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Abstract

We prove that each nonpositively curved square VH-complex can be
turned functorially into a locally 6-large simplicial complex of the same
homotopy type. It follows that any group acting geometrically on a
CAT(0) square VH-complex is systolic. In particular the product of
two finitely generated free groups is systolic, which answers a ques-
tion of Daniel Wise. On the other hand, we exhibit an example of a
compact non-VH nonpositively curved square complex, whose funda-
mental group is neither systolic, nor even virtually systolic.

1 Introduction

In this note we compare nonpositively curved square VH-complexes (in-
troduced in [Wis96]) and locally 6-large simplical complexes (introduced in
[JŚ06]). First we describe locally 6-large and systolic complexes. The def-
initions we use are taken from [JŚ07], with a slight modification allowing
simplices in a locally 6-large simplicial complex not to be embedded. Never-
theless, the definition of a systolic complex coincides with the one in [JŚ07].

Definition 1.1. A generalised simplicial complex is a set S of affine simplices
together with a set E (closed under compositions) of affine embeddings of
simplices of S onto the faces of simplices of S (attaching maps), such that
for any proper face τ of any simplex σ ∈ S there is precisely one attaching
map onto τ .

A (generalised) simplicial map between generalised simplicial complexes
is a set of affine maps commuting with the attaching maps and mapping each
source simplex onto one of the target simplices.
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The geometric realisation of a generalised simplicial complex (S, E) is the
quotient space S/E . The quotient map of a generalised simplicial map is
the geometric realisation of such a map. We will abuse the language and
not distinguish between simplicial complexes or simplicial maps and their
geometric realisations.

The link of a simplex σ in a complex X = (S, E) is the (generalised)
simplicial complex Xσ = (Sσ, Eσ) where the set Sσ is obtained by taking for
each attaching map φσ,τ : σ → τ the maximal subsimplex of τ disjoint from
the image of σ and Eσ is the set of restrictions of the maps in E .

Subsequently, we refer to a generalised simplicial complex simply as a
simplicial complex and use the phrase simple simplicial complex when refer-
ring to a standard simplicial complex (in which simplices are embedded and
the intersection of two simplices, if non-empty, is a single simplex).

Definition 1.2. A simplicial complex is simple if it does not contain an edge
joining a vertex to itself, or a pair of simplices with the same boundary (e.g.
a double edge). A simple simplicial complex is flag if any complete subgraph
(a clique) of its 1-skeleton spans a simplex.

A cycle without diagonals in a simplicial complex X is an embedded
simplicial loop such that there are no edges in X connecting a pair of its
nonconsecutive vertices.

A simplicial complex is locally 6-large if all of its vertex links are flag
and do not contain cycles of length 4 or 5 without diagonals. A connected
and simply connected locally 6-large simplicial complex is called systolic (i.e.
systolic complexes are the universal coverings of connected locally 6-large
complexes).

A group admitting a geometric action on a systolic complex is called
systolic.

The original definition of local 6-largeness in [JŚ07] requires that we check
the flagness and the absence of short cycles without diagonals for the link
at any simplex. However, for higher-dimensional simplices it is a direct
consequence of those properties for the links at the vertices.

Similarly as for simplicial complexes, we allow cells in square complexes
not to be embedded. The formal definition of a (generalised) square complex
is the same as of a generalised simplicial complex, except for putting vertices,
edges and squares in place of simplices. The only thing that needs to be
rephrased is the definition of the link.

Definition 1.3. The link at a vertex v of a (generalised) square complex
X = (S, E) is a 1-dimensional (generalised) simplicial complex Xv = (Sv, Ev)
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(a graph), where Sv is obtained by taking for each attaching map φv,σ : v → σ
the vertex of σ opposite to v (if σ is an edge) or the diagonal of σ opposite
to v (if σ is a square) and Ev is the set of restrictions of the maps in E .

A square complex is called a VH-complex if its 1-cells can be partitioned
into two classes V and H called vertical and horizontal edges, respectively,
and the attaching map of each square alternates between the edges of V
and H. In other words, the link at each vertex is a bipartite graph with
independent sets of vertices coming from edges of V and H.

Note that the link of a VH-complex at a vertex may have double edges.

Definition 1.4. A square complex is nonpositively curved (or locally CAT(0))
if the link at any vertex does not contain embedded combinatorial cycle of
length less than 4. For a VH complex this reduces to the property that there
are no double edges in the links at vertices.

For a general definition of CAT(0) and nonpositively curved spaces (not
needed in our article) see [BH99]. Note only, that a simply connected space
which is nonpositively curved is CAT(0) ([BH99, Theorem 4.1]).

