_{0}$ that

$$
\left\|u_{n}\right\|_{W^{1, p}(\Omega)}^{p}+\left\|u_{n}\right\|_{D^{1, m}(\Omega)}^{m} \leq C+C\left\|u_{n}\right\|_{W^{1, p}(\Omega)}+C\left\|u_{n}\right\|_{D^{1, m}(\Omega)}+o(1),
$$

as $n \rightarrow \infty$. The assertion then follows immediately.
From now on we shall always assume to handle bounded Palais-Smale sequences, keeping in mind that condition (2.1) can guarantee the boundedness of such sequences.

Proposition 2.3. Let j be as in (1.11) and assume that $1<m<p<N$ and $p<\sigma<p^{*}$. Let $\left(u_{n}\right) \subset W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ bounded be such that

$$
\phi\left(u_{n}\right) \rightarrow c \quad \phi^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in }\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*} .
$$

Then, up to a subsequence, $\left(u_{n}\right)$ converges weakly to some u in $W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega), u_{n}(x) \rightarrow u(x)$ and $D u_{n}(x) \rightarrow D u(x)$ for a.e. $x \in \Omega$.

Proof. It is sufficient to justify that $D u_{n}(x) \rightarrow D u(x)$ for a.e. $x \in \Omega$. Given an arbitrary bounded subdomain $\omega \subset \bar{\omega} \subset \Omega$ of Ω, from the fact that $\phi^{\prime}\left(u_{n}\right) \rightarrow 0$ in $\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*}$, we can write

$$
\int_{\omega} a\left(u_{n}, D u_{n}\right) \cdot D v=\left\langle w_{n}, v\right\rangle+\left\langle f_{n}, v\right\rangle+\int_{\omega} v d \mu_{n}, \quad \text { for all } v \in \mathcal{D}(\omega),
$$

where $\left(w_{n}\right) \subset\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*}$ is vanishing, and hence in particular $w_{n} \in W^{-1, p^{\prime}}(\omega)$, with $w_{n} \rightarrow 0$ in $W^{-1, p^{\prime}}(\omega)$ as $n \rightarrow \infty$ and we have set

$$
\begin{aligned}
a_{n}(x, s, \xi) & :=L_{\xi}(\xi)+M_{\xi}(s, \xi), \quad \text { for all }(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}, \\
f_{n} & :=-V(x)\left|u_{n}\right|^{p-2} u_{n}+g\left(u_{n}\right) \in W^{-1, p^{\prime}}(\omega), \quad n \in \mathbb{N}, \\
\mu_{n} & :=-M_{s}\left(u_{n}, D u_{n}\right) \in L^{1}(\omega), \quad n \in \mathbb{N} .
\end{aligned}
$$

Due to the strict convexity assumptions on the maps $\xi \mapsto L(\xi)$ and $\xi \mapsto M(s, \xi)$ and the growth conditions on L_{ξ}, M_{ξ}, M_{s} and g, all the assumptions of [6, Theorem 1] are fulfilled. Precisely,

$$
\left|a_{n}(x, s, \xi)\right| \leq\left|L_{\xi}(\xi)\right|+\left|M_{\xi}(s, \xi)\right| \leq C|\xi|^{p-1}+C|\xi|^{m-1} \leq C+C|\xi|^{p-1},
$$

for a.e. $x \in \omega$ and all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$, and

$$
\begin{aligned}
& f_{n} \rightarrow f, \quad f:=-V(x)|u|^{p-2} u+g(u), \quad \text { strongly in } W^{-1, p^{\prime}}(\omega), \\
& \mu_{n} \rightharpoonup \mu, \quad \text { weakly* in } \mathcal{M}(\omega), \quad \text { since } \sup _{n \in \mathbb{N}}\left\|M_{s}\left(u_{n}, D u_{n}\right)\right\|_{L^{1}(\omega)}<+\infty .
\end{aligned}
$$

Then, it follows that $D u_{n}(x) \rightarrow D u(x)$ for a.e. $x \in \omega$. Finally, a simple Cantor diagonal argument allows to recover the convergence over the whole domain Ω.
Next we prove a regularity result for the solutions of equation (1.1).
Proposition 2.4. Let j be as in (1.11) and assume (1.5) and (1.9). Let $u \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ be a solution of (1.1). Then

$$
u \in \bigcap_{q \geq p} L^{q}(\Omega), \quad u \in L^{\infty}(\Omega) \text { and } \lim _{|x| \rightarrow \infty} u(x)=0
$$

Proof. Let $k, i \in \mathbb{N}$. Then, setting $v_{k, i}(x):=\left(u_{k}(x)\right)^{i}$ with $u_{k}(x):=\min \left\{u^{+}(x), k\right\}$, it follows that $v_{k, i} \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ can be used as a test function in (1.1), yielding

$$
\begin{aligned}
\int_{\Omega} L_{\xi}(D u) \cdot D v_{k, i} & +\int_{\Omega} M_{\xi}(u, D u) \cdot D v_{k, i} \\
& +\int_{\Omega} M_{s}(u, D u) v_{k, i}+\int_{\Omega} V(x)|u|^{p-2} u v_{k, i}=\int_{\Omega} g(u) v_{k, i} .
\end{aligned}
$$

Taking into account that $D v_{k, i}$ is equal to $i u^{i-1} D u \chi_{\{0<u<k\}}$, by convexity and positivity of the map $\xi \mapsto M(s, \xi)$ we deduce that $M_{\xi}(u, D u) \cdot D v_{k, i} \geq 0$. Moreover, by the sign condition (1.9) it follows $M_{s}(u, D u) v_{k, i} \geq 0$ a.e. in Ω. Then, we reach

$$
\int_{\Omega} i\left(u_{k}\right)^{i-1} L_{\xi}\left(D u_{k}\right) \cdot D u_{k}+\int_{\Omega} V(x)|u|^{p-2} u\left(u_{k}(x)\right)^{i} \leq \int_{\Omega} g(u)\left(u_{k}(x)\right)^{i},
$$

yielding in turn, by (1.10), that for all $k, i \geq 1$

$$
\begin{equation*}
\nu i \int_{\Omega}\left(u_{k}\right)^{i-1}\left|D u_{k}\right|^{p} \leq C \int_{\Omega}\left(u^{+}(x)\right)^{\sigma-1+i} . \tag{2.2}
\end{equation*}
$$

If $\hat{u}_{k}:=\min \left\{u^{-}(x), k\right\}$, a similar inequality

$$
\begin{equation*}
\nu i \int_{\Omega}\left(\hat{u}_{k}\right)^{i-1}\left|D \hat{u}_{k}\right|^{p} \leq C \int_{\Omega}\left(u^{-}(x)\right)^{\sigma-1+i}, \tag{2.3}
\end{equation*}
$$

can be obtained by using $\hat{v}_{k, i}:=-\left(\hat{u}_{k}\right)^{i}$ as a test function in (1.1), observing that by (1.9),

$$
\begin{aligned}
M_{s}(u, D u) \hat{v}_{k, i} & =-M_{s}(u, D u) \chi_{\{-k<u<0\}}(-u)^{i} \geq 0, \\
M_{\xi}(u, D u) \cdot D v_{k, i} & =i(-u)^{i-1} \chi_{\{-k<u<0\}} M_{\xi}(u, D u) \cdot D u \geq 0 .
\end{aligned}
$$

Once (2.2)-(2.3) are reached, the assertion follows exactly as in [15, Lemma 2, (a) and (b)].
We now recall the following version of [7, Lemma 4.2] which turns out to be a rather useful tool in order to establish convergences in our setting. Roughly speaking, one needs some kind of sub-criticality in the growth conditions.
Lemma 2.5. Let $\Omega \subset \mathbb{R}^{N}$ and $h: \Omega \times \mathbb{R} \times \mathbb{R}^{N}$ be a Carathéodory function, $p, m>1, \mu \geq 1$, $p \leq \sigma \leq p^{*}$ and assume that, for every $\varepsilon>0$ there exist $a_{\varepsilon} \in L^{\mu}(\Omega)$ such that

$$
\begin{equation*}
|h(x, s, \xi)| \leq a_{\varepsilon}(x)+\varepsilon|s|^{\sigma / \mu}+\varepsilon|\xi|^{p / \mu}+\varepsilon|\xi|^{m / \mu} \tag{2.4}
\end{equation*}
$$

a.e. in Ω and for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$. Assume that $u_{n} \rightarrow u$ a.e. in $\Omega, D u_{n} \rightarrow D u$ a.e. in Ω and

$$
\left(u_{n}\right) \text { is bounded in } W_{0}^{1, p}(\Omega), \quad\left(u_{n}\right) \text { is bounded in } D_{0}^{1, m}(\Omega) .
$$

