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Chevet type inequality and norms of

submatrices

Rados law Adamczak1, Rafa l Lata la1, Alexander E. Litvak2,
Alain Pajor3, Nicole Tomczak-Jaegermann4

Abstract

We prove a Chevet type inequality which gives an upper bound

for the norm of an isotropic log-concave unconditional random matrix

in terms of expectation of the supremum of “symmetric exponential”

processes compared to the Gaussian ones in the Chevet inequality.

This is used to give sharp upper estimate for a quantity Γk,m that

controls uniformly the Euclidean operator norm of the sub-matrices

with k rows and m columns of an isotropic log-concave unconditional

random matrix. We apply these estimates to give a sharp bound for

the Restricted Isometry Constant of a random matrix with indepen-

dent log-concave unconditional rows. We show also that our Chevet

type inequality does not extend to general isotropic log-concave ran-

dom matrices.

1 Introduction

Let n, N be positive integers. Let K ⊂ R
N and L ⊂ R

n be origin symmetric
convex bodies, ‖ · ‖K and ‖ · ‖L be the corresponding gauges on R

N and R
n,

that is the norms for which K and L are the unit balls.

1Research partially supported by MNiSW Grant no. N N201 397437 and the Founda-

tion for Polish Science.
2Research partially supported by the E.W.R. Steacie Memorial Fellowship.
3Research partially supported by the ANR project ANR-08-BLAN-0311-01.
4This author holds the Canada Research Chair in Geometric Analysis.
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To shorten the notation we write ‖Γ : K → L‖ for the operator norm of a
linear operator Γ : (RN , ‖ · ‖K) → (Rn, ‖ · ‖L). In particular, ‖Γ : K → BN

2 ‖
will denote the operator norm of Γ considered as a linear operator from
(RN , ‖ · ‖K) to ℓN2 , where ℓN2 is R

N equipped with the canonical Euclidean
norm, whose unit ball is BN

2 ; similarly for ‖Γ : Bn
2 → L‖. Note also that

the dual normed space (RN , ‖ · ‖K)∗ of (RN , ‖ · ‖K) may be identified (via
the canonical inner product) with (RN , ‖ · ‖K◦), where K◦ denotes the polar
of K (see the next section for all definitions). The canonical basis on R

d is
denoted by {ei}1≤i≤d.

Let (gi)1≤i≤max (n,N) be i.i.d. standard Gaussian random variables that is
centered Gaussian variables with variance 1, and Γ be a Gaussian matrix
whose entries are i.i.d. standard Gaussian. Then one side of the Chevet
inequality ([6], see also [7] for sharper constants) states that

E‖Γ : K → L‖ ≤ C‖Id : K → BN
2 ‖ · E

∥

∥

∥

∥

∥

n
∑

i=1

giei

∥

∥

∥

∥

∥

L

+ C‖Id : Bn
2 → L‖ · E

∥

∥

∥

∥

∥

N
∑

i=1

giei

∥

∥

∥

∥

∥

K◦

, (1)

where Id stays for the formal identity operator and C is an absolute constant.
This inequality plays an important role in Probability in Banach Spaces and
in Asymptotic Geometric Analysis ([4, 15]).

We say that a random matrix Γ = (γij) is isotropic if all entries (γij)
are uncorrelated centered with variance one and it is log-concave if the joint
distribution of the γij’s has a density which is log-concave on its support,
finally we say that the matrix Γ is unconditional if for any choice of signs
(εij) the matrices Γ and (εijγij) have the same distribution. There are similar
definitions for random vectors.

In Theorem 3.1 we prove that an inequality similar to the Chevet in-
equality (1) holds for any isotropic log-concave unconditional random matrix
Γ when substituting the Gaussian random variables gi’s by i.i.d. random vari-
ables with symmetric exponential distribution with variance 1. Moreover, in
Corollary 3.2 we provide the corresponding probability estimates.

A result from [8] of the second named author of this article states that
if X = (X1, . . . , Xd) is an isotropic log-concave unconditional random vec-
tor in R

d and if Y = (E1, . . . , Ed), where E1, . . . , Ed are i.i.d. symmetric
exponential random variables, then for any norm ‖ · ‖ on R

d, one has
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E‖X‖ ≤ C E‖Y ‖, (2)

where C is an absolute constant.
The proof of our Chevet type inequality consists of two steps. First, us-

ing the comparison (2), we reduce the case of a general isotropic log-concave
unconditional random matrix A to the case of an exponential random ma-
trix, i.e. the matrix whose entries are i.i.d. standard symmetric exponential
random variables. The second step uses Talagrand’s result ([13]) on relations
between some random processes associated to the symmetric exponential
distribution and so-called γp functionals.

We apply our inequality of Chevet type to obtain sharp uniform bounds
on norms of sub-matrices of isotropic log-concave unconditional random ma-
trices Γ. More precisely, for any subsets J ⊂ {1, . . . , n} and I ⊂ {1, . . . , N}
denote the submatrix of Γ consisting of the rows indexed by elements from
J and the columns indexed by elements from I by Γ(J, I). Given k ≤ n and
m ≤ N define the parameter Γk,m by

Γk,m = sup ‖Γ(J, I) : ℓm2 → ℓk2‖,

where the supremum is taken over all subsets J ⊂ {1, . . . , n} and I ⊂
{1, . . . , N} with cardinalities |J | = k, |I| = m. That is, Γk,m is the maximal
operator norm of a sub-matrix of Γ with k rows and m columns. We prove
that

Γk,m ≤ C

(√
m log

(

3N

m

)

+
√
k log

(

3n

k

))

,

with high probability. This estimate is sharp up to absolute constants.
Furthermore, we provide applications of this result to the Restricted Isom-

etry Property (RIP) of a matrix with independent isotropic log-concave un-
conditional random rows. We give sharp estimate for the restricted isometry
constant of such matrices.