Example 1.5. The product of two trees is a CAT(0) VH-complex. If a
group acts freely by isometries on the product of two trees and preserves
the coordinates, then the quotient square complex is a nonpositively curved
VH-complex.

The paper is divided into two parts. In Section 2 we provide a functorial
construction turning a nonpositively curved square VH-complex into a locally
6-large simplicial complex of the same homotopy type (in particular turning
a CAT(0) VH-complex into a systolic complex). The main application of the
construction is:

Theorem 1.6 (see Corollary 2.6). The fundamental group of a compact non-
positively curved VH-complex is systolic.

The first application of Theorem 1.6 is the answer to a question posed by
Daniel Wise in [Wis05]:

Corollary 1.7. The product of two finitely generated free groups is systolic.

We also obtain a series of consequences of Theorem 1.6 by applying it
to the examples of nonpositively curved VH-complexes (some with exotic
properties) given by Daniel Wise in [Wis96].

Corollary 1.8 (compare [Wis96, Corollary 2.8]). The fundamental group of
an alternating knot complement is systolic.
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Corollary 1.9 (compare [Wis96, Theorem 5.5]). There exists a systolic
group, which is not residually finite.

One can arrange for even a stronger property:

Corollary 1.10 (compare [Wis96, Theorem 5.13]). There exists a systolic
group, which has no finite-index subgroups.

In Section 3 we show that the VH-hypothesis in Theorem 1.6 is necessary:

Theorem 1.11 (see Theorem 3.2). There exists a compact non-VH nonpos-
itively curved square complex, whose fundamental group is not systolic, nor
even virtually systolic.

Acknowledgements. We thank Daniel Wise for motivating us, for his
suggestions and discussions.

2 Nonpositively curved VH-complexes are sys-
tolic

Our main construction yields a way of turning a nonpositively curved VH-
complex into a locally 6-large simplicial complex.

Construction 2.1. Let X be a VH complex with the sets EV and EH of
vertical and horizontal edges, respectively. Denote by V and S the sets of
vertices and squares of X, respectively. We construct an associated simplicial
complex X∗ called the simplexification of X, which has the same homotopy
type as X.

First we divide each vertical edge e ∈ EV in two and subdivide each
square s ∈ S into six triangles, as in the Figure 1(a), obtaining a (generalised)
simplicial complex X̂ (a triangulation of X). The vertices of X̂ (which will
correspond to the vertices of X∗) are in bijective correspondence with the
elements of V ∪ EV ∪ S. We denote those vertices by v∗, e∗, s∗, for v ∈ V ,
e ∈ EV , s ∈ S, respectively.

The link of X̂ at a vertex e∗ is isomorphic to the suspension of a set of
n points, where n is the number of squares s ∈ S with a vertical edge e
(counted with multiplicities, i.e. a square with both vertical edges equal to
e is counted twice). The union Ŷe of all the simplices of X̂ containing the
vertex e∗ is isomorphic to the suspension of an n-pod, where some pairs of
vertices may be identified.

The complexX∗ is obtained from X̂ by attaching simplices σ+
v = v∗+e

∗s∗1 . . . s
∗
n

and σ−v = v∗−e
∗s∗1 . . . s

∗
n for each vertex e∗, where v+ and v− are the endpoints
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Figure 1: (a) the triangulation of X (b) Ŷe ⊂ X̂ (c) Y ∗e ⊂ X∗

of the edge e ∈ EV and s1, . . . , sn are the squares adjacent to the vertical
edge e ∈ EV (counted with multiplicities).

The link of e∗ in X∗ is the suspension of an (n−1)-simplex and the union
Y ∗e of all the simplices of X∗ containing the vertex e∗ is isomorphic to the
suspension of an n-simplex, where some pairs of vertices may be identified.

Proposition 2.2. A VH square complex X and its simplexification X∗ have
the same homotopy type.

Proof. As the triangulation X̂ of X (defined in Construction 2.1) embeds
into X∗, we only need to prove that X∗ deformation retracts onto X̂. Since
for distinct e0, e1 ∈ EV we have Y ∗e0 ∩ Y

∗
e1
⊂ X̂ it is enough to show that for

any e ∈ EV the complex Y ∗e deformation retracts onto Y ∗e ∩ X̂ = Ŷe.
If Y ∗e is a simple complex (i.e. the suspension of the simplex with vertices

s∗1, . . . , s
∗
n,e∗), then denoting by S the suspension and by C the cone operator,

we have

Ŷe = S(C({s∗1, . . . , s∗n})) ⊂ S(C(σ(s∗1, . . . , s
∗
n))) = Y ∗e ,

where σ(s∗1, . . . , s
∗
n) is the simplex with vertices s∗1, . . . , s

∗
n.