Then $h\left(x, u_{n}, D u_{n}\right)$ converges to $h(x, u, D u)$ in $L^{\mu}(\Omega)$.
Proof. The proof follows as in [7, Lemma 4.2] and we shall sketch it here for self-containedness. By Fatou's Lemma, it immediately holds that $u \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$. Furthermore, there exists a positive constant C such that

$$
\begin{aligned}
\left|h\left(x, s_{1}, \xi_{1}\right)-h\left(x, s_{2}, \xi_{2}\right)\right|^{\mu} & \leq C\left(a_{\varepsilon}(x)\right)^{\mu}+C \varepsilon^{\mu}\left|s_{1}\right|^{\sigma}+C \varepsilon^{\mu}\left|s_{2}\right|^{\sigma} \\
& +C \varepsilon^{\mu}\left|\xi_{1}\right|^{m}+C \varepsilon^{\mu}\left|\xi_{2}\right|^{m}+C \varepsilon^{\mu}\left|\xi_{1}\right|^{p}+C \varepsilon^{\mu}\left|\xi_{2}\right|^{p},
\end{aligned}
$$

a.e. in Ω and for all $\left(s_{1}, \xi_{1}\right) \in \mathbb{R} \times \mathbb{R}^{N}$ and $\left(s_{2}, \xi_{2}\right) \in \mathbb{R} \times \mathbb{R}^{N}$. Then, taking into account the boundedness of ($D u_{n}$) in $L^{p}(\Omega) \cap L^{m}(\Omega)$ and of $\left(u_{n}\right)$ in $L^{\sigma}(\Omega)$ by interpolation being $p \leq \sigma \leq p^{*}$, the assertion follows by applying Fatou's Lemma to the sequence of functions $\psi_{n}: \Omega \rightarrow[0,+\infty]$

$$
\begin{aligned}
\psi_{n}(x):= & -\left|h\left(x, u_{n}, D u_{n}\right)-h(x, u, D u)\right|^{\mu}+C\left(a_{\varepsilon}(x)\right)^{\mu}+C \varepsilon^{\mu}\left|u_{n}\right|^{\sigma}+C \varepsilon^{\mu}|u|^{\sigma} \\
& +C \varepsilon^{\mu}\left|D u_{n}\right|^{m}+C \varepsilon^{\mu}|D u|^{m}+C \varepsilon^{\mu}\left|D u_{n}\right|^{p}+C \varepsilon^{\mu}|D u|^{p},
\end{aligned}
$$

and, finally, exploiting the arbitrariness of ε.

3. Proof of the result

3.1. Energy splitting. The next result allows to perform an energy splitting for the functional

$$
J(u)=\int_{\Omega} j(u, D u), \quad u \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega),
$$

along a bounded Palais-Smale sequence $\left(u_{n}\right) \subset W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$. The result is in the spirit of the classical Brezis-Lieb Lemma [4].

Lemma 3.1. Let the integrand j be as in (1.11) and

$$
p-1 \leq m<p-1+p / N, \quad p \leq \sigma \leq p^{*} .
$$

Let $\left(u_{n}\right) \subset W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ with $u_{n} \rightharpoonup u$, $u_{n} \rightarrow u$ a.e. in Ω and $D u_{n} \rightarrow D u$ a.e. in Ω. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} j\left(u_{n}-u, D u_{n}-D u\right)-j\left(u_{n}, D u_{n}\right)+j(u, D u)=0 . \tag{3.1}
\end{equation*}
$$

Proof. We shall apply Lemma 2.5 to the function

$$
h(x, s, \xi):=j(s-u(x), \xi-D u(x))-j(s, \xi), \quad \text { for a.e. } x \in \Omega \text { and all }(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N} .
$$

Given $x \in \Omega, s \in \mathbb{R}$ and $\xi \in \mathbb{R}^{N}$, consider the $C^{1} \operatorname{map} \varphi:[0,1] \rightarrow \mathbb{R}$ defined by setting

$$
\varphi(t):=j(s-t u(x), \xi-t D u(x)), \quad \text { for all } t \in[0,1] .
$$

Then, for some $\tau \in[0,1]$ depending upon $x \in \Omega, s \in \mathbb{R}$ and $\xi \in \mathbb{R}^{N}$, it holds

$$
\begin{aligned}
& h(x, s, \xi)=\varphi(1)-\varphi(0)=\varphi^{\prime}(\tau) \\
& =-j_{s}(s-\tau u(x), \xi-\tau D u(x)) u(x)-j_{\xi}(s-\tau u(x), \xi-\tau D u(x)) \cdot D u(x) \\
& =-L_{\xi}(\xi-\tau D u(x)) \cdot D u(x) \\
& \quad-M_{s}(s-\tau u(x), \xi-\tau D u(x)) u(x) \\
& \quad-M_{\xi}(s-\tau u(x), \xi-\tau D u(x)) \cdot D u(x)+G^{\prime}(s-\tau u(x)) u(x) .
\end{aligned}
$$

Hence, for a.e. $x \in \Omega$ and all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$, it follows that

$$
\begin{aligned}
|h(x, s, \xi)| & \leq\left|L_{\xi}(\xi-\tau D u(x))\right||D u(x)|+\left|M_{s}(s-\tau u(x), \xi-\tau D u(x))\right||u(x)| \\
& +\left|M_{\xi}(s-\tau u(x), \xi-\tau D u(x))\right||D u(x)|+\left|G^{\prime}(s-\tau u(x))\right||u(x)| \\
& \leq C\left(|\xi|^{p-1}+|D u(x)|^{p-1}\right)|D u(x)|+C\left(|\xi|^{m}+|D u(x)|^{m}\right)|u(x)| \\
& +C\left(|\xi|^{m-1}+|D u(x)|^{m-1}\right)|D u(x)|+C\left(|s|^{\sigma-1}+|u(x)|^{\sigma-1}\right)|u(x)| \\
& \leq \varepsilon|\xi|^{p}+C_{\varepsilon}|D u(x)|^{p}+\varepsilon|\xi|^{p}+C_{\varepsilon}|D u(x)|^{p}+C_{\varepsilon}|u(x)|^{p /(p-m)} \\
& +\varepsilon|\xi|^{m}+C_{\varepsilon}|D u(x)|^{m}+\varepsilon|s|^{\sigma}+C_{\varepsilon}|u(x)|^{\sigma} \\
& =a_{\varepsilon}(x)+\varepsilon|s|^{\sigma}+\varepsilon|\xi|^{p}+\varepsilon|\xi|^{m},
\end{aligned}
$$

where $a_{\varepsilon}: \Omega \rightarrow \mathbb{R}$ is defined a.e. by

$$
a_{\varepsilon}(x):=C_{\varepsilon}|D u(x)|^{p}+C_{\varepsilon}|D u(x)|^{m}+C_{\varepsilon}|u(x)|^{p /(p-m)}+C_{\varepsilon}|u(x)|^{\sigma} .
$$

Notice that, as $p-1 \leq m<p-1+p / N$ it holds $p \leq p /(p-m) \leq p^{*}$, yielding $u \in L^{p /(p-m)}(\Omega)$ and in turn, $a_{\varepsilon} \in L^{1}(\Omega)$. The assertion follows directly by Lemma 2.5 with $\mu=1$.

We have the following splitting result
Theorem 3.2. Let the integrand j be as in (1.11) and

$$
p-1 \leq m \leq p-1+p / N, \quad p<\sigma<p^{*} .
$$

Assume that $\left(u_{n}\right) \subset W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ is a bounded Palais-Smale sequence for ϕ at the level $c \in \mathbb{R}$ weakly convergent to some $u \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$. Then

$$
\lim _{n \rightarrow \infty}\left(\int_{\Omega} j\left(u_{n}-u, D u_{n}-D u\right)+\int_{\Omega} V_{\infty} \frac{\left|u_{n}-u\right|^{p}}{p}\right)=c-\int_{\Omega} j(u, D u)-\int_{\Omega} V(x) \frac{|u|^{p}}{p},
$$

namely

$$
\lim _{n \rightarrow \infty} \phi_{\infty}\left(u_{n}-u\right)=c-\phi(u),
$$

being u_{n} and u regarded as elements of $W^{1, p}\left(\mathbb{R}^{N}\right) \cap D^{1, m}\left(\mathbb{R}^{N}\right)$ after extension to zero out of Ω.
Proof. In light of Proposition 2.3, up to a subsequence, $\left(u_{n}\right)$ converges weakly to some function u in $W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega), u_{n}(x) \rightarrow u(x)$ and $D u_{n}(x) \rightarrow D u(x)$ for a.e. $x \in \Omega$. Also, recalling that by assumption $V(x) \rightarrow V_{\infty}$ as $|x| \rightarrow \infty$, we have [4,17]

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{\Omega} V(x)\left|u_{n}-u\right|^{p}-V_{\infty}\left|u_{n}-u\right|^{p}=0 \tag{3.2}\\
& \lim _{n \rightarrow \infty} \int_{\Omega} V(x)\left|u_{n}-u\right|^{p}-V(x)\left|u_{n}\right|^{p}+V(x)|u|^{p}=0 \tag{3.3}
\end{align*}
$$

Therefore, by virtue of Lemma 3.1, we conclude that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \phi_{\infty}\left(u_{n}-u\right) & =\lim _{n \rightarrow \infty}\left(\int_{\Omega} j\left(u_{n}-u, D u_{n}-D u\right)+\int_{\Omega} V_{\infty} \frac{\left|u_{n}-u\right|^{p}}{p}\right) \\
& =\lim _{n \rightarrow \infty}\left(\int_{\Omega} j\left(u_{n}-u, D u_{n}-D u\right)+\int_{\Omega} V(x) \frac{\left|u_{n}-u\right|^{p}}{p}\right) \\
& =\lim _{n \rightarrow \infty}\left(\int_{\Omega} j\left(u_{n}, D u_{n}\right)+\int_{\Omega} V(x) \frac{\left|u_{n}\right|^{p}}{p}\right)-\int_{\Omega} j(u, D u)-\int_{\Omega} V(x) \frac{|u|^{p}}{p} \\
& =\lim _{n \rightarrow \infty} \phi\left(u_{n}\right)-\phi(u)=c-\phi(u),
\end{aligned}
$$

concluding the proof.