It is well known and follows from Talagrand’s majorizing measure theo-
rem (see [14]) that if X = (X1, . . . , Xd) is a centered sub-gaussian random
vector in R

d with parameter α > 0, that is, all coordinates Xi are centered
and for any x ∈ R

d of Euclidean norm 1, any t > 0, P(|∑xiXi| ≥ t) ≤
2 exp(−t2/α2), then for any norm ‖ · ‖ on R

d, one has

E‖X‖ ≤ CαE‖Y ‖, (3)

where Y = (g1, . . . , gd) and C > 0 is an absolute constant.
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It is interesting to view both inequalities (2) and (3) in parallel. There
are both based on majorizing measure theorems of Talagrand; inequality (3)
states that the expectation of the norm of a sub-gaussian vector is up to a
multiplicative constant, dominated by its Gaussian replica. So Gaussian vec-
tors are almost maximizers. To which class of random vectors does inequality
(2) correspond? Since in many geometric and probabilistic inequalities in-
volving isotropic log-concave vectors, Gaussian and exponential vectors are
the extreme cases, it was naturally conjectured that the expectation of the
norm of isotropic log-concave vector is similarly dominated by the corre-
sponding expectation of the norm of an exponential random vector. This
conjecture would have many applications. For instance the estimate of Γk,m

above would extend to general log-concave random matrices, which is open
(see [1]).

We show that this is not the case. Namely, in Theorem 5.1 we prove that
for any d ≥ 1, there exists an isotropic log-concave random vector X ∈ R

d

and a norm ‖ · ‖ on R
d such that

E‖X‖ ≥ c
√

ln dE‖Y ‖, (4)

where Y is of “symmetric exponential” type and c is a positive universal
constant. Similarly we show that our Chevet inequality does not extend to
the setting of general log-concave random matrices (non unconditional). In
fact it would be interesting to find the best dependence on the dimension in
the reverse inequality to (4). More precisely, to solve the following problem.

Problem. Find tight (in terms of dimension d) estimates for the following
quantity

C(d) = sup
‖·‖

sup
X

E‖X‖
E‖Y ‖ ,

where Y = (E1, . . . , Ed) and the supremum is taken over all norms ‖ · ‖ on
R

d and all isotropic log-concave random vectors X ∈ R
d.

Theorem 5.1 and Remark 2 following it show that c
√

ln d ≤ C(d) ≤ C
√
d

for some absolute positive constants c and C.
The results on norms of submatrices and applications were partially an-

nounced in [2]. For the related estimates in the non-unconditional case, see
[1].

The paper is organized as follows. In the next section we introduce nota-
tion and quote known results which will be used in the sequel. In Section 3 we

4



prove the Chevet type inequality (and corresponding probability estimates)
for unconditional log-concave matrices. In remarks we discuss its sharpness
showing that in general one can’t expect the lower bound of the same order
and providing a relevant lower bound. In Section 4 we apply our Chevet type
inequality to obtain sharp uniform estimates for norms of submatrices. Then
we apply the results to the RIP. Section 5 is devoted to examples showing
that one can’t drop the condition of unconditionality in the comparison the-
orem of the second named author and in our Chevet type inequality. Finally,
in Section 6, we present a direct approach to uniform estimates of norms of
submatrices, which does not involve Chevet type inequalities and γp func-
tionals, but is based only on tail estimates for suprema of linear combinations
of independent exponential variables and on a chaining argument in spirit of
[3].

Acknowledgment: The research on this project was partially done when
the authors participated in the Thematic Program on Asymptotic Geometric
Analysis at the Fields Institute in Toronto in Fall 2010 and in the Discrete
Analysis Programme at the Isaac Newton Institute in Cambridge in Spring
2011. The authors wish to thank these institutions for their hospitality and
excellent working conditions.

2 Notation and Preliminaries

By | · | and 〈·, ·〉 we denote the canonical Euclidean norm and the canonical
inner product on R

d. The canonical basis of Rd is denoted by e1, . . . , ed.
As usual, ‖ · ‖p, 1 ≤ p ≤ ∞, denotes the ℓp-norm, i.e. for every x =

(xi)
d
i=1 ∈ R

d

‖x‖p =

(

d
∑

i=1

|xi|p
)1/p

for p < ∞ and ‖x‖∞ = sup
i≤d

|xi|

and ℓdp = (Rd, ‖ · ‖p). The unit ball of ℓdp is denoted by Bd
p . For a non-empty

set T ⊂ R
d we write diamp(T ) to denote the diameter of T with respect to

the ℓp-norm.
For an origin symmetric convex body K ⊂ R

d, the Minkowski functional
of K is

‖x‖K = inf{λ > 0 | x ∈ λK},
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i.e. the norm, whose unit ball is K. The polar of K is

K◦ = {x | 〈x, y〉 ≤ 1 for all y ∈ K}.

Note that K◦ is the unit ball of the space dual to (Rd, ‖ · ‖K).
Given an n×N matrix Γ and origin symmetric convex bodies K ⊂ R

N ,
L ⊂ R

n we denote by
‖Γ : K → L‖

the operator norm of Γ from (RN , ‖ · ‖K) to (Rn, ‖ · ‖L). We also denote

R(K) = ‖Id : K → BN
2 ‖, R(L◦) = ‖Id : Bn

2 → L‖ = ‖Id : L◦ → Bn
2 ‖,

where Id denotes the formal identity R
N → R

N or R
n → R

n.
Given a subset K ⊂ R

d the convex hull of K is denoted by conv(K).
A random vector X = (X1, . . . , XN) is called unconditional if for every

sequence of signs ε1, . . . , εN , the law of (ε1X1, . . . , εNXN ) is the same as the
law of X .

A random vector X in R
n is called isotropic if

E〈X, y〉 = 0, E |〈X, y〉|2 = ‖y‖22 for all y ∈ R
n,

in other words, if X is centered and its covariance matrix EX ⊗ X is the
identity.

A random vector X in R
n with full dimensional support is called log-

concave if it has a log-concave density. Notice that all isotropic vectors have
full dimensional support.

By Ei, Eij we denote independent symmetric exponential random vari-
ables with variance 1 (i.e. with the density 2−1/2 exp(−

√
2 |x|)). By gi, gij

we denote standard independent N (0, 1) Gaussian random variables. The
n×N random matrix with entries gij will be called the Gaussian matrix, the
n×N random matrix with entries Eij will be called the exponential random
matrix. Similarly, the vectors G = (g1, . . . , gd) and Y = (E1, . . . , Ed) are
called Gaussian and exponential random vectors.

