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A NOTE ON INSUFFICIENCY AND THE
PRESERVATION OF FISHER INFORMATION

By David Pollard
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Kagan and Shepp (2005) presented an elegant example of a mix-
ture model for which an insufficient statistic preserves Fisher infor-
mation. This note uses the regularity property of differentiability in
quadratic mean to provide another explanation for the phenomenon
they observed. Some connections with Le Cam’s theory for conver-
gence of experiments are noted.

1. Introduction. Suppose P = {Pθ : θ ∈ Θ} is a statistical experiment,
a set of probability measures on some (X,A) indexed by a subset Θ of the
real line.

The Fisher information function IP(θ) can be defined under various reg-
ularity conditions. If S is a measurable map from X into another measure
space (Y,B), each image measure Qθ = SPθ (often called the distribution
of S under Pθ, and sometimes denoted by PθS

−1) is a probability measure
on B. The statistical experiment Q = {Qθ : θ ∈ Θ} is less informative, in
the sense that an observation y ∼ Qθ tells us less about θ than an obser-
vation x ∼ Pθ. In particular, IQ(θ) ≤ IP(θ) for every θ. If S is a sufficient
statistic the last inequality becomes an equality: there is no loss of Fisher
information.

Kagan and Shepp (2005) (henceforth K&S) showed, by means of a simple
example, that it is possible to have IQ(θ) = IP(θ) for every θ without S being
sufficient.

The purpose of this note is: (i) using the geometry of differentiabilty in
quadratic mean, to reinterpret the phenomenon identified by K&S; (ii) to
explain why the experiment Qn obtained by n independent replications of Q
is asymptotically equivalent (in Le Cam’s sense) to the corresponding Pn.

Most of the necessary theory is already available in the literature but is
not widely known. The K&S example provides a good showcase for that
theory.
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2 DAVID POLLARD

2. The K&S example. What follows is a slightly simplified version of
the K&S construction.

Start from a smooth probability density

g(w) = 1
2w

2e−w{w > 0}

with respect to Lebesgue measure m on the real line. The power w2 is chosen
so that

ġ(w)2

g(w)
= g(w)

(
d log g(w)

dw

)2

=
1

2
(2− w)2e−w{w > 0}

is Lebesgue integrable.
Let ν denote the probability measure that puts mass 1/2 at each of +1

and −1. For each θ ∈ Θ = R define a probability measure Pθ on (the Borel
sigma-field of) X = R× {−1,+1} by means of its density

(1) fθ(x) = {z = +1}g(y−θ)+{z = −1}g(θ−y) where x = (y, z) ∈ X

with respect to the measure λ := m ⊗ ν. That is, the coordinate z has
marginal distribution ν and the conditional distribution of y given z is that
of θ + zw where w ∼ g independently of z.

z = -1

z = +1

g(y - θ)

g(θ - y)

y = θ

Define the statistic S as the coordinate projection, S(y, z) = y. Here are
the pertinent facts. (See the next Section for some proofs.)

The distribution Qθ of S has density

hθ(y) = 1
2g(y − θ) + 1

2g(θ − y) with respect to m.

Both P and Q have finite Fisher information,

(2) IQ(θ) = IP(θ) = I :=

∫ ∞
−∞

ġ(w)2/g(w) dw <∞ for all θ.
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NO LOSS OF INFORMATION 3

There is no loss of Fisher information when z is ignored. However, the statis-
tic S is not sufficient because

Pθ(z = 1 | S = y) = {y > θ},

which depends on θ. More formally, if S were sufficient there would exist
some measurable function π(y) for which Pθ(z = 1 | S = y) = π(y) a.e[Qθ],
for every θ.

Remark. K&S used a slightly more involved construction, with density

f(x, θ) = {z = +1} [0.7g(y − θ) + 0.3g(θ − y)]

+ {z = −1} [0.3g(y − θ) + 0.7g(θ − y)] where x = (y, z) ∈ X

with respect to m⊗µ where µ{+1} = α = 1−µ{−1} and α 6= 1/2. The
analysis in this note can be extended to this fθ.