Remark 3.3. In order to shed some light on the restriction (1.5) of m, it is readily seen that it is a sufficient condition for the following local compactness property to hold. Assume that ω is a smooth domain of \mathbb{R}^{n} with finite measure. Then, if $\left(u_{h}\right)$ is a bounded sequence in $W_{0}^{1, p}(\omega)$, there exists a subsequence ($u_{h_{k}}$) such that

$$
\Upsilon\left(x, u_{h_{k}}, D u_{h_{k}}\right) \text { converges strongly to some } \Upsilon_{0} \text { in } W^{-1, p^{\prime}}(\omega),
$$

where $\Upsilon(x, s, \xi)=g(s)-M_{s}(s, \xi)-V(x)|s|^{p-2} s$. In fact, taking into account the growth condition on g and M_{s}, this can be proved observing that, for every $\varepsilon>0$, there exists C_{ε} such that

$$
|\Upsilon(x, s, \xi)| \leq C_{\varepsilon}+\varepsilon|s|^{\frac{N(p-1)+p}{N-p}}+\varepsilon|\xi|^{p-1+p / N},
$$

for a.e. $x \in \omega$ and all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$.
3.2. Equation splitting I (super-quadratic case). We shall assume that $m, p \geq 2$ and that conditions (1.7)-(1.8) hold. The following Theorem 3.4 and the forthcoming Theorem 3.5 (see next subsection) are in the spirit of the Brezis-Lieb Lemma [4], in a dual framework. For the particular case

$$
M(s, \xi)=0 \quad \text { and } \quad L(\xi)=\frac{|\xi|^{p}}{p}
$$

we refer the reader to [12].
Theorem 3.4. Assume that (1.5)-(1.11) hold and that

$$
p-1 \leq m<p-1+p / N, \quad p<\sigma<p^{*} .
$$

Assume that $\left(u_{n}\right) \subset W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ is such that $u_{n} \rightharpoonup u$, $u_{n} \rightarrow u$ a.e. in $\Omega, D u_{n} \rightarrow D u$ a.e. in Ω and there is $\left(w_{n}\right)$ in the dual space $\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*}$ such that $w_{n} \rightarrow 0$ as $n \rightarrow \infty$ and, for all $v \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} j_{\xi}\left(u_{n}, D u_{n}\right) \cdot D v+\int_{\Omega} j_{s}\left(u_{n}, D u_{n}\right) v+\int_{\Omega} V(x)\left|u_{n}\right|^{p-2} u_{n} v=\left\langle w_{n}, v\right\rangle \tag{3.4}
\end{equation*}
$$

Then $\phi^{\prime}(u)=0$. Moreover, there exists a sequence $\left(\xi_{n}\right)$ that goes to zero in $\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*}$, such that

$$
\begin{align*}
\left\langle\xi_{n}, v\right\rangle & :=\int_{\Omega} j_{s}\left(u_{n}-u, D u_{n}-D u\right) v+\int_{\Omega} j_{\xi}\left(u_{n}-u, D u_{n}-D u\right) \cdot D v \tag{3.5}\\
& -\int_{\Omega} j_{s}\left(u_{n}, D u_{n}\right) v-\int_{\Omega} j_{\xi}\left(u_{n}, D u_{n}\right) \cdot D v+\int_{\Omega} j_{s}(u, D u) v+\int_{\Omega} j_{\xi}(u, D u) \cdot D v
\end{align*}
$$

for all $v \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$.
Furthermore, there exists a sequence $\left(\zeta_{n}\right)$ in $\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*}$ such that
$\int_{\Omega} j_{\xi}\left(u_{n}-u, D u_{n}-D u\right) \cdot D v+\int_{\Omega} j_{s}\left(u_{n}-u, D u_{n}-D u\right) v+\int_{\Omega} V_{\infty}\left|u_{n}-u\right|^{p-2}\left(u_{n}-u\right) v=\left\langle\zeta_{n}, v\right\rangle$
for all $v \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ and $\zeta_{n} \rightarrow 0$ as $n \rightarrow \infty$, namely $\phi_{\infty}^{\prime}\left(u_{n}-u\right) \rightarrow 0$ as $n \rightarrow \infty$.
Proof. Fixed some $v \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$, let us define for a.e. $x \in \Omega$ and all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$,

$$
\begin{aligned}
f_{v}(x, s, \xi) & :=j_{s}(s-u(x), \xi-D u(x)) v(x) \\
& +j_{\xi}(s-u(x), \xi-D u(x)) \cdot D v(x)-j_{s}(s, \xi) v(x)-j_{\xi}(s, \xi) \cdot D v(x) .
\end{aligned}
$$

In order to prove 3.5 we are going to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{\|v\|_{W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)} \leq 1}\left|\int_{\Omega} f_{v}\left(x, u_{n}, D u_{n}\right)-f_{v}(x, u, D u)\right|=0 . \tag{3.6}
\end{equation*}
$$

As it can be easily checked, there holds

$$
\begin{aligned}
-f_{v}(x, s, \xi) & =\int_{0}^{1} j_{s s}(s-\tau u(x), \xi-\tau D u(x)) u(x) v(x) d \tau \\
& +\int_{0}^{1} j_{s \xi}(s-\tau u(x), \xi-\tau D u(x)) \cdot[D u(x) v(x)+D v(x) u(x)] d \tau \\
& +\int_{0}^{1}\left[j_{\xi \xi}(s-\tau u(x), \xi-\tau D u(x)) D u(x)\right] \cdot D v(x) d \tau
\end{aligned}
$$

Hence, by plugging the particular form of j in the above equation yields
$-f_{v}(x, s, \xi)=a(x, s, \xi) v(x)+b(x, s) v(x)+c_{1}(x, s, \xi) \cdot D v(x)+c_{2}(x, s, \xi) \cdot D v(x)+d(x, \xi) \cdot D v(x)$
where

$$
\begin{aligned}
a(x, s, \xi) & :=\int_{0}^{1}\left[M_{s s}(s-\tau u(x), \xi-\tau D u(x)) u(x)+M_{s \xi}(s-\tau u(x), \xi-\tau D u(x)) \cdot D u(x)\right] d \tau, \\
b(x, s) & :=-\int_{0}^{1} G^{\prime \prime}(s-\tau u(x)) u(x) d \tau \\
c_{1}(x, s, \xi) & :=\int_{0}^{1} M_{\xi s}(s-\tau u(x), \xi-\tau D u(x)) u(x) d \tau \\
c_{2}(x, s, \xi) & :=\int_{0}^{1} M_{\xi \xi}(s-\tau u(x), \xi-\tau D u(x)) D u(x) d \tau \\
d(x, \xi) & :=\int_{0}^{1} L_{\xi \xi}(\xi-\tau D u(x)) D u(x) d \tau .
\end{aligned}
$$

We claim that, as $n \rightarrow \infty$, it holds

$$
\begin{aligned}
a\left(\cdot, u_{n}, D u_{n}\right) \rightarrow a(\cdot, u, D u) & \text { in } L^{\left(p^{*}\right)^{\prime}}(\Omega), \\
b\left(\cdot, u_{n}\right) \rightarrow b(\cdot, u) & \text { in } L^{\sigma^{\prime}}(\Omega), \\
c_{1}\left(\cdot, u_{n}, D u_{n}\right) \rightarrow c_{1}(\cdot, u, D u) & \text { in } L^{p^{\prime}}(\Omega), \\
c_{2}\left(\cdot, u_{n}, D u_{n}\right) \rightarrow c_{2}(\cdot, u, D u) & \text { in } L^{m^{\prime}}(\Omega), \\
d\left(\cdot, D u_{n}\right) \rightarrow d(\cdot, D u) & \text { in } L^{p^{\prime}}(\Omega) .
\end{aligned}
$$