In the sequel we often consider n × N matrices as vectors in R
d with

d = nN and the inner product defined by

〈A,B〉 =
∑

i,j

aijbij
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for A = (aij), B = (bij). Clearly, the corresponding Euclidean structure is
given by Hilbert-Schmidt norm of a matrix:

|A| = ‖A‖2 =

(

∑

i,j

|aij |2
)1/2

.

In this notation we have ‖A‖∞ = maxi,j |aij |. We say that such a matrix A is
isotropic/log-concave/unconditional if it is isotropic/log-concave/unconditional
as a vector in R

d, d = nN (cf. the definition given in the introduction).
Given x ∈ R

N and y ∈ R
n, denote by x ⊗ y = yx⊤ the matrix {yixj}ij ,

i.e. the matrix corresponding to the linear operator defined by

x⊗ y (z) = 〈z, x〉y.

Then, for an n×N matrix Γ = (γij),

‖Γ : K → L‖ = sup
x∈K

sup
y∈L◦

∑

i,j

γijxjyi = sup
T
〈Γ, x⊗ y〉,

where the latter supremum is taken over

T = K ⊗ L◦ = {x⊗ y : x ∈ K, y ∈ L◦}.

We will use the letters C,C0, C1, . . ., c, c0, c1, . . . to denote positive abso-
lute constants whose values may differ at each occurrence. We also use the
notation F ≈ G if there are two positive absolute constants C and c such
that cG ≤ F ≤ C G.

Now we state some results which will be used in the sequel. We start
with the following lemma, which provides asymptotically sharp bounds on
the norm of the exponential matrix considered as an operator ℓN1 → ℓn1 . We
will use it in our examples on sharpness of some estimates.

Lemma 2.1. Let Γ = (Eij)i≤n,j≤N . Then

E ‖Γ : ℓN1 → ℓn1‖ ≈ n + lnN.

Proof. First note

‖Γ : ℓN1 → ℓn1‖ = max
i≤N

n
∑

j=1

|Eij|. (5)
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By the Chebyshev inequality for every i ≤ n we have

P

(

n
∑

j=1

|Eij | ≥ t
)

≤ exp
(

− t

2

)

E exp
(1

2

n
∑

j=1

|Eij |
)

≤ Cn exp
(

− t

2

)

for some absolute constant C > 0. Hence the union bound and integration
by parts gives

E ‖Γ : ℓN1 → ℓn1‖ ≤ C (n + lnN) .

On the other hand, by (5)

E‖Γ : ℓN1 → ℓn1‖ ≥ E

n
∑

j=1

|E1j | = n/
√

2

and
E‖Γ : ℓN1 → ℓn1‖ ≥ Emax

i≤N
|Ei1| ≈ 1 + lnN

(the last equivalence is well-known and follows from direct computations).
This completes the proof.

The next theorem is a comparison theorem from [8].

Theorem 2.2. Let X be an isotropic log-concave unconditional random vec-
tor in R

d and Y = (E1, . . . , Ed) be an exponential random vector. Let ‖ · ‖
be a norm on R

d. Then
E‖X‖ ≤ C E‖Y ‖,

where C is an absolute positive constant. Moreover, for every t ≥ 1,

P(‖X‖ ≥ t) ≤ C P(‖Y ‖ ≥ t/C).

Remark. The condition “X is unconditional” cannot be omitted in Theo-
rem 2.2. We show an example proving that in Section 5.

We will also use two Talagrand’s results on behavior of random processes.
The first one characterizes suprema of Gaussian and exponential processes
in terms of the γq functionals.

For a metric space (E, ρ) and q > 0 we define the γq functional as

γq(E, ρ) = inf
(As)∞s=0

sup
x∈E

∞
∑

s=1

2s/q dist(x,As),
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where the infimum is taken over all sequences (As)
∞
s=0 of subsets of E, such

that |A0| = 1 and |As| ≤ 22s for s ≥ 1.
The following theorem combines Theorems 2.1.1 and 5.2.7 in [14].

Theorem 2.3. Let T ⊂ R
d and ρq denote the ℓq metric. Then

E sup
z∈T

d
∑

i=1

zigi ≈ γ2(T, ρ2) and E sup
z∈T

d
∑

i=1

ziEi ≈ γ2(T, ρ2) + γ1(T, ρ∞).

We will also use Talagrand’s result on the deviation of supremum of ex-
ponential processes from their averages. It follows by Talagrand’s two level
concentration for product exponential measure ([12]).

Theorem 2.4. Let T be a compact subset of Rd. Then for any t ≥ 0,

P

(

sup
z∈T

∣

∣

∣

∣

∣

d
∑

i=1

ziEi

∣

∣

∣

∣

∣

≥ E sup
z∈T

∣

∣

∣

∣

d
∑

i=1

ziEi

∣

∣

∣

∣

+ t

)

≤ exp

(

−cmin

{

t2

a2
,
t

b

})

,

where a = supz∈T |z|, b = supz∈T ‖z‖∞.

3 Chevet type inequality

Theorem 3.1. Let Γ be an isotropic log-concave unconditional random n×N
matrix. Let K ⊂ R

N , L ⊂ R
n be origin symmetric convex bodies. Then

E‖Γ : K → L‖

≤ C

(

‖Id : K → BN
2 ‖ · E

∥

∥

∥

∥

∥

n
∑

i=1

Eiei

∥

∥

∥

∥

∥

L

+ ‖Id : Bn
2 → L‖ · E

∥

∥

∥

∥

∥

N
∑

i=1

Eiei

∥

∥

∥

∥

∥

K◦

)

.

Example. One of the most important examples of matrices satisfying the
hypothesis of Theorem 3.1 are matrices whose rows (or columns) are indepen-
dent isotropic log-concave unconditional random vectors. Indeed, it is easy
to see that if X , Y are independent isotropic log-concave random vectors
then so is (X, Y ). If X , Y are in addition unconditional then clearly (X, Y )
is unconditional. Therefore, if rows (or columns) of a matrix Γ are indepen-
dent isotropic log-concave random vectors then Γ is isotropic log-concave. If
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rows (resp. columns) are in addition unconditional, then so is Γ. We will use
it in Section 4.