3. DQM interpretation. K&S attributed the phenomenon in their
version of the example in Section 2 to a failure of strict convexity of Fisher
information with respect to mixtures of statistical experiments. There is
another explanation involving the geometry of Hellinger derivatives, which
I find more illuminating.

By a theorem of Hájek (1972, Lemma A.3), Lebesgue integrability of the
function ġ2/g in (2) implies that the set of densities G := {g(y− θ) : θ ∈ R}
(with respect to Lebesgue measure) is Hellinger differentiable with Hellinger
derivative γ(y − θ) at θ, where

γ(w) :=
−ġ(w)

2
√
g(w)

=
(2− w)

2
√

2
e−w/2{w > 0}.

That is,∫ ∣∣∣√g(y − θ − t)−
√
g(y − θ)− tγ(y − θ)

∣∣∣2 dy = o(|t|2) as t→ 0.

This assertion is also easy to check by explicit calculations.
The family of densities F := {fθ(x) : θ ∈ R}, for fθ as in (1), inherits the

Hellinger differentiability from G:

(3) λ
∣∣∣√fθ+t(x)−

√
fθ(x)− tζθ(x)

∣∣∣2 = o(|t|2) as t→ 0,

for the Hellinger derviative

ζθ(x) := {z = +1}γ(y − θ)− {z = −1}γ(θ − y).
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4 DAVID POLLARD

The significance of approximation (3) becomes clearer when it is rewrit-
ten as a differentiability property of the likelihood ratios. That is, it helps
to work with the square root of the density of Pθ+t with respect to Pθ. Un-
fortunately, Pθ+t is not dominated by Pθ. In general, to eliminate such an
embarrassment one needs to split Pθ+t into a singular part P⊥t,θ, which con-

centrates on a set of zero Pθ measure, plus a part P
(abs)
θ+t that has a density pt,θ

with respect to Pθ. For reasons related to the asymptotic theory for repeated
sampling, it is customary to make a small extra assumption about the be-
havior of P⊥t,θX as t tends to zero. Following Le Cam (1986, Section 17.3)
and Le Cam and Yang (2000, Section 7.2), I will call the slightly stronger
property differentiability in quadratic mean (DQM), to stress that the
definition requires a little more than Hellinger differentiability.

Remark. Beware: Some authors (for example, Bickel et al. 1993, page 457)
use the term DQM as a synonym for Hellinger differentiability.

Definition 4. Say that P = {Pθ : θ ∈ Θ}, with Θ ⊆ R, is differentiable
in quadratic mean (DQM) at θ with score function ∆θ(x) if, for θ + t ∈ Θ,

(i) for the part P⊥t,θ of Pθ+t that is singular with respect to Pθ,

P⊥t,θ(X) = o(|t|2) as |t| → 0

(ii) ∆θ ∈ L2(Pθ)
(iii) the absolutely continuous part of Pθ+t has density pt,θ(x) with respect

to Pθ for which√
pt,θ(x) = 1 + 1

2 t∆θ(x) + rt,θ(x) with Pθ

(
r2
t,θ

)
= o(|t|2) as t→ 0.

Remark. The factor of 1/2 in requirement (iii) ensures that Pθ∆
2
θ is

equal to the Fisher information IP(θ) if the densities are suitably smooth
in a pointwise sense.

Call P DQM if it is DQM at each θ in Θ.

The P from Section 2 is, in fact, DQM. For t > 0 the singular part P⊥t,θ
has density {z = −1}g(θ − y){θ < y < θ + t} with respect to λ, so that
P⊥t,θ(X) = O(|t|3). The part of Pθ+t that is dominated by Pθ has density

pt,θ(x) =
fθ+t(x)

fθ(x)
{fθ(x) > 0}

= {z = +1}g(y − θ − t)
g(y − θ)

{y > θ}+ {z = −1}g(θ + t− y)

g(θ − y)
{y < θ}(5)
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NO LOSS OF INFORMATION 5

There is a similar expression for the case t < 0. The score function equals

∆θ(x) = 2
ζθ(x)√
fθ(x)

{fθ(x) > 0}

= {z = +1}γ(y − θ)
g(y − θ)