Then, using Hölder's inequality and the embeddings of $W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ into $L^{\sigma}(\Omega)$ and $L^{p^{*}}(\Omega)$ we obtain

$$
\begin{aligned}
\sup _{\|v\|_{W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)} \leq 1} & \left|\int_{\Omega} f_{v}\left(x, u_{n}, D u_{n}\right)-f_{v}(x, u, D u)\right| \\
& \leq C\left\|a\left(\cdot, u_{n}, D u_{n}\right)-a(\cdot, u, D u)\right\|_{L^{\left(p^{*}\right)^{\prime}}(\Omega)} \\
& +C\left\|b\left(\cdot, u_{n}\right)-b(\cdot, u)\right\|_{L^{\sigma^{\prime}}(\Omega)} \\
& +C\left\|c_{1}\left(\cdot, u_{n}, D u_{n}\right)-c_{1}(\cdot, u, D u)\right\|_{L^{p^{\prime}}(\Omega)}, \\
& +C\left\|c_{2}\left(\cdot, u_{n}, D u_{n}\right)-c_{2}(\cdot, u, D u)\right\|_{L^{m^{\prime}}(\Omega)}, \\
& +C\left\|d\left(\cdot, D u_{n}\right)-d(\cdot, D u)\right\|_{L^{p^{\prime}}(\Omega)},
\end{aligned}
$$

yielding the desired conclusion (3.6). It remains to prove the convergences we claimed above. For each term, we shall exploit Lemma 2.5. Since $m<p-1+p / N$, we can set

$$
\alpha:=\frac{m}{p^{*}-1}, \quad \beta:=\frac{p N}{p N-N+p-m N}
$$

it follows $\beta>0$ and $m<m+\alpha<p$. Young's inequality yields in turn

$$
y^{(m+\alpha) /\left(p^{*}\right)^{\prime}} \leq C y^{m /\left(p^{*}\right)^{\prime}}+C y^{p /\left(p^{*}\right)^{\prime}}, \quad \text { for all } y \geq 0 .
$$

Since $\beta /\left(p^{*}\right)^{\prime}>1$ and $(m+\alpha) /\left(p^{*}\right)^{\prime}>1$, by the growths of $M_{s s}$ and $M_{s \xi}$, we have

$$
\begin{aligned}
|a(x, s, \xi)| & \leq C\left(|\xi|^{m}+|D u(x)|^{m}\right)|u(x)|+C\left(|\xi|^{m-1}+|D u(x)|^{m-1}\right)|D u(x)| \\
& \leq \varepsilon|\xi|^{p /\left(p^{*}\right)^{\prime}}+C_{\varepsilon}|u(x)|^{\beta /\left(p^{*}\right)^{\prime}}+C_{\varepsilon}|D u(x)|^{p /\left(p^{*}\right)^{\prime}}+\varepsilon|\xi|^{(m+\alpha) /\left(p^{*}\right)^{\prime}}+C_{\varepsilon}|D u(x)|^{(m+\alpha) /\left(p^{*}\right)^{\prime}} \\
& \leq \varepsilon|\xi|^{p /\left(p^{*}\right)^{\prime}}+\varepsilon|\xi|^{m /\left(p^{*}\right)^{\prime}}+C_{\varepsilon}|u(x)|^{\beta /\left(p^{*}\right)^{\prime}}+C_{\varepsilon}|D u(x)|^{p /\left(p^{*}\right)^{\prime}}+C_{\varepsilon}|D u(x)|^{m /\left(p^{*}\right)^{\prime}} .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
|b(x, s)| & \leq C\left(|s|^{\sigma-2}+|u(x)|^{\sigma-2}\right)|u(x)| \leq \varepsilon|s|^{\sigma / \sigma^{\prime}}+C_{\varepsilon}|u|^{\sigma / \sigma^{\prime}}, \\
\left|c_{1}(x, s, \xi)\right| & \leq C\left(|\xi|^{m-1}+|D u(x)|^{m-1}\right)|u(x)| \\
& \leq \varepsilon|\xi|^{p / p^{\prime}}+C_{\varepsilon}|u(x)|^{p /\left((p-m) p^{\prime}\right)}+C_{\varepsilon}|D u(x)|^{p / p^{\prime}}, \\
\left|c_{2}(x, s, \xi)\right| & \leq C\left(|\xi|^{m-2}+|D u(x)|^{m-2}\right)|D u(x)| \\
& \leq \varepsilon|\xi|^{m / m^{\prime}}+C_{\varepsilon}|D u(x)|^{m / m^{\prime}} \\
|d(x, \xi)| & \leq C\left(|\xi|^{p-2}+|D u(x)|^{p-2}\right)|D u(x)| \leq \varepsilon|\xi|^{p / p^{\prime}}+C_{\varepsilon}|D u(x)|^{p / p^{\prime}} .
\end{aligned}
$$

From the point-wise convergence of the gradients and the growth estimates of j_{ξ}, j_{s} and g that u is a week solutions to the problem, namely for all $v \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$

$$
\begin{equation*}
\int_{\Omega} L_{\xi}(D u) \cdot D v+\int_{\Omega} M_{\xi}(u, D u) \cdot D v+\int_{\Omega} M_{s}(u, D u) v+\int_{\Omega} V(x)|u|^{p-2} u v=\int_{\Omega} g(u) v . \tag{3.7}
\end{equation*}
$$

To get this, recall that $v \in L^{(p / m)^{\prime}}(\Omega)$ and the sequence $\left(M_{s}\left(u_{n}, D u_{n}\right)\right)$ is bounded in $L^{p / m}(\Omega)$ and hence it converges weakly to $M_{s}(u, D u)$ in $L^{p / m}(\Omega)$. Thanks to Proposition 2.4 (recall that $\beta \geq p$ if and only if $m \geq p-2+p / N$ and this is the case since $m \geq p-1)$, we have $L^{\beta}(\Omega)$. Hence,

$$
u \in L^{\sigma}(\Omega) \cap L^{\frac{p}{p-m}}(\Omega) \cap L^{\beta}(\Omega),
$$

being $p \leq p /(p-m)<p^{*}$ and $p<\sigma<p^{*}$. By the previous inequalities the claim follows by Lemma 2.5 with the choice $\mu=\left(p^{*}\right)^{\prime}, \sigma^{\prime}, p^{\prime}, m^{\prime}$ and p^{\prime} respectively. Let us now recall a dual version of properties (3.2)-(3.3) (cf. [17]), namely there exist two sequences (μ_{n}) and (ν_{n}) in $\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*}$ which converge to zero as $n \rightarrow \infty$ and such that

$$
\begin{aligned}
\int_{\Omega} V_{\infty}\left|u_{n}-u\right|^{p-2}\left(u_{n}-u\right) v & =\int_{\Omega} V(x)\left|u_{n}-u\right|^{p-2}\left(u_{n}-u\right) v+\left\langle\nu_{n}, v\right\rangle \\
\int_{\Omega} V(x)\left|u_{n}-u\right|^{p-2}\left(u_{n}-u\right) v & =\int_{\Omega} V(x)\left|u_{n}\right|^{p-2} u_{n} v-\int_{\Omega} V(x)|u|^{p-2} u v+\left\langle\mu_{n}, v\right\rangle
\end{aligned}
$$

for every $v \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$. Whence, by collecting (3.4), (3.5), (3.6), (3.7), we get

$$
\begin{aligned}
& \int_{\Omega} j_{\xi}\left(u_{n}-u, D u_{n}-D u\right) \cdot D v+\int_{\Omega} j_{s}\left(u_{n}-u, D u_{n}-D u\right) v+\int_{\Omega} V_{\infty}\left|u_{n}-u\right|^{p-2}\left(u_{n}-u\right) v \\
& =\int_{\Omega} j_{\xi}\left(u_{n}, D u_{n}\right) \cdot D v+\int_{\Omega} j_{s}\left(u_{n}, D u_{n}\right) v+\int_{\Omega} V(x)\left|u_{n}\right|^{p-2} u_{n} v \\
& -\int_{\Omega} j_{\xi}(u, D u) \cdot D v-\int_{\Omega} j_{s}(u, D u) v-\int_{\Omega} V(x)|u|^{p-2} u v+\left\langle\xi_{n}+\mu_{n}+\nu_{n}, v\right\rangle=\left\langle\zeta_{n}, v\right\rangle,
\end{aligned}
$$

where $\left\langle\zeta_{n}, v\right\rangle:=\left\langle w_{n}+\xi_{n}+\mu_{n}+\nu_{n}, v\right\rangle$ and $\zeta_{n} \rightarrow 0$ as $n \rightarrow \infty$. This concludes the proof.
3.3. Equation splitting II (sub-quadratic case). We assume that (1.12)-(1.14) hold.