Remarks. 1. In fact in the Gaussian case the equivalence holds in the
Chevet inequality. However, in the log-concave case one cannot hope for the
reverse inequality even in the case of exponential matrix and unconditional
convex bodies K, L. Indeed, consider the matrix Γ = (Eij) as an operator
ℓN1 → ℓn1 , i.e. K = BN

1 , L = Bn
1 . By Lemma 2.1

E‖Γ : ℓN1 → ℓn1‖ ≈ n + lnN.

On the other hand, the right hand side term in Theorem 3.1 is

C

(

E

n
∑

i=1

|Ei| +
√
n Emax

j≤N
|Ei|
)

≈ n +
√
n ln(2N).

Thus, if N ≥ en then the ratio between the right hand side and the left hand
side is of the order

√
n.

2. The following weak form of a reverse inequality holds for the exponential
matrix Γ = (Eij)i≤n,j≤N :

E‖Γ : K → L‖ ≥ 1

2

(

max
i≤N

‖ei‖K◦ · E
∥

∥

∥

∥

∥

n
∑

i=1

Eiei

∥

∥

∥

∥

∥

L

+ max
i≤n

‖ei‖L · E
∥

∥

∥

∥

∥

N
∑

i=1

Eiei

∥

∥

∥

∥

∥

K◦

)

.

Indeed, fix 1 ≤ ℓ ≤ N and take x ∈ K such that ‖eℓ‖K◦ = |〈eℓ, x〉| = |xℓ|.
Then

E‖Γ : K → L‖ ≥ E‖Γx‖L = E

∥

∥

∥

∑

i≤n,j≤N

Eijxjei

∥

∥

∥

L
≥ E

∥

∥

∥

∑

i≤n

Eiℓxℓei

∥

∥

∥

L

= |xℓ| E
∥

∥

∥

∑

i≤n

Eiei

∥

∥

∥

L
= ‖eℓ‖K◦ E

∥

∥

∥

∑

i≤n

Eiei

∥

∥

∥

L
.

This shows that

E‖Γ : K → L‖ ≥ max
i≤N

‖ei‖K◦ E

∥

∥

∥

∥

∥

∑

i≤n

Eiei

∥

∥

∥

∥

∥

L

and by duality we have

E‖Γ : K → L‖ = E‖ΓT : L◦ → K◦‖ ≥ max
i≤n

‖ei‖L E

∥

∥

∥

∥

∥

∑

i≤N

Eiei

∥

∥

∥

∥

∥

K◦

.
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3. As in Theorem 2.2, the condition “Γ is unconditional” cannot be omitted
in Theorem 3.1. We show an example proving that in Section 5.

Proof of Theorem 3.1. First note that considering the matrix Γ as a
vector in R

nN and applying Theorem 2.2, we obtain that it is enough to prove
Theorem 3.1 for the case of the exponential matrix.

From now we assume that Γ = (Eij). Denote as before T = K ⊗ L◦ =
{x⊗ y : x ∈ K, y ∈ L◦}. Then by Theorem 2.3

E‖Γ : K → L‖ = E sup
x∈K

sup
y∈L◦

∑

i,j

Eijxjyi = E sup
T
〈Γ, x⊗y〉 ≈ γ2(T, ρ2)+γ1(T, ρ∞)

and

E

∥

∥

∥

∥

∥

n
∑

i=1

Eiei

∥

∥

∥

∥

∥

L

≈ γ2(L
◦, ρ2) + γ1(L

◦, ρ∞),

E

∥

∥

∥

∥

∥

N
∑

i=1

Eiei

∥

∥

∥

∥

∥

K◦

≈ γ2(K, ρ2) + γ1(K, ρ∞).

Thus it is enough to show that

γ2(T, ρ2) ≤ C (R(K)γ2(L
◦, ρ2) + R(L◦)γ2(K, ρ2)) (6)

and
γ1(T, ρ∞) ≤ C (R(K)γ1(L

◦, ρ∞) + R(L◦)γ1(K, ρ∞)) . (7)

Inequality (6) is the Chevet inequality for the Gaussian case. Indeed by
Theorem 2.3

γ2(T, ρ2) ≈ E sup
z∈T

∑

i,j

zijgij = E‖(gij) : K → L‖

and

R(K)γ2(L
◦, ρ2)+R(L◦)γ2(K, ρ2) ≈ R(K)E sup

z∈L◦

n
∑

i=1

zigi+R(L◦)E sup
z∈K

N
∑

i=1

zigi.

In fact we could prove (6) without the use of the Chevet inequality, but by
the chaining argument similar to the one used for the proof of (7) below (cf.
also [10]).

It remains to prove inequality (7).
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Let As ⊂ K and Bs ⊂ L◦, s ≥ 0, be admissible sequences of sets (i.e.,
with |A0| = |B0| = 1, |As|, |Bs| ≤ 22s for s ≥ 1). Define an admissible
sequence (Cs)s≥0 by C0 = {0} and

Cs = As−1 ⊗ Bs−1 ⊂ K ⊗ L◦, s ≥ 1.

Note that for all x, x̃ ∈ K and for all y, ỹ ∈ L◦ one has

‖x⊗ y − x̃⊗ ỹ‖∞ ≤ ‖x‖∞ · ‖y − ỹ‖∞ + ‖ỹ‖∞ · ‖x− x̃‖∞
≤ R(K)‖y − ỹ‖∞ + R(L◦)‖x− x̃‖∞.

Therefore

γ1(K ⊗ L◦, ρ∞) ≤ sup
x⊗y∈K⊗L◦

∞
∑

s=0

2sdist (x⊗ y, Cs)

≤R(K) sup
y∈L◦

(

‖y‖∞ +

∞
∑

s=1

2sdist (y, Bs−1)

)

+ R(L◦) sup
x∈K

(

‖x‖∞ +

∞
∑

s=1

2sdist (x,As−1)

)

.

Taking the infimum over all admissible sequences (As) and (Bs) we get

γ1(K ⊗ L◦, ρ∞)

≤ R(K) (diam∞L◦ + 2γ1(L
◦, ρ∞)) + R(L◦) (diam∞K + 2γ1(K, ρ∞))

≤ 4R(K)γ1(L
◦, ρ∞) + 4R(L◦)γ1(K, ρ∞),

where in the last inequality we used the fact that the diameter is clearly
dominated by doubled γ1 functional.