{y > θ} − {z = −1}γ(θ − y)

g(θ − y)
{y < θ}(6)

The density pt,θ and the score function ∆θ(x) are uniquely determined
only up to a Pθ equivalence. With that thought in mind, observe that both
{z = +1} = {y > θ} a.e.[Pθ] and {z = −1} = {y < θ} a.e.[Pθ]. The
score function ∆θ is only changed on a Pθ-negligible set if we omit the two
indicator functions involving z from (6). In effect, the score function ∆θ(x)
depends on x only through the value of the statistic S. That property is
exactly what we need to preserve Fisher information. The relevant facts are
contained in the next theorem, which is proved in Section 5.

Theorem 7. Suppose P = {Pθ : θ ∈ Θ} on (X,A) is DQM with score
function ∆θ. Suppose S is a measurable map from (X,A) into (Y,B) and
Qθ = SPθ is the distribution of S under Pθ. Then:

(i) The statistical experiment Q = {Qθ : θ ∈ Θ} is also DQM, with score
function ∆̃θ(y) = Pθ(∆θ | S = y).

(ii) At each fixed θ, Fisher information is preserved (that is, IP(θ) = IQ(θ))
if and only if ∆θ(x) = ∆̃θ(Sx) a.e.[Pθ].

With only notational changes, the Theorem extends to the case where Θ
is a subset of some Euclidean space; no extra conceptual difficulties arise in
higher dimensions.

Credit where credit is due. The results stated in Theorem 7 have an
interesting history. Part (i) was asserted (“Direct calculations show that the
function q1/2(y; θ) is differentiable in L2(ν̃) and possess a continuous deriva-
tive . . . ”) in Theorem 7.2 of Ibragimov and Has’minskii (1981, Chapter I,
page 70), an English translation from the 1979 Russian edition. However,
that Theorem also (incorrectly, as noted by K&S) asserted that Fisher in-
formation is preserved if and only if S is sufficient.

Pitman (1979, pages 19–21) established differentiability in mean, a prop-
erty slightly different from (i), in order to deduce a result equivalent to (ii).

Le Cam and Yang (1988, Section 7) deduced an analogue of (i) (preserva-
tion of DQM under restriction to sub-sigma-fields) by an indirect argument
using equivalence of DQM with the existence of a quadratic approximation
to likelihood ratios of product measures (an LAN condition).
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6 DAVID POLLARD

Bickel et al. (1993, page 461) proved result (i), citing Ibragimov and
Has’minskii (1981), Le Cam and Yang (1988), and van der Vaart (1988, Ap-
pendix A3) for earlier proofs. The last of these was a revised (“I have not re-
sisted the temptation to rewrite numerous parts of the original manuscript”)
version of van der Vaart’s 1987 Ph.D. thesis. He cited Le Cam and Yang
(1988) and a manuscript version of Bickel et al. (1993).

4. Large sample interpretation. Write Pθ,n for the n-fold product
measure Pnθ , and Qn,θ for Qnθ , with Pθ and Qθ as in Section 2. That is,
the statistical experiment Pn = {Pθ,n : θ ∈ Θ} corresponds to taking n
independent observations x1 = (y1, z1), . . . , xn = (yn, zn) from Pθ and Qn =
{Qθ,n : θ ∈ Θ} corresponds to y1, . . . , yn.

Classical theory establishes existence of estimators θ̂n = θ̂n(y1, . . . , yn) for

which
√
n
(
θ̂n − θ

)
converges in distribution under Pθ,n to N(0, I−1). What

more do we learn from the zi’s? Asymptotically speaking, not much.
For example, as shown by the Hájek-Le Cam convolution and asymptotic

minimax theorems (Bickel et al., 1993, Section 2.3), there are various senses
in which N(0, I−1) is the best we can hope to achieve. Indeed, the score
function essentially determines the behaviour of the likelihood function in
O(n−1/2) neighborhoods of θ, which controls the asymptotics at the “

√
n”

level. The zi’s must be contributing at a less important level.
For i = 1, . . . , n, suppose yL:n is the largest yi for which zi = −1 and yR:n

the smallest yi for which yi = +1. With Pθ,n probability one we know that
yL:n < θ < yR. The w2 decay in g(w) at zero, implies that both θ − yL:n

and yR:n− θ are decreasing at an n−1/3 rate. In fact both n1/3(θ− yL:n) and
n1/3(yR:n−θ) have nontrivial limit distributions under Pθ,n. The event An =

{yL:n < θ̂n < yR:n} has Pθ,n probability that tends very rapidly to one.