Theorem 3.5. Assume (1.9), let the integrand j be as in (1.11) and $p \leq 2$ or $m \leq 2$ or $\sigma \leq 2$,

$$
p-1 \leq m<p-1+p / N, \quad p<\sigma<p^{*} .
$$

Assume that $\left(u_{n}\right) \subset W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ is such that $u_{n} \rightharpoonup u$, $u_{n} \rightarrow u$ a.e. in $\Omega, D u_{n} \rightarrow D u$ a.e. in Ω and there exists $\left(w_{n}\right)$ in $\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*}$ such that $w_{n} \rightarrow 0$ as $n \rightarrow \infty$ and, for every $v \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$,

$$
\int_{\Omega} j_{\xi}\left(u_{n}, D u_{n}\right) \cdot D v+\int_{\Omega} j_{s}\left(u_{n}, D u_{n}\right) v+\int_{\Omega} V(x)\left|u_{n}\right|^{p-2} u_{n} v=\left\langle w_{n}, v\right\rangle
$$

Then $\phi^{\prime}(u)=0$. Moreover, there exists a sequence $\left(\hat{\xi}_{n}\right)$ that goes to zero in $\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*}$, such that

$$
\begin{align*}
\left\langle\hat{\xi}_{n}, v\right\rangle & :=\int_{\Omega} j_{s}\left(u_{n}-u, D u_{n}-D u\right) v+\int_{\Omega} j_{\xi}\left(u_{n}-u, D u_{n}-D u\right) \cdot D v \tag{3.8}\\
& -\int_{\Omega} j_{s}\left(u_{n}, D u_{n}\right) v-\int_{\Omega} j_{\xi}\left(u_{n}, D u_{n}\right) \cdot D v+\int_{\Omega} j_{s}(u, D u) v+\int_{\Omega} j_{\xi}(u, D u) \cdot D v,
\end{align*}
$$

for all $v \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$.
Furthermore, there exists a sequence $\left(\hat{\zeta}_{n}\right)$ in $W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ with
$\int_{\Omega} j_{\xi}\left(u_{n}-u, D u_{n}-D u\right) \cdot D v+\int_{\Omega} j_{s}\left(u_{n}-u, D u_{n}-D u\right) v+\int_{\Omega} V_{\infty}\left|u_{n}-u\right|^{p-2}\left(u_{n}-u\right) v=\left\langle\hat{\zeta}_{n}, v\right\rangle$ for all $v \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ and $\hat{\zeta}_{n} \rightarrow 0$ as $n \rightarrow \infty$, namely $\phi_{\infty}^{\prime}\left(u_{n}-u\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Keeping in mind the argument in proof of Theorem 3.4, here we shall be more sketchy. For every $s \in \mathbb{R}$ and $\xi \in \mathbb{R}^{N}$ we plug L, M, G into the equation

$$
\begin{aligned}
f_{v}(x, s, \xi) & =j_{s}(s-u(x), \xi-D u(x)) v(x) \\
& +j_{\xi}(s-u(x), \xi-D u(x)) \cdot D v(x)-j_{s}(s, \xi) v(x)-j_{\xi}(s, \xi) \cdot D v(x),
\end{aligned}
$$

thus obtaining

$$
\begin{aligned}
f_{v}(x, s, \xi) & =\left(M_{s}(s-u(x), \xi-D u(x))-M_{s}(s, \xi)\right) v(x)-\left(G^{\prime}(s-u(x))-G^{\prime}(s)\right) v(x) \\
& +\left(M_{\xi}(s-u(x), \xi-D u(x))-M_{\xi}(s, \xi)\right) \cdot D v(x)+\left(L_{\xi}(\xi-D u(x))-L_{\xi}(\xi)\right) \cdot D v(x) \\
& =a^{\prime} v(x)+b^{\prime} v(x)+c^{\prime} \cdot D v(x)+d^{\prime} \cdot D v(x) .
\end{aligned}
$$

We write the term $M_{\xi}(s-u(x), \xi-D u(x))-M_{\xi}(s, \xi)$ in a more suitable form, namely

$$
\begin{aligned}
c^{\prime} & =M_{\xi}(s-u(x), \xi-D u(x))-M_{\xi}(s, \xi) \\
& =\underbrace{M_{\xi}(s-u(x), \xi-D u(x))-M_{\xi}(s, \xi-D u(x))}_{c_{1}^{\prime}(x, s, \xi)}+\underbrace{M_{\xi}(s, \xi-D u(x))-M_{\xi}(s, \xi)}_{c_{2}^{\prime}(x, s, \xi)},
\end{aligned}
$$

so that

$$
f_{v}(x, s, \xi)=a^{\prime}(x, s, \xi) v(x)+b^{\prime}(x, s) v(x)+\left(c_{1}^{\prime}(x, s, \xi)+c_{2}^{\prime}(x, s, \xi)\right) \cdot D v(x)+d^{\prime}(x, \xi) \cdot D v(x) .
$$

The term a^{\prime} admits the same growth condition of a, cf. the proof of Theorem 3.4. Also, since

$$
c_{1}^{\prime}(x, s, \xi)=-\int_{0}^{1} M_{\xi s}(s-\tau u(x), \xi-D u(x)) u(x) d \tau,
$$

as for the term c_{1} in the proof of Theorem 3.4 we obtain

$$
\left|c_{1}^{\prime}(x, s, \xi)\right| \leq \varepsilon|\xi|^{p / p^{\prime}}+C_{\varepsilon}|u(x)|^{p /\left((p-m) p^{\prime}\right)}+C_{\varepsilon}|D u(x)|^{p / p^{\prime}} .
$$

On the other hand, directly from assumptions (1.12)-(1.14) we get

$$
\left|b^{\prime}(x, s)\right| \leq C|u(x)|^{\sigma / \sigma^{\prime}}, \quad\left|c_{2}^{\prime}(x, s, \xi)\right| \leq C|D u(x)|^{m / m^{\prime}}, \quad\left|d^{\prime}(x, \xi)\right| \leq C|D u(x)|^{p / p^{\prime}}
$$

The conclusion follows then by the same argument carried out in Theorem 3.4.
In the spirit of [17, Lemma 8.3], we have the following
Lemma 3.6. Under the hypotheses of Theorem 1.1 or 1.2, let $\left(y_{n}\right) \subset \mathbb{R}^{N}$ with $\left|y_{n}\right| \rightarrow \infty$,

$$
\begin{aligned}
& u_{n}\left(\cdot+y_{n}\right) \rightarrow u \quad \text { in } W^{1, p}\left(\mathbb{R}^{N}\right) \cap D^{1, m}\left(\mathbb{R}^{N}\right), \\
& u_{n}\left(\cdot+y_{n}\right) \rightarrow u \quad \text { a.e. in } \mathbb{R}^{N}, \\
& D u_{n}\left(\cdot+y_{n}\right) \rightarrow D u \quad \text { a.e. in } \mathbb{R}^{N}, \\
& \phi_{\infty}\left(u_{n}\right) \rightarrow c, \\
& \phi_{\infty}^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in }\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*} .
\end{aligned}
$$

Then $\phi_{\infty}^{\prime}(u)=0$ and, setting $v_{n}:=u_{n}-u\left(\cdot-y_{n}\right)$, we have

$$
\begin{align*}
& \phi_{\infty}\left(v_{n}\right) \rightarrow c-\phi_{\infty}(u) \tag{3.9}\\
& \phi_{\infty}^{\prime}\left(v_{n}\right) \rightarrow 0 \quad \text { in }\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*}, \tag{3.10}
\end{align*}
$$

and $\left\|v_{n}\right\|_{p}^{p}=\left\|u_{n}\right\|_{p}^{p}-\|u\|_{p}^{p}+o(1)$ and $\left\|v_{n}\right\|_{m}^{m}=\left\|u_{n}\right\|_{m}^{m}-\|u\|_{m}^{m}+o(1)$ as $n \rightarrow \infty$.
Proof. The energy splitting (3.9) follows by Theorem 3.2 applied with $\Omega=\mathbb{R}^{N}$ and the sequence $\left(u_{n}\right)$ replaced by $\left(u_{n}\left(\cdot+y_{n}\right)\right)$. Take now $\varphi \in \mathcal{D}(\Omega)$ with $\|\varphi\|_{W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)} \leq 1$ and define $\varphi_{n}:=\varphi\left(\cdot+y_{n}\right)$. Then $\varphi_{n} \in \mathcal{D}\left(\Omega_{n}\right)$, where $\Omega_{n}=\Omega-\left\{y_{n}\right\} \subset \Omega$ for n large. For any $n \in \mathbb{N}$, we get

$$
\left\langle\phi_{\infty}^{\prime}\left(v_{n}\right), \varphi\right\rangle=\left\langle\phi_{\infty}^{\prime}\left(u_{n}\left(\cdot+y_{n}\right)-u\right), \varphi_{n}\right\rangle .
$$

By the splitting argument in the proof of Theorem 3.4, it follows that

$$
\left\langle\phi_{\infty}^{\prime}\left(u_{n}\left(\cdot+y_{n}\right)-u\right), \varphi_{n}\right\rangle=\left\langle\phi_{\infty}^{\prime}\left(u_{n}\left(\cdot+y_{n}\right)\right), \varphi_{n}\right\rangle-\left\langle\phi_{\infty}^{\prime}(u), \varphi_{n}\right\rangle+\left\langle\zeta_{n}, \varphi_{n}\right\rangle,
$$

where $\zeta_{n} \rightarrow 0$ in the dual of $W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$. If we prove that u is critical for ϕ_{∞}, then the right-hand side reads as $\left\langle\phi_{\infty}^{\prime}\left(u_{n}\right), \varphi\right\rangle+\left\langle\zeta_{n}, \varphi_{n}\right\rangle$, and also the second limit (3.10) follows. To prove that $\phi_{\infty}^{\prime}(u)=0$ we observe that, for all φ in $\mathcal{D}\left(\mathbb{R}^{N}\right)$,

$$
\left\langle\phi_{\infty}^{\prime}\left(u_{n}\left(\cdot+y_{n}\right)\right), \varphi\right\rangle \rightarrow\left\langle\phi_{\infty}^{\prime}(u), \varphi\right\rangle, \quad\left|\left\langle\phi_{\infty}^{\prime}\left(u_{n}\left(\cdot+y_{n}\right)\right), \varphi\right\rangle\right| \leq\left\|\phi_{\infty}^{\prime}\left(u_{n}\right)\right\|_{*}\|\varphi\|_{W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)} \rightarrow 0 .
$$

Indeed, defining $\hat{\varphi}_{n}:=\varphi\left(\cdot-y_{n}\right)$, since $\left|y_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$, we have $\operatorname{supp} \hat{\varphi}_{n} \subset \Omega$, for n large enough and $\left\|\hat{\varphi}_{n}\right\|_{W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)}=\|\varphi\|_{W^{1, p}\left(\mathbb{R}^{N}\right) \cap D^{1, m}\left(\mathbb{R}^{N}\right)}$. The last assertion follows by using Brezis-Lieb Lemma [4].