Corollary 3.2. Let Γ, K, L be as in Theorem 3.1. Then for every t > 0,

‖Γ : K → L‖ ≤ C

(

R(K) · E
∥

∥

∥

∥

∥

n
∑

i=1

Eiei

∥

∥

∥

∥

∥

L

+ R(L◦) · E
∥

∥

∥

∥

∥

N
∑

i=1

Eiei

∥

∥

∥

∥

∥

K◦

+ t

)

with probability at least

1 − exp

(

−cmin

{

t2

σ2
,
t

σ′

})

≥ 1 − exp

(

−cmin

{

t2

σ2
,
t

σ

})

,

where σ = R(K)R(L◦) and σ′ = supx∈K ‖x‖∞ supy∈L◦ ‖y‖∞.
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Proof. As in the proof of Theorem 3.1 it is enough to consider the case
Γ = (Eij). Moreover it suffices to show that

P(‖Γ : K → L‖ ≥ E‖Γ : K → L‖ + t) ≤ exp

(

−cmin

{

t2

σ2
,
t

σ′

})

.

To obtain the above estimate we use Theorem 2.4. Recall that ‖Γ : K →
L‖ = supT 〈Γ, x ⊗ y〉, where T = K ⊗ L◦. Thus we can easily compute
parameters a and b in Theorem 2.4:

a = sup
T

|x⊗ y| = sup
x∈K, y∈L◦

|x| · |y| = σ

and
b = sup

T
‖x⊗ y‖∞ = sup

x∈K, y∈L◦
‖x‖∞ · ‖y‖∞ = σ′.

4 Norms of submatrices and RIP

Here we estimate the norms of submatrices of an isotropic unconditional
log-concave random n×N matrix Γ.

Recall that for subsets J ⊂ {1, . . . , n} and I ⊂ {1, . . . , N}, Γ(J, I) denotes
the submatrix of Γ consisting of the rows indexed by elements from J and
the columns indexed by elements from I. Recall also that for k ≤ n and
m ≤ N , Γk,m is defined by

Γk,m = sup ‖Γ(J, I) : ℓm2 → ℓk2‖, (8)

where the supremum is taken over all subsets J ⊂ {1, . . . , n} and I ⊂
{1, . . . , N} with cardinalities |J | = k, |I| = m. That is, Γk,m is the max-
imal operator norm of a submatrix of Γ with k rows and m columns.

We also denote the set of ℓ-sparse unit vectors on R
d by Uℓ (or Uℓ(d),

when we want to emphasize the dimension of the underlying space) and its
convex hull by Ũℓ, i.e.

Uℓ = Uℓ(d) = {x ∈ R
d : |supp x| ≤ ℓ and |x| = 1}, and Ũℓ = conv(Uℓ).

Thus
Γk,m =

∥

∥

∥
Γ : Ũm(N) → (Uk(n))◦

∥

∥

∥
.

13



Note that (Uk(n))◦ = (Ũk(n))◦. Below U◦
ℓ means (Uℓ)

◦.

Remark. For matrices with N independent log-concave columns and k = n
the sharp estimates for Γn,m were obtained in [3].

To treat the general case we will need the following simple lemma.

Lemma 4.1. For any 1 ≤ ℓ ≤ n we have

E

∥

∥

∥

∥

∥

n
∑

i=1

Eiei

∥

∥

∥

∥

∥

U◦
ℓ

≈
√
ℓ ln

3n

ℓ
.

Proof. By Borell’s lemma ([5]) we have



E

∥

∥

∥

∥

∥

n
∑

i=1

Eiei

∥

∥

∥

∥

∥

U◦
ℓ





2

≈ E

∥

∥

∥

∥

∥

n
∑

i=1

Eiei

∥

∥

∥

∥

∥

2

U◦
ℓ

= E sup
I⊂{1....,n}

|I|=ℓ

∑

i∈I

E2
i =

ℓ
∑

i=1

E|E∗
i |2,

where E∗
1 , . . . , E

∗
n denotes the nonincreasing rearrangement of |E1|, . . . , |En|.

We conclude the proof by the standard well known estimate E|E∗
i |2 ≈ (ln(3n/i))2.

Now observe that Γ satisfies the hypothesis of Theorem 3.1 and that
Ũℓ ⊂ Bn

2 , so R(Ũℓ) = 1. Thus Theorem 3.1 implies

EΓk,m ≤ C



E

∥

∥

∥

∥

∥

N
∑

i=1

Eiei

∥

∥

∥

∥

∥

U◦
m

+ E

∥

∥

∥

∥

∥

n
∑

i=1

Eiei

∥

∥

∥

∥

∥

U◦
k



 ,

which together with Lemma 4.1 and Corollary 3.2 implies the following the-
orem.

Theorem 4.2. There are absolute positive constants C and c such that the
following holds. Let m ≤ N and k ≤ n. Let Γ be an isotropic unconditional
log-concave random n×N matrix. Then

EΓk,m ≤ C

(√
m ln

3N

m
+
√
k ln

3n

k

)

.

Moreover, for every t > 0,

Γk,m ≤ C

(√
m ln

3N

m
+
√
k ln

3n

k
+ t

)
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with probability at least

1 − exp
(

−cmin
{

t, t2
})

.

Remarks. 1. In the case when Γ = (Eij) we have

EΓk,m ≥ max
{

E

∥

∥

∥

N
∑

i=1

Eiei

∥

∥

∥

U◦
m

,E
∥

∥

∥

n
∑

i=1

Eiei

∥

∥

∥

U◦
k

}

≥ 1

C

(√
m ln

3N

m
+
√
k ln

3n

k

)

.

2. Theorem 4.2 can be proved directly (i.e. without Chevet inequality)
using a chaining argument in the spirit of [3]. We provide the details in
the last section. Similar estimates (with worse probability) were recently
independently obtained in [9].

We now estimate the restricted isometry constant (RIC) of a random
matrix Γ with independent unconditional isotropic log-concave rows. As was
mentioned in the example following Theorem 3.1 such Γ is unconditional
isotropic log-concave. Recall that the RIC of order m is the smallest number
δ = δm(Γ) such that

(1 − δ)|x|2 ≤ |Γx|2 ≤ (1 + δ)|x|2.

for every x ∈ Um.
The following theorem is an “unconditional” counterpart of Theorem 6.4

from [1] (see also Theorem 7 in [2]). Its proof repeats the lines of the corre-
sponding proof in [1]. The result is sharp up to absolute constants.