Consider the retraction r : C(σ(s∗1, . . . , s
∗
n)) → C({s∗1, . . . , s∗n}) defined

to be the affine extension of the map from the first barycentric subdivision,
which preserves the subcomplex C({s∗1, . . . , s∗n}) and maps the barycentres
of the remaining simplices to the cone vertex. It is easy to see that r can
be extended to a deformation retraction. By suspending the deformation
retraction, we obtain a deformation retraction from Y ∗e onto Ŷe.

If Y ∗e is not simple, then it is a quotient space of the suspension of a
simplex obtained by identifying some pairs of vertices. In that case the
deformation retraction from Y ∗e onto Ŷe is the quotient of the map described
above.

Remark 2.3. Note that Construction 2.1 is functorial. Namely, let f : X →
Y be a combinatorial map between VH complexes (i.e. mapping cells onto
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cells of the same dimension, in our case mapping edges to edges and squares
to squares). Assume also that f preserves the sets of vertical and horizontal
edges. Then f induces a canonical combinatorial map f ∗ : X∗ → Y ∗. More-
over, we have (f ◦ g)∗ = f ∗ ◦ g∗ and id∗ = id. In particular, if f is invertible
(in other words is a combinatorial isomorphism; it induces an isometry be-
tween the geometric realisations), then so is f ∗. Finally, note that if a group
G acts properly (cocompactly, geometrically) on X, then its induced action
on X∗ is also proper (cocompact, geometric).

We are now ready for our main result.

Theorem 2.4. If X is a nonpositively curved VH complex, then its simplex-
ification X∗ is locally 6-large.

Before giving the proof, we list a few consequences, obtained by applying
Proposition 2.2 and Remark 2.3.

Corollary 2.5. If X is a CAT(0) VH complex, then its simplexification X∗

is systolic. If G acts geometrically on X, then G is systolic.

There are two notable applications of Corollary 2.5.

Corollary 2.6 (Theorem 1.6). The fundamental group of a compact non-
positively curved VH complex is systolic.

The second application promotes Wise’s aperiodic flat construction ([Wis96,
Construction 7.1]) into the systolic setting.

Definition 2.7. A flat in a systolic complex X is a subcomplex E2
4 ⊂ X

which is isomorphic to the equilaterally triangulated plane (the triangulation
with 6 triangles adjacent to each vertex) and whose 1-skeleton is isometrically
embedded into X(1) (with the combinatorial metric).

Corollary 2.8. There exists compact a locally 6-large simplicial complex,
whose universal cover (which is systolic) contains a flat, which is not the
limit of a sequence of periodic flats.

It remains to prove our main result.

Proof of Theorem 2.4. We need to check that the link of X∗ at any vertex
is flag and does not contain cycles of length 4 or 5 without diagonals. It is
immediate for any vertex e∗, where e ∈ EV , as the link of e∗ is the suspension
of a simplex.

The link of X at a vertex s∗, s ∈ S has the form of two suspensions of
simplices, Sσm−1 and Sσn−1 (m and n being the numbers of squares adjacent
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Figure 2: Sample link of X∗ at a vertex (a) e∗ (b) s∗ (c) v∗

to the vertical edges of s), whose top and bottom vertices are connected by
an edge (the case m = n = 3 is depicted in Figure 2(b)). It is clear that it is
flag and any cycle without diagonals in that link has length at least 6.

Now let L be the link of X∗ at v∗, v ∈ V . Then L is the union of:

• a set of simplices (one ne-simplex for each vertical edge e ∈ EV with
an endpoint v, where ne is the number of squares s ∈ S adjacent to e,
counted with multiplicities) and

• a set of me-pods (one me-pod for each horizontal edge e ∈ EH issuing
from v, where me is the number of squares adjacent to e, counted with
multiplicities),

where each endpoint of each me-pod is identified with a different vertex of
one of the simplices (Figure 2(c) shows the link L in the case when the
neighbourhood of v ∈ V is the product of two tripods). It is clear that L is
flag, and any cycle without diagonals in L needs to pass through at least two
me-pods and two simplices, which makes its length at least 6.

3 Examples of nonpositively curved square
complexes which are not systolic

In the next part of the paper we show that our theorem cannot be improved
to include all nonpositively curved square complexes. Namely, we construct
an example of a compact nonpositively curved square complex, whose funda-
mental group is not systolic. Later, we use that example to show a compact
nonpositively curved square complex, whose fundamental group is neither
systolic, nor even virtually systolic (Theorem 1.11).