We can finally come to the proof of the main results.

4. Proof of Theorems 1.1 and 1.2 Completed

We follow the scheme of the proof given in [17, p.121]. Let $\left(u_{n}\right) \subset W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ be a bounded Palais-Smale sequence for ϕ at the level $c \in \mathbb{R}$. Hence, there exists a sequence $\left(w_{n}\right)$ in the dual of $W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ such that $w_{n} \rightarrow 0$ and $\phi\left(u_{n}\right) \rightarrow c$ as $n \rightarrow \infty$ and, for all $v \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$, we have

$$
\begin{aligned}
\int_{\Omega} L_{\xi}\left(D u_{n}\right) \cdot D v & +\int_{\Omega} M_{\xi}\left(u_{n}, D u_{n}\right) \cdot D v+\int_{\Omega} M_{s}\left(u_{n}, D u_{n}\right) v \\
& +\int_{\Omega} V(x)\left|u_{n}\right|^{p-2} u_{n} v=\int_{\Omega} g\left(u_{n}\right) v+\left\langle w_{n}, v\right\rangle .
\end{aligned}
$$

Since $\left(u_{n}\right)$ is bounded in $W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$, up to a subsequence, it converges weakly to some function $v_{0} \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ and, by virtue of Proposition $2.3,\left(u_{n}\right)$ and $\left(D u_{n}\right)$ converge to v_{0} and $D v_{0}$ a.e. in Ω, respectively. In turn (see also the proof of Theorem 3.4) it follows

$$
\int_{\Omega} L_{\xi}\left(D v_{0}\right) \cdot D v+\int_{\Omega} M_{\xi}\left(v_{0}, D v_{0}\right) \cdot D v+\int_{\Omega} M_{s}\left(v_{0}, D v_{0}\right) v+\int_{\Omega} V(x)\left|v_{0}\right|^{p-2} v_{0} v=\int_{\Omega} g\left(v_{0}\right) v
$$

for any $v \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$. By combining Theorem 3.2 and Theorem 3.4, setting $u_{n}^{1}:=u_{n}-v_{0}$ and thinking the functions on \mathbb{R}^{N} after extension to zero out of Ω, get

$$
\begin{align*}
& \phi_{\infty}\left(u_{n}^{1}\right) \rightarrow c-\phi\left(v_{0}\right), \quad n \rightarrow \infty \tag{4.1}\\
& \int_{\mathbb{R}^{N}} L_{\xi}\left(D u_{n}^{1}\right) \cdot D v+\int_{\mathbb{R}^{N}} M_{\xi}\left(u_{n}^{1}, D u_{n}^{1}\right) \cdot D v+\int_{\mathbb{R}^{N}} M_{s}\left(u_{n}^{1}, D u_{n}^{1}\right) v \tag{4.2}\\
&+\int_{\mathbb{R}^{N}} V_{\infty}\left|u_{n}^{1}\right|^{p-2} u_{n}^{1} v=\int_{\mathbb{R}^{N}} g\left(u_{n}^{1}\right) v+\left\langle w_{n}^{1}, v\right\rangle
\end{align*}
$$

where $\left(w_{n}^{1}\right)$ is a sequence in the dual of $W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$ with $w_{n}^{1} \rightarrow 0$ as $n \rightarrow \infty$. In turn, it follows that $\left(u_{n}^{1}\right)$ is Palais-Smale sequence for ϕ_{∞} at the energy level $c-\phi\left(v_{0}\right)$. In addition,

$$
\left\|u_{n}^{1}\right\|_{p}^{p}=\left\|u_{n}\right\|_{p}^{p}-\left\|v_{0}\right\|_{p}^{p}+o(1), \quad\left\|u_{n}^{1}\right\|_{m}^{m}=\left\|u_{n}\right\|_{m}^{m}-\left\|v_{0}\right\|_{m}^{m}+o(1), \quad \text { as } n \rightarrow \infty
$$

by the Brezis-Lieb Lemma [4]. Let us now define

$$
\varpi:=\limsup _{n \rightarrow \infty} \sup _{y \in \mathbb{R}^{N}} \int_{B(y, 1)}\left|u_{n}^{1}\right|^{p}
$$

If it is the case that $\varpi=0$, then, according to [11, Lemma I.1], $\left(u_{n}^{1}\right)$ converges to zero in $L^{r}\left(\mathbb{R}^{N}\right)$ for every $r \in\left(p, p^{*}\right)$. Then, one obtains that

$$
\lim _{n \rightarrow \infty} \int_{\Omega} g\left(u_{n}^{1}\right) u_{n}^{1}=0, \quad \int_{\Omega} M_{s}\left(u_{n}^{1}, D u_{n}^{1}\right) u_{n}^{1} \geq 0
$$

where the inequality follows by the sign condition (1.9). In turn, testing equation (4.2) with $v=u_{n}^{1}$, by the coercivity and convexity of $\xi \mapsto L(\xi), M(s, \xi)$, we have

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left[\nu \int_{\mathbb{R}^{N}}\left|D u_{n}^{1}\right|^{p}+\nu \int_{\mathbb{R}^{N}}\left|D u_{n}^{1}\right|^{m}+V_{\infty} \int_{\mathbb{R}^{N}}\left|u_{n}^{1}\right|^{p}\right] \\
& \leq \limsup _{n \rightarrow \infty}\left[\int_{\mathbb{R}^{N}} L_{\xi}\left(D u_{n}^{1}\right) \cdot D u_{n}^{1}+\int_{\mathbb{R}^{N}} M_{\xi}\left(u_{n}^{1}, D u_{n}^{1}\right) \cdot D u_{n}^{1}+\int_{\mathbb{R}^{N}} V_{\infty}\left|u_{n}^{1}\right|^{p}\right] \leq 0
\end{aligned}
$$

yielding that $\left(u_{n}^{1}\right)$ strongly converges to zero in $W^{1, p}\left(\mathbb{R}^{N}\right) \cap D^{1, m}\left(\mathbb{R}^{N}\right)$, concluding the proof in this case. If, on the contrary, it holds $\varpi>0$, then, there exists an unbounded sequence $\left(y_{n}^{1}\right) \subset \mathbb{R}^{N}$ with $\int_{B\left(y_{n}^{1}, 1\right)}\left|u_{n}^{1}\right|^{p}>\varpi / 2$. Whence, let us consider $v_{n}^{1}:=u_{n}^{1}\left(\cdot+y_{n}^{1}\right)$, which, up to a subsequence, converges weakly and pointwise to some $v_{1} \in W^{1, p}\left(\mathbb{R}^{N}\right) \cap D^{1, m}\left(\mathbb{R}^{N}\right)$, which is nontrivial, due to the inequality $\int_{B(0,1)}\left|v_{1}\right|^{p} \geq \varpi / 2$. Notice that, of course,

$$
\lim _{n \rightarrow \infty} \phi_{\infty}\left(v_{n}^{1}\right)=\lim _{n \rightarrow \infty} \phi_{\infty}\left(u_{n}^{1}\right)=c-\phi\left(v_{0}\right)
$$

Moreover, since $\left|y_{n}^{1}\right| \rightarrow \infty$ and Ω is an exterior domain, for all $\varphi \in \mathcal{D}\left(\mathbb{R}^{N}\right)$ we have $\varphi\left(\cdot-y_{n}^{1}\right) \in \mathcal{D}(\Omega)$ for $n \in \mathbb{N}$ large enough. Whence, in light of equation (4.2), for every $\varphi \in \mathcal{D}\left(\mathbb{R}^{N}\right)$ we get