Theorem 4.3. Let 0 < θ < 1. Let Γ be an n×N random matrix, whose rows
are independent unconditional isotropic log-concave vectors in R

N . Then
δm(Γ/

√
n) ≤ θ with probability at least

1 − exp

(

−c
θ2n

ln2 n

)

− 2 exp

(

−c
√
m ln

3N

m

)

,

provided that either
(i) N ≤ n and

m ≈ min

{

N,
θ2n

ln3(3/θ)

}
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or
(ii) N ≥ n and

m ≤ c
θn

ln(3N/(θn))
min

{

1

ln(3N/(θn))
,

θ

ln2(3/θ)

}

,

where c > 0 is an absolute constant.

Remarks. 1. The condition on m in (ii) can be written as follows

if θ ≥ ln2 ln(3N/n)

ln(3N/n)
then m ≤ c

θn

ln2(3N/(θn))
,

if θ ≤ ln2 ln(3N/n)

ln(3N/n)
then m ≤ c

θ2

ln2(3/θ)

n

ln(3N/(θn))
.

2. Precisely the proof of Theorem 6.4 in [1] (with estimates from our
Theorem 4.2) gives that if

bm := m

(

ln
3N

m

)2

≤ cθn

and

m ln
3N

m
ln2 n

bm
≤ cθ2n

then δm(Γ/
√
n) ≤ θ with probability at least

1 − exp

(

−c
θ2n

ln2(n/bm)

)

− 2 exp

(

−c
√
m ln

3N

m

)

.

5 An example

In this section we prove that the condition “X is unconditional” cannot be
omitted in Theorems 2.2 and 3.1. Namely, first we construct an example
of isotropic log-concave non-unconditional d-dimensional random vector X
and a norm ‖ · ‖ on R

d, which fails to satisfy the conclusion of Theorem 2.2.
Then we consider the matrix consisting of one column X as an operator
from (R, | · |) to (Rd, ‖ · ‖) and show that it does not satisfy the Chevet type
inequality. The idea of the construction of X is rather simple – we start with
a matrix with i.i.d. exponential entries and rotate its columns by a “random”
rotation. Considering the matrix as a vector with operator norm ℓ1 → ℓ1 we
prove the result.
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Theorem 5.1. Let d ≥ 1 and Y = (E1, . . . , Ed). There exists an isotropic
log-concave random vector X in R

d and a norm ‖ · ‖ such that

E‖X‖ ≥ c
√

ln d E‖Y ‖, (9)

where c > 0 is an absolute constant. Moreover, the d × 1 matrix B, whose
the only column is X, satisfies

E‖B : [−1, 1] → L‖ ≥ c
√

ln d

(

E

∥

∥

∥

∥

∥

d
∑

i=1

Eiei

∥

∥

∥

∥

∥

L

+ ‖Id : Bd
2 → L‖

)

,

where L is the unit ball of ‖ · ‖.

Proof. Let n,N be integers such that d = nN . Consider an n×N matrix
Γ = (Eij). Denote its columns by X1, . . . , XN , so that Γ = [X1, . . . , XN ]. As
before, we consider Γ as a d-dimensional vector. Given U ∈ O(n) rotate the
columns of Γ by U :

A = A(U) = UΓ = [UX1, . . . , UXN ].

Then A is a log-concave isotropic vector in R
d. Below we show that if N =

⌊ecn⌋ for some absolute constant c > 0 then there exists U0 ∈ O(n) such that

EΓ ‖A(U0) : ℓN1 → ℓn1‖ ≥ c1
√

ln d EΓ ‖Γ : ℓN1 → ℓn1‖. (10)

This will prove the first part of the theorem, since it is clearly enough to
consider only such n,N, d by adjusting the constant in the main statement.

To prove (10) we estimate the average of ‖A(U)‖ over U ∈ O(n). For
every x in R

n we have

PO(n)

({

‖Ux‖1 ≥ c2
√
n ‖x‖2

})

= σn−1({y : ‖y‖1 ≥ c2
√
n}) ≥ 1− exp(−2cn),

where σn−1 denotes the uniform distribution on Sn−1 and the last inequality
follows by simple volumetric argument (or by concentration, see e.g. 2.3, 5.1
and 5.3 in [11]). Thus, if N ≤ ecn,

PO(n)

({

∀i ≤ N : ‖UXi‖1 ≥ c2
√
n ‖Xi‖2

})

≥ 1 − exp(−cn) ≥ 1

2
.

Hence
EO(n) max

i≤N
‖UXi‖1 ≥ c2

√
n max

i≤N
‖Xi‖2,
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which implies

EΓ EO(n) ‖A(U) : ℓN1 → ℓn1‖ ≥ c2
√
n EΓ max

i≤N
‖Xi‖2

≥ c2
√
n EΓ max

i≤N
|E1,i| ≥ c3

√
n lnN.

By Lemma 2.1
EΓ ‖Γ : ℓN1 → ℓn1‖ ≈ n + lnN.

Thus, taking N = ⌊ecn⌋,

EO(n) EΓ ‖A(U) : ℓN1 → ℓn1‖
EΓ ‖Γ : ℓN1 → ℓn1‖

≥ c4

√
n lnN

n + lnN
≥ c5

√
lnN ≥ c6

√
ln d.

Hence there exists U0 ∈ O(n) satisfying (10).
Now we will prove the “moreover” part of the theorem. Recall that L

is the unit ball of the norm ‖ · ‖ constructed above. The log-concave vec-
tor under consideration is X = A(U0) and the matrix which provides the
counterexample to the Chevet type inequality is B = [X ]. By the above
calculations we have

E‖B : [−1, 1] → L‖ = E‖X‖L = E‖A(U0) : ℓN1 → ℓn1‖ ≥ c (ln d)3/2

and

E

∥

∥

∥

∥

∥

d
∑

i=1

Eiei

∥

∥

∥

∥

∥

L

= E‖Γ : ℓN1 → ℓn1‖ ≈ n + lnN ≈ ln d.