Define z∗i,n = sgn(yi − θ̂n). That is,

z∗i,n =

{
+1 if yi > θ̂n
−1 if yi < θ̂n

.

Define x∗i,n = (yi, z
∗
i,n). On the event An we have xi = x∗i,n for i = 1, . . . , n.

If P∗θ,n denotes the joint distribution of x∗1,n, . . . , x
∗
n,n then

sup
θ∈Θ
‖P∗θ,n − Pθ,n‖TV → 0 rapidly.

In the terminology of Le Cam’s convergence of statistical experiments, Pn
and Qn are asymptotically equivalent; the vector (y1, . . . , yn) is asymptoti-
cally sufficient for Pn in Le Cam’s sense.
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NO LOSS OF INFORMATION 7

Remark. Rough calculations suggest that the Le Cam distance be-
tween Pn and Qn tends to zero like exp(−Cn1/3) for some constant C. I
omit the details because the actually rate is not important for the story
I am telling.

Put another way, for every statistic ψn(x1, . . . , xn) for Pn there is an-
other statistic ψ∗n(y1, . . . , yn) = ψn(x∗1,n, . . . , x

∗
n,n) for Qn that has the same

asymptotic behavior.

5. Proof of Theorem 7. Recall that the Kolmogorov conditional ex-
pectation Pθ(· | S = y) is abstractly defined, via the Radon-Nikodym the-
orem, as an increasing linear map (depending on θ) κ : L1(Pθ) → L1(Qθ)
with properties analogous to those enjoyed by a Markov kernel. If we iden-
tify an f in L1(Pθ) with the (signed) measure µf for which dµf/dPθ = f ,
then g = κf is the density of Sµf with respect to Qθ. To stress the analogy
with Markov kernels I will write κyf , or even κyf(x), instead of (κf)(y).
Thus the defining property of κ can be rewritten as

(8) Qθf1(y)κyf2 = Pθf1(Sx)f2(x)

for measurable real functions f1 on Y and f2 on X, at least when f1(Sx)f2(x)
is Pθ-integrable. A reader who chose to interpret κy as a Markov kernel would
lose only a tiny amount of generality.

Of course if one regards κ as acting on L1(Pθ), instead of on the space L1(Pθ)
of Pθ-equivalence classes, then one should qualify assertions with the occa-
sional a.e.[Pθ] caveats and regard κf as being defined only up to Qθ equiv-
alence. Following the usual custom, I will omit such qualifiers.

Proof of assertion (i). The following argument is adapted from van der
Vaart (1988, Appendix A3).

To simplify notation, I will prove that Q is DQM only at θ = 0, writing
P⊥t instead of P⊥t,0 and pt instead of pt,0. Keep in mind that κy now denotes
the conditional expectation operator P0(· | S = y). For each function h(x)
in L2(P0) I will write h̃(y) for its conditional mean κyh(x) and

varyh := κy

(
h(x)− h̃(y)

)2
= κyh(x)2 − h̃(y)2

for its conditional variance.
Start with the simplest case where Pt is actually dominated by P0. Then

ξt(x) =
√
dPt/dP0 = 1 + 1

2 t∆0(x) + rt(x) with P0r
2
t = o(t2)
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8 DAVID POLLARD

and

(9) ξ̃t(y) := κyξt(x) = 1 + 1
2 t∆̃0(y) + r̃t(y) with Q0r̃

2
t ≤ P0r

2
t = o(t2).

and, by the Radon-Nikodym property,

ηt(y) =
√
dQt/dQ0 =

√
κyξt(x)2 .