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} L_{\xi}\left(D v_{n}^{1}\right) \cdot D \varphi+\int_{\mathbb{R}^{N}} M_{\xi}\left(v_{n}^{1}, D v_{n}^{1}\right) \cdot D \varphi+\int_{\mathbb{R}^{N}} M_{s}\left(v_{n}^{1}, D v_{n}^{1}\right) \varphi \\
& +\int_{\mathbb{R}^{N}} V_{\infty}\left|v_{n}^{1}\right|^{p-2}\left(v_{n}^{1}\right) \varphi-\int_{\mathbb{R}^{N}} g\left(v_{n}^{1}\right) \varphi=\int_{\mathbb{R}^{N}} L_{\xi}\left(D u_{n}^{1}\right) \cdot D \varphi\left(\cdot-y_{n}^{1}\right) \\
& +\int_{\mathbb{R}^{N}} M_{\xi}\left(u_{n}^{1}, D u_{n}^{1}\right) \cdot D \varphi\left(\cdot-y_{n}^{1}\right)+\int_{\mathbb{R}^{N}} M_{s}\left(u_{n}^{1}, D u_{n}^{1}\right) \varphi\left(\cdot-y_{n}^{1}\right)+\int_{\mathbb{R}^{N}} V_{\infty}\left|u_{n}^{1}\right|^{p-2}\left(u_{n}^{1}\right) \varphi\left(\cdot-y_{n}^{1}\right) \\
& -\int_{\mathbb{R}^{N}} g\left(u_{n}^{1}\right) \varphi\left(\cdot-y_{n}^{1}\right)=\left\langle w_{n}^{1}, \varphi\left(\cdot+y_{n}^{1}\right)\right\rangle
\end{aligned}
$$

Defining the form $\left\langle\hat{w}_{n}^{1}, \varphi\right\rangle:=\left\langle w_{n}^{1}, \varphi\left(\cdot-y_{n}^{1}\right)\right\rangle$ for all $\varphi \in \mathcal{D}\left(\mathbb{R}^{N}\right)$, we conclude that

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} L_{\xi}\left(D v_{n}^{1}\right) \cdot D \varphi & +\int_{\mathbb{R}^{N}} M_{\xi}\left(v_{n}^{1}, D v_{n}^{1}\right) \cdot D \varphi+\int_{\mathbb{R}^{N}} M_{s}\left(v_{n}^{1}, D v_{n}^{1}\right) \varphi \\
& +\int_{\mathbb{R}^{N}} V_{\infty}\left|v_{n}^{1}\right|^{p-2}\left(v_{n}^{1}\right) \varphi-\int_{\mathbb{R}^{N}} g\left(v_{n}^{1}\right) \varphi=\left\langle\hat{w}_{n}^{1}, \varphi\right\rangle, \quad \forall \varphi \in \mathcal{D}\left(\mathbb{R}^{N}\right)
\end{aligned}
$$

Since $\left(\hat{w}_{n}^{1}\right)$ converges to zero in the dual of $W^{1, p}\left(\mathbb{R}^{N}\right) \cap D^{1, m}\left(\mathbb{R}^{N}\right)$, it follows by Proposition 2.3 (with $V=V_{\infty}$ and $\Omega=\mathbb{R}^{N}$) that the gradients $D v_{n}^{1}$ converge point-wise to $D v_{1}$, namely

$$
\begin{equation*}
D v_{n}^{1}(x) \rightarrow D v_{1}(x), \quad \text { a.e. in } \mathbb{R}^{N} \tag{4.3}
\end{equation*}
$$

Setting $u_{n}^{2}:=u_{n}^{1}-v_{1}\left(\cdot-y_{n}^{1}\right)$, in light of (4.1)-(4.2) and (4.3), we can apply Lemma 3.6 to the sequence $\left(v_{n}^{1}\right)$, getting

$$
\lim _{n \rightarrow \infty} \phi_{\infty}\left(u_{n}^{2}\right)=c-\phi\left(v_{0}\right)-\phi_{\infty}\left(v_{1}\right)
$$

as well as $\phi_{\infty}\left(v_{1}\right)=0$ and, furthermore, for every $v \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} L_{\xi}\left(D u_{n}^{2}\right) \cdot D v+\int_{\mathbb{R}^{N}} M_{\xi}\left(u_{n}^{2}, D u_{n}^{2}\right) \cdot D v+\int_{\mathbb{R}^{N}} M_{s}\left(u_{n}^{2}, D u_{n}^{2}\right) v \\
& +\int_{\mathbb{R}^{N}} V_{\infty}\left|u_{n}^{2}\right|^{p-2} u_{n}^{2} v-\int_{\mathbb{R}^{N}} g\left(u_{n}^{2}\right) v=\left\langle\zeta_{n}^{2}, v\right\rangle
\end{aligned}
$$

where $\left(\zeta_{n}^{2}\right)$ goes to zero in the dual of $W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$. In turn, $\left(u_{n}^{2}\right) \subset W^{1, p}\left(\mathbb{R}^{N}\right) \cap D^{1, m}\left(\mathbb{R}^{N}\right)$ is a Palais-Smale sequence for ϕ_{∞} at the energy level $c-\phi\left(v_{0}\right)-\phi\left(v_{1}\right)$. Arguing on $\left(u_{n}^{2}\right)$ as it was done for $\left(u_{n}^{1}\right)$, either u_{n}^{2} goes to zero strongly in $W^{1, p}\left(\mathbb{R}^{N}\right) \cap D^{1, m}\left(\mathbb{R}^{N}\right)$ or we can generate a new $\left(u_{n}^{3}\right)$. By iterating the above procedure, one obtains diverging sequences $\left(y_{n}^{i}\right), i=1, \ldots, k-1$, solutions v_{i} on \mathbb{R}^{N} to the limiting problem, $i=1, \ldots, k-1$ and a sequence

$$
u_{n}^{k}=u_{n}-v_{0}-v_{1}\left(\cdot-y_{n}^{1}\right)-v_{2}\left(\cdot-y_{n}^{2}\right)-\cdots-v_{k-1}\left(\cdot-y_{n}^{k-1}\right)
$$

such that (recall again Lemma 3.6) as $n \rightarrow \infty$

$$
\begin{align*}
\left\|u_{n}^{k}\right\|_{p}^{p} & =\left\|u_{n}\right\|_{p}^{p}-\left\|v_{0}\right\|_{p}^{p}-\left\|v_{1}\right\|_{p}^{p}-\cdots-\left\|v_{k-1}\right\|_{p}^{p}+o(1) \tag{4.4}\\
\left\|u_{n}^{k}\right\|_{m}^{m} & =\left\|u_{n}\right\|_{m}^{m}-\left\|v_{0}\right\|_{m}^{m}-\left\|v_{1}\right\|_{m}^{m}-\cdots-\left\|v_{k-1}\right\|_{m}^{m}+o(1)
\end{align*}
$$

as well as $\phi_{\infty}^{\prime}\left(u_{n}^{k}\right) \rightarrow 0$ in $\left(W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)\right)^{*}$ and

$$
\phi_{\infty}\left(u_{n}^{k}\right) \rightarrow c-\phi\left(v_{0}\right)-\sum_{j=1}^{k-1} \phi_{\infty}\left(v_{j}\right)
$$

Notice that the iteration is forced to end up after a finite number $k \geq 1$ of steps. Indeed, for every nontrivial critical point $v \in W^{1, p}\left(\mathbb{R}^{N}\right) \cap D^{1, m}\left(\mathbb{R}^{N}\right)$ of ϕ_{∞} we have,

$$
\int_{\mathbb{R}^{N}} L_{\xi}(D v) \cdot D v+\int_{\mathbb{R}^{N}} M_{\xi}(v, D v) \cdot D v+\int_{\mathbb{R}^{N}} M_{s}(v, D v) v+\int_{\mathbb{R}^{N}} V_{\infty}|v|^{p}=\int_{\mathbb{R}^{N}} g(v) v
$$

yielding by the sign condition, the coercivity-convexity conditions and the growth of g,

$$
\begin{equation*}
\min \left\{\nu, V_{\infty}\right\}\|v\|_{p}^{p}+\|D v\|_{L^{m}\left(\mathbb{R}^{N}\right)}^{m} \leq C_{g}\|v\|_{L^{\sigma}\left(\mathbb{R}^{N}\right)}^{\sigma} \leq C_{g} S_{p, \sigma}\|v\|_{p}^{\sigma} \tag{4.5}
\end{equation*}
$$

so that, due to $\sigma>p$, it holds

$$
\begin{equation*}
\|v\|_{p}^{p} \geq\left[\frac{\min \left\{\nu, V_{\infty}\right\}}{C_{g} S_{p, \sigma}}\right]^{\frac{p}{\sigma-p}}=: \Gamma_{\infty}>0 \tag{4.6}
\end{equation*}
$$

thus yielding from (4.4)

$$
\left\|u_{n}^{k}\right\|_{p}^{p} \leq\left\|u_{n}\right\|_{p}^{p}-\left\|v_{0}\right\|_{p}^{p}-(k-1) \Gamma_{\infty}+o(1)
$$

By boundedness of $\left(u_{n}\right), k$ has to be finite. Hence $u_{n}^{k} \rightarrow 0$ strongly in $W^{1, p}\left(\mathbb{R}^{N}\right) \cap D^{1, m}\left(\mathbb{R}^{N}\right)$ at some finite index $k \in \mathbb{N}$. This concludes the proof.