It is easy to check that for every n×N matrix T = (tij) one has

‖T : ℓN1 → ℓn1‖ = max
j≤N

n
∑

i=1

|tij | ≤
√
n

(

n
∑

i=1

n
∑

i=1

|tij |2
)1/2

=
√
n |T |,

where
√
n is the best possible constant in the inequality. This shows that

‖Id : Bd
2 → L‖ =

√
n ≈

√
ln d.

Thus

E

∥

∥

∥

∥

∥

d
∑

i=1

Eiei

∥

∥

∥

∥

∥

L

+ ‖Id : Bd
2 → L‖ ≈ ln d,

18



which completes the proof.

Concluding remarks. 1. The above example is optimal in the sense that
one can’t expect better than

√
ln d dependence on dimension in (9). Indeed,

let Y = (E1, . . . , Ed). We show that for any U ∈ O(d) and any norm ‖ · ‖ on
R

d one has
E‖UY ‖ ≤ C

√

log(ed) E‖Y ‖. (11)

First it is known that E‖Y ‖ ≤ C
√

log(ed) E‖G‖, where G = (g1, . . . , gd).
Now note that if K is a unit ball of ‖ · ‖K then for every U ∈ O(d) one has
‖Ux‖K = ‖x‖U−1K for every x ∈ R

d. Therefore, for any U ∈ O(d) we have

E‖UY ‖ ≤ C
√

log(ed) E‖UG‖ = C
√

log(ed) E‖G‖

(in the last equality we used that the distribution of G is invariant under
rotations). Finally note that by either Theorem 2.3 or Theorem 2.2 the
norm of an exponential random vector dominates the norm of the Gaussian
one, i.e. E‖G‖ ≤ C1E‖Y ‖, which implies (11).
2. For any isotropic vector X in R

d (not necessarily log-concave) and any
origin symmetric convex body K ⊂ R

d we show that

E‖X‖K ≤ Cd(K,Bd
2) E‖Y ‖K , (12)

where Y = (E1, . . . , Ed) and d(K,Bd
2) denotes the Banach-Mazur distance

between K and Bd
2 . Since for every origin symmetric K one has d(K,Bd

2) ≤√
d (see e.g. [15]), the inequality (12) implies that for any norm ‖ · ‖ on R

d

E‖X‖ ≤ C
√
d E‖Y ‖.

Now we prove (12). First, as in Remark 1, note that the norm of an ex-
ponential random vector dominates the norm of the Gaussian one. Thus
it is enough to show that E‖X‖K ≤ Cd(K,Bd

2) E‖G‖K , where G is as in
Remark 1. Let α = d(K,Bd

2) and E be an ellipsoid such that E ⊂ K ⊂ αE .
Since this is only a matter of rotation of a coordinate system we may assume
that E = {x ∈ R

d :
∑d

i=1 a
2
ix

2
i ≤ 1}. Then by the isotropicity of X ,

E‖X‖K ≤ E‖X‖E = E

(

d
∑

i=1

a2iX
2
i

)1/2

≤
(

d
∑

i=1

a2i

)1/2

≤ CE‖G‖E ≤ CαE‖G‖K ,

where we used comparison of the first and second moments of the norm ‖G‖E
of the Gaussian vector.
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6 A direct proof of Theorem 4.2

We present here a proof of Theorem 4.2 not involving the Chevet type in-
equality and not relying on Theorem 2.3, but only on tail estimates for
suprema of linear combinations of independent exponential variables given
in Theorem 2.4.

We need the following lemma, which is an immediate consequence of The-
orem 2.4 (recall here that for a matrix A = (aij), ‖A‖∞ denotes maxi,j |aij|).
Lemma 6.1. For every n×N matrix A = (aij) and every t ≥ 0 we have

P

(∣

∣

∣

∣

∣

∑

ij

Eijaij

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp

(

−cmin

(

t2

|A|2 ,
t

‖A‖∞

))

,

where c > 0 is an absolute constant.

Indeed, since E|∑ij Eijaij | ≤ (E|∑ij Eijxij |2)1/2 = |A|, the above Lemma
follows from Theorem 2.4 for t ≥ 2|A|. For t ≤ 2|A| we can make the right
hand side larger than 1 by the choice of c.

Direct proof of Theorem 4.2. As in the proof of Theorem 3.1, using
Theorem 2.2, we may assume that Γ is the exponential matrix, i.e. Γ = (Eij).
Without loss of generality we assume that k ≥ m and that k = 2r − 1,
m = 2s − 1 for some positive integers r ≥ s. It is known (and easy to see
by volumetric argument) that for any origin symmetric convex body V ⊂ R

d

and any ε ≤ 1 there exist an ε-net (with respect to the metric defined by
V ) in V of cardinality at most (3/ε)d. For i = 0, 1, . . . , r − 1 let Mi be a
(2i/(4k))-net (with respect to the metric defined by Bn

2 ∩ (2−i/2Bn
∞)) in the

set
⋃

I⊆{1,...,n}

|I|≤2i

R
I ∩Bn

2 ∩ (2−i/2Bn
∞)

of cardinality not greater than
(

n

2i

)

(12k

2i

)2i

≤ exp
(

C2i log
(2n

2i

))

,

where R
I denotes the span of {ei}i∈I . Similarly for i = 0, 1, . . . , s− 1 let Ni

be a (2i/(4m))-net in the set
⋃

I⊆{1,...,N}

|I|≤2i

R
I ∩ BN

2 ∩ (2−i/2BN
∞)
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of cardinality at most
(

N

2i

)

(12m

2i

)2i

≤ exp
(

C2i log
(2N

2i

))

.