Let K be the square complex presented in Figure 3, built up of two
squares. It has only one vertex and the link at this vertex is shown in Figure
4. Thus we see that K is a nonpositively curved square complex, but not a
VH-complex. We will show that π1(K) is not a systolic group.
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Figure 3: The nonpositively curved square complex K

Figure 4: The link of K at the only vertex

Theorem 3.1. The group π1(K) is not systolic.

Proof. The group

π1(K) =
〈
a, b, c | ba = ab−1, a = cbc−1

〉
is an HNN-extension of the fundamental group of a Klein bottle, so it has
a subgroup H = 〈a, b〉, which is isomorphic to the fundamental group of a
Klein bottle, in particular is virtually Z2.

Suppose π1(K) is systolic, i.e. acts geometrically on some systolic simpli-
cial complex X. As a corollary from the systolic flat torus theorem (precisely
by Corollary 6.2(1) together with Theorem 5.4 in [Els09]) we have that H,
as a virtually Z2 group, acts properly on a systolic flat in X (see Definition
2.7). If the fundamental group of a Klein bottle 〈a, b | ba = ab−1〉 acts prop-
erly (by combinatorial isomorphisms) on an equilaterally triangulated plane
E2
4 (shown in Figure 5), then the axis of the glide reflection a is l and the

direction of the translation b is k or vice versa.
The elements a2 and b2 act by translations on E2

4 (with axes k and l). The
1-skeleton of E2

4 with the combinatorial metric is isometrically embedded
into the 1-skeleton of X (by Definition 2.7), so the lines k̂ and l (marked
in Figure 5) are invariant geodesics (in the 1-skeleton) for a2 and b2. By
[Els10, Proposition 3.10] the geodesic l is quasi-convex in the 1-skeleton of X
equipped with the combinatorial metric (i.e. any geodesic in X(1) with both
endpoints on l is contained in the δ-neighbourhood of l, for some universal
δ). The geodesic k̂ is clearly not quasi-convex (every point of E2

4 lies on some
geodesic with both endpoints on k̂).
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Figure 5: E2
4

Since a2 = cb2c−1, the translation a2 has two invariant geodesics: k̂ and
c(l) (or l and c(k̂)). Two invariant geodesics of an isometry acting by a
translation on both of them are at finite Hausdorff distance, so either both
k̂ and c(l) are quasi-convex, or none of them is ([Els10, Proposition 3.11]).
That contradicts the fact that l is quasi-convex, while k̂ is not.

As we have just shown, the fundamental group of K is not systolic, how-
ever it is virtually systolic (there is a 2-leaf covering K̃, which is a VH-
complex, so π1(K̃) is systolic by Theorem 2.4). Now we use the complex
K to construct a square complex S, whose fundamental group is not even
virtually systolic.

Let E be the compact nonpositively curved VH-complex which has no
connected finite coverings, constructed by Wise in [Wis96, Theorem 5.13].
Let σ be any loop in E consisting entirely of horizontal edges. We can subdi-
vide the complex K such that all loops a, b and c have the same combinatorial
length as the loop σ. Now we define Ē and ¯̄E to be two copies of E and let

S = (E ∪ Ē ∪ ¯̄E) ∪K/ ∼,

where ∼ is the identification of σ, σ̄ and ¯̄σ with a, b and c, respectively. Then
S is a nonpositively curved (non-VH) square complex.

Theorem 3.2 (Theorem 1.11). The group π1(S) is not virtually systolic,
where S is the nonpositively curved square complex defined above.

Proof. We first argue that π1(S) is not systolic. Since

π1(S) = π1(K) ∗a=σ π1(E) ∗b=σ̄ π1(Ē) ∗c=¯̄σ π1( ¯̄E)

is an amalgam product, the inclusion K ⊂ S induces injection π1(K) →
π1(S). To conclude that π1(S) is not systolic, we can recall the fact that a

9



finitely presented subgroup of a torsion-free systolic group is systolic itself
([Wis05]), while π1(K) is not systolic (Theorem 3.1). An equivalent way of
arriving to that conclusion is to repeat for S the argument used for K in the
proof of Theorem 3.1.

To prove that π1(S) is not virtually systolic, we show that it has no finite-
index subgroups (i.e. S has no connected non-trivial finite coverings). Let
p : S̃ → S be a connected finite covering. Since E ⊂ S has no connected
non-trivial finite coverings, p−1(E) is a disjoint union of copies of E. In
particular, any lift ã of the loop a has the same length as a. The same holds
for the loops b and c. As a, b and c together with the three copies of π1(E)
generate π1(S), that implies that p is a trivial covering.
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