5. Proof of Corollary 1.3

As a byproduct of the proof of the Theorems 1.1 and 1.2 , since the p norm is bounded away from zero on the set of nontrivial critical points of ϕ_{∞}, cf. (4.5), we can estimate ϕ_{∞} from below on that set. In order to do so, we use condition (2.1). For any nontrivial critical point of the functional ϕ_{∞}, we have (see the proof of Proposition 2.2)

$$
\mu \phi_{\infty}(v) \geq \delta \int_{\Omega}|D v|^{p}+\frac{\mu-p}{p} V_{\infty} \int_{\mathbb{R}^{N}}|v|^{p} \geq \min \left\{\delta, \frac{\mu-p}{p} V_{\infty}\right\}\|v\|_{p}^{p}
$$

An analogous argument applies to ϕ, yielding for any nontrivial critical point

$$
\mu \phi(u) \geq \delta \int_{\Omega}|D u|^{p}+\frac{\mu-p}{p} V_{0} \int_{\Omega}|u|^{p} \geq \min \left\{\delta, \frac{\mu-p}{p} V_{0}\right\}\|u\|_{p}^{p}
$$

Now notice that, recalling (4.6) and a similar variant for the norm of the critical points of ϕ in place of ϕ_{∞}, setting also

$$
e_{\infty}:=\min \left\{\frac{\delta}{\mu}, \frac{\mu-p}{\mu p} V_{\infty}\right\} \Gamma_{\infty}, \quad e_{0}:=\min \left\{\frac{\delta}{\mu}, \frac{\mu-p}{\mu p} V_{0}\right\} \Gamma_{0}, \quad \Gamma_{0}:=\left[\frac{\min \left\{\nu, V_{0}\right\}}{C_{g} S_{p, \sigma}}\right]^{\frac{p}{\sigma-p}}>0
$$

from Theorems 1.1 or 1.2 we have $c \geq \ell e_{0}+k e_{\infty}$ for some $\ell \in\{0,1\}$ and non-negative integer k. Condition $c<c^{*}:=e_{\infty}$ implies necessarily $k<1$, namely $k=0$. This provides the desired compactness result, using Theorems 1.1 or 1.2.

6. Proof of Corollary 1.8

Defining the functionals $J, M: W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega) \rightarrow \mathbb{R}$ by

$$
J(u):=\frac{1}{p} \int_{\Omega} L(D u)+\frac{1}{m} \int_{\Omega} M(D u)+\frac{1}{p} \int_{\Omega} V(x)|u|^{p}, \quad Q(u):=\frac{\mathbb{S}_{\Omega}}{\sigma} \int_{\Omega}|u|^{\sigma}
$$

and given a minimization sequence $\left(u_{n}\right)$ for problem (1.16), by Ekeland's variational principle, without loss of generality we can replace it by a new minimization sequence, still denoted by (u_{n}) for which there exists a sequence $\left(\lambda_{n}\right) \subset \mathbb{R}$ such that for all $v \in W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)$

$$
J^{\prime}\left(u_{n}\right)(v)-\lambda_{n} Q^{\prime}\left(u_{n}\right)(v)=\left\langle w_{n}, v\right\rangle, \quad \text { with } w_{n} \rightarrow 0 \text { in the dual of } W_{0}^{1, p}(\Omega) \cap D_{0}^{1, m}(\Omega)
$$

Taking into account the homogeneity of L and M, choosing $v=u_{n}$ this means

$$
\int_{\Omega} L\left(D u_{n}\right)+\int_{\Omega} M\left(D u_{n}\right)+\int_{\Omega} V(x)\left|u_{n}\right|^{p}-\mathbb{S}_{\Omega} \lambda_{n} \int_{\Omega}\left|u_{n}\right|^{\sigma}=\left\langle w_{n}, u_{n}\right\rangle .
$$

Since $\left\|u_{n}\right\|_{L^{\sigma}(\Omega)=1}$ for all n and $\int_{\Omega} L\left(D u_{n}\right)+M\left(D u_{n}\right) \rightarrow \mathbb{S}_{\Omega}$ as $n \rightarrow \infty$, this means that $\left(u_{n}\right)$ is a Palais-Smale sequence for the functional $I(u):=J(u)-Q(u)$ at an energy level

$$
\begin{equation*}
c \leq \frac{\sigma-m}{\sigma m} \mathbb{S}_{\Omega}, \tag{6.1}
\end{equation*}
$$

since it holds (recall that $p \geq m$), as $n \rightarrow \infty$,

$$
\begin{aligned}
I\left(u_{n}\right) & =\frac{1}{p} \int_{\Omega} L\left(D u_{n}\right)+\frac{1}{m} \int_{\Omega} M\left(D u_{n}\right)+\frac{1}{p} \int_{\Omega} V(x)\left|u_{n}\right|^{p}-\frac{\mathbb{S}_{\Omega}}{\sigma} \\
& \leq \frac{1}{m} \int_{\Omega} L\left(D u_{n}\right)+\frac{1}{m} \int_{\Omega} M\left(D u_{n}\right)+\frac{1}{m} \int_{\Omega} V(x)\left|u_{n}\right|^{p}-\frac{\mathbb{S}_{\Omega}}{\sigma}=\left(\frac{1}{m}-\frac{1}{\sigma}\right) \mathbb{S}_{\Omega}+o(1) .
\end{aligned}
$$

From Corollary 1.3 (applied with $L(D u)$ replaced by $L(D u) / p, M(u, D u)$ replaced by $M(D u) / m$ and $G \equiv 0$), the compactness of $\left(u_{n}\right)$ holds provided that (in the notations of Corollary 1.3)

$$
c<\min \left\{\frac{\delta}{\mu}, \frac{\mu-p}{\mu p} V_{\infty}\right\}\left[\frac{\min \left\{\nu, V_{\infty}\right\}}{C_{g} S_{p, \sigma}}\right]^{\frac{p}{\sigma-p}}
$$

In our case, we can take $\mu=\sigma, \delta=\frac{\sigma-p}{p}, C_{g}=\mathbb{S}_{\Omega}, V_{\infty}=1, \nu=1, S_{p, \sigma}=\mathbb{S}_{\mathbb{R}^{N}}^{-\sigma / p}$, yielding

$$
c<\frac{\sigma-p}{\sigma p} \mathbb{S}_{\mathbb{R}^{N}}^{\frac{\sigma}{\sigma-p}} / \mathbb{S}_{\Omega}^{\frac{p}{\sigma-p}} .
$$

Hence, finally, by combining this conclusion with (6.1) the compactness (and in turn the solvability of the minimization problem) holds if (1.17) holds, concluding the proof.

References

[1] R. Aris, Mathematical modeling techniques. Res. Notes in Math., 24 Pitman, Boston, 1979.
[2] V. Benci, G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal. 99 (1987), 283-300.
[3] V. Benci, P. D'Avenia, D. Fortunato, L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal. 154 (2000), 297-324.
[4] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
[5] L. Cherfils, Y. Ilyasov, On the stationary solutions of generalized reaction diffusion equations with $p \& q$ Laplacian, Commun. Pure Appl. Anal. 4 (2005), 9-22.
[6] G. Dal Maso, F. Murat, Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems, Nonlinear Anal. 31 (1998), 405-412.
[7] M. Degiovanni, S. Lancelotti, Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity Ann. I. H. Poincaré 24 (2007), 907-919.
[8] M. Degiovanni, A. Musesti, M. Squassina, On the regularity of solutions in the Pucci-Serrin identity, Calc. Var. Partial Differential Equations 18 (2003), 317-334.
[9] G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys. 5 (1964), 1252-1254.
[10] P. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, 28. Springer-Verlag, Berlin-New York, 1979.
[11] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. Henri Poincaré Anal. Non Lineaire 1 (1984), 109-145 and 223-283.
[12] C. Mercuri, M. Willem, A global compactness result for the p-Laplacian involving critical nonlinearities, Discrete Contin. Dyn. Syst. 28 (2010), 469-493.
[13] P. Pucci, J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), 681-703.
[14] M. Squassina, Existence, multiplicity, perturbation, and concentration results for a class of quasi-linear elliptic problems, Electron. J. Differential Equations Monograph $72006+213$ pp.
[15] L.S. Yu, Nonlinear p-Laplacian problems on unbounded domains, Proc. AMS 115 (1992), 1037-1045.
[16] H. Wilhelmsson, Explosive instabilities of reaction-diffusion equations, Phys. Rev. A 36 (1987), 965-966.
[17] M. Willem, Minimax Theorems, Birkhauser, 1996.

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven
Postbus 513, 5600 MB Eindhoven
Holland
E-mail address: c.mercuri@tue.nl
Department of Computer Science
University of Verona
Strada Le Grazie 15, 37134 Verona
Italy
E-mail address: marco.squassina@univr.it

[^0]: 2000 Mathematics Subject Classification. 35D99, 35J62, 58E05, 35J70.
 Key words and phrases. Quasi-linear equations, global compactness of Palais-Smale sequences.
 Supported by Miur project: "Variational and Topological Methods in the Study of Nonlinear Phenomena".