Let now M be the set of vectors in 2Bn
2 that can be represented in the

form x =
∑r−1

i=0 xi, where xi ∈ Mi and have pairwise disjoint supports.
Analogously define N as the set of vectors y =

∑s−1
i=0 yi ∈ 2BN

2 , with yi ∈ Ni

and pairwise disjoint supports. For x ∈ M and i = 0, 1, . . . , r − 1 let Six =
x0+ . . .+xi, where xi is the appropriate vector from the above representation
(this representation needs not be unique, so for each vector x we choose one
of them). Similarly, for i = 0, 1, . . . , s− 1 and y ∈ N let Tiy = y0 + . . . + yi.
For i = s, . . . , r − 1 let Tiy = y. Additionally set S−1x = 0, T−1y = 0. We
thus have

y ⊗ x =

r−1
∑

i=0

(Tiy ⊗ Six− Ti−1y ⊗ Si−1x)

for x ∈ M, y ∈ N .
Since xi’s and yi’s have pairwise disjoint supports, viewing (Tjy ⊗ Sjx)’s

as sub-matrices of y ⊗ x, it is easy to check that for every j ≥ i

|Tjy ⊗ Sjx− Ti−1y ⊗ Si−1x| ≤ 4 (13)

and
‖Tjy ⊗ Sjx− Ti−1y ⊗ Si−1x‖∞ ≤ 2−i/2. (14)

Thus, by Lemma 6.1, for any x ∈ M, y ∈ N and t ≥ 1,

P(|〈ΓTiy, Six〉 − 〈ΓTi−1y, Si−1x〉| ≥ t) ≤ 2 exp(−cmin(t2, 2i/2t)). (15)

Moreover, for any i ≤ s − 1, the cardinality of the set of vectors of the
form Tiy ⊗ Six− Ti−1y ⊗ Si−1x, x ∈ M, y ∈ N is at most

exp
(

i
∑

j=0

(

C2j log
(2n

2j

)

+C2j log
(2N

2j

)))

≤ exp
(

C̃2i log
(2n

2i

)

+C̃2i log
(2N

2i

))

.

By (15) and the union bound we get that for i ≤ s − 1 and any t ≥ 1,
with probability at least

1 − 2 exp
(

− ct
(

2i log(2n/2i) + 2i log(2N/2i)
))

,
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one has

max
x∈M,y∈N

|〈ΓTiy, Six〉−〈ΓTi−1y, Si−1x〉| ≤ Ct
(

2i/2 log(2n/2i)+2i/2 log(2N/2i)
)

.

By integration this yields

E max
x∈M,y∈N

|〈ΓTiy, Six〉−〈ΓTi−1y, Si−1x〉| ≤ C
(

2i/2 log(2n/2i)+2i/2 log(2N/2i)
)

.

Therefore

E sup
x∈M,y∈N

|〈ΓTs−1y, Ss−1x〉| ≤
s−1
∑

i=0

E sup
x∈M,y∈N

|〈ΓTiy, Six〉 − 〈ΓTi−1y, Si−1x〉|

≤
s−1
∑

i=0

C
(

2i/2 log(2n/2i) + 2i/2 log(2N/2i)
)

≤ C1

(√
k log(2n/k) +

√
m log(2N/m)

)

. (16)

On the other hand, for any y ∈ N and i ≥ s, we have by Ti−1y = Tiy = y.
Thus by (15) and the fact that there are at most exp(C2i log(2n/2i)) vectors
of the form Six− Si−1x with x ∈ M, we get for t ≥ 1,

sup
x∈M

|〈ΓTiy, (Six− Si−1x)〉| ≤ Ct2i/2 log(2n/2i),

with probability at least 1 − exp(−ct2i log(2n/2i)).
This implies that for s ≤ i ≤ r − 1,

Emax
x∈M

|〈ΓTiy, Six〉 − 〈ΓTi−1y, Si−1x〉| ≤ C2i/2 log(2n/2i)

and thus

Emax
x∈M

|〈ΓTr−1y, Sr−1x〉 − 〈ΓTs−1y, Ss−1x〉|

≤
r−1
∑

i=s

Emax
x∈M

|〈ΓTiy, Six〉 − 〈Ti−1Γy, Si−1x〉|

≤ C
r−1
∑

i=s

2i/2 log(2n/2i) ≤ C̃
√
k log(2n/k).
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Applying Theorem 2.4 together with (13) and (14) (with j = r − 1 and
i = s) we obtain that for any y ∈ N and t ≥ 1,

max
x∈M

|〈ΓTr−1y, Sr−1x〉−〈ΓTs−1y, Ss−1x〉| ≤ C
√
k log(2n/k)+Ct2s/2 log(2N/2s),

with probability at least

1 − 2 exp(−C̃t2s log(2N/2s)),

which by the union bound and integration by parts gives

E max
x∈M,y∈N

|〈Tr−1y, ASr−1x〉 − 〈Ts−1y, ASs−1x〉|

≤ C
√
k log(2n/k) + C2s/2 log(2N/2s) ≤ C̃

(√
k log(2n/k) +

√
m log(2N/m)

)

.

Combining this inequality with (16) we get

E max
x∈M,y∈N

|〈y, Ax〉| ≤ C
(√

k log(2n/k) +
√
m log(2N/m)

)

.

Let us now notice that for arbitrary x ∈ Sn−1, y ∈ Sn−1, with |supp x| ≤
k, |supp y| ≤ m, there exist x̃ ∈ M, ỹ ∈ N , such that supp x̃ ⊂ supp x,
supp ỹ ⊂ supp y and

|x− x̃|2 ≤
r−1
∑

i=0

22i/(16k2) ≤ 1/8, |y − ỹ|2 ≤
s−1
∑

i=0

22i/(16m2) ≤ 1/8.

We have

〈Γy, x〉 = 〈Γỹ, x̃〉 + 〈Γ(y − ỹ), x〉 + 〈Γỹ, x− x̃〉.

Taking into account that ỹ ∈ 2BN
2 and passing to suprema, we get

Γk,m ≤ max
x̃∈M,ỹ∈N

〈Γỹ, x̃〉 + 3Γk,m/8

and thus

EΓk,m ≤ 2E max
x̃∈M,ỹ∈N

〈Γỹ, x̃〉 ≤ C(
√
k log(2n/k) +

√
m log(2N/m)),

which completes the proof of the first part of Theorem 4.2. The proof of the
“moreover” part is obtained using Theorem 2.4 in the same way as it was
used to obtain Corollary 3.2 from Theorem 3.1.
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Remark. We would like to notice that by adjusting the chaining argument
presented above one can eliminate the use of the full strength of Theorem 2.4
and obtain a proof relying only on tail inequalities for linear combinations
of independent exponential random variables (which follow from classical
Bernstein inequalities). The modification involves splitting the proof into two
cases depending on the comparison between m log(2N/m) and k log(2n/k).
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