The proof of assertion (i) will work by showing that the difference δt(y) :=
ηt(y)− ξ̃t(y) is small, in the sense that Q0δ

2
t = o(t2). For then we will have

ηt(y) = 1 +
1

2
t∆̃0(y) +

[
r̃t(y) + δt(y)

]
with Q0

[
r̃t(y) + δt(y)

]2
= o(t2),

which implies DQM for Q at 0.
The desired property for δt will be derived from the following facts about

the conditional variance

(10) σ2
t (y) := vary(ξt) = κyξt(x)2 − ξ̃t(y)2 = ηt(y)2 − ξ̃t(y)2.

(a) The representation σ2
t (y) = κy

(
ξt(x)− ξ̃t(y)

)2
gives

σ2
t (y) = κy

(
1
2 t
[
∆0(x)− ∆̃0(y)

]
+ [rt(x)− r̃t(y)]

)2

≤ 2
(

1
2 t
)2
κy

[
∆0(x)− ∆̃0(y)

]2
+ 2κy [rt(x)− r̃t(y)]2

≤ 1
2 t

2κy∆
2
0 + 2κyr

2
t .

Remark. The cancellation of the leading 1 when ξ̃t is subtracted from ξt
seems to be vital to the proof. For general Hellinger differentiability, the
cancellation would not occur.

(b) δt(y) ≥ 0 because ηt(y)2 − ξ̃t(y)2 = σ2
t (y) ≥ 0.

(c) Substitution of δt + ξ̃t for ηt in (10) gives

σ2
t (y) = 2δt(y)ξ̃t(y) + δt(y)2.

The rest is easy. For each ε > 0 define

At,ε := {y ∈ Y : ξ̃t(y) ≥ 1
2 , σt(y) ≤ ε}.

Integration of inequality (a) gives

Q0σ
2
t (y) ≤ 1

2 t
2P0∆2

0 +2P0r
2
t = O(t2)+o(t2) ≤ Ct2 for some constant C,
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NO LOSS OF INFORMATION 9

which, together with (9), implies Q0At,ε → 1 as t→ 0.
On the set At,ε equality (c) ensures that δt(y) ≤ σ2

t (y) ≤ εσt(y); on Act,ε
the nonnegativity of δt and equality (c) give δ2

t ≤ σ2
t . Thus

Q0δt(y)2 ≤ ε2Q0σ
2
t (y){y ∈ At,ε}+Q0σ

2
t (y){y /∈ At,ε}

≤ ε2Ct2 + 1
2 t

2Q0κy∆
2
0A

c
t,ε + 2Q0κyr

2
t by (a).

The Q0-integrability of κy∆
2
0 and the Dominated Convergence theorem im-

ply Q0κy∆
2
0A

c
t,ε → 0. It follows that Q0δ

2
t = o(t2).

Finally, what happens when Pt is not dominated by P0? The analysis
for ξ2

t , the density of the part of Pt that is dominated by P0, is the same
as before. The image measure SP⊥t has total mass of order o(t2), part of
which gets absorbed into Q⊥t . The part of SP⊥t that is dominated by Q0

contributes an extra nonnegative term, γt(y), to the density dQ
(abs)
t /dQ0.

The η2
t (y) becomes κyξ

2
t (y) + γt(y). The extra term causes little trouble

because √
κyξ2

t ≤ ηt ≤
√
κyξ2

t +
√
γt and Q0γt = o(t2).

Proof of assertion (ii). Write H for the closed subspace of L2(Pθ) consist-
ing of (equivalence classes of) functions measurable with respect to the sub-
sigma-field of A generated by S. Each member of H is of the form f(Sx) for
some f in L2(Qθ). The orthogonal projection of ∆θ onto H equals ∆̃θ(Sx).
Thus

IP(θ) = Pθ∆θ(x)2 = Pθ∆̃θ(Sx)2 + Pθ

[
∆θ(x)− ∆̃θ(Sx)

]2
.

The first term on the right-hand side equals Qθ(∆̃
2
θ) = IQ; the last term is

zero if and only iff ∆θ(x) = ∆̃θ(Sx) a.e.[Pθ].
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