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A property of the derivative of an entire

function
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Abstract

We prove that the derivative of a non-linear entire function is un-
bounded on the preimage of an unbounded set.
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1 Introduction and results

The main result of this paper is the following theorem conjectured by Allen
Weitsman (private communication):

Theorem 1. Let f be a non-linear entire function and M an unbounded set

in C. Then f ′(f−1(M)) is unbounded.

We note that there exist entire functions f such that f ′(f−1(M)) is
bounded for every bounded set M , for example, f(z) = ez or f(z) = cos z.

Theorem 1 is a consequence of the following stronger result:

Theorem 2. Let f be a transcendental entire function and ε > 0. Then

there exists R > 0 such that for every w ∈ C satisfying |w| > R there exists

z ∈ C with f(z) = w and |f ′(z)| ≥ |w|1−ε.
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The example f(z) =
√
z sin

√
z shows that that the exponent 1− ε in the

last inequality cannot be replaced by 1. The function f(z) = cos
√
z has the

property that for every w ∈ C we have f ′(z) → 0 as z → ∞, z ∈ f−1(w).
We note that the Wiman–Valiron theory [20, 12, 4] says that there exists

a set F ⊂ [1,∞) of finite logarithmic measure such that if

|zr| = r /∈ F and |f(zr)| = max
|z|=r

|f(z)|,

then

f(z) ∼
(

z

zr

)ν(r,f)

f(zr) and f ′(z) ∼ ν(r, f)

r
f(z)

for |z − zr| ≤ rν(r, f)−1/2−δ as r → ∞. Here ν(r, f) denotes the central
index and δ > 0. This implies that the conclusion of Theorem 2 holds for
all w satisfying |w| = M(r, f) for some sufficiently large r /∈ F . However,
in general the exceptional set in the Wiman–Valiron theory is non-empty
(see, e.g., [3]) and thus it seems that our results cannot be proved using
Wiman–Valiron theory.

Acknowledgment. We thank Allen Weitsman for helpful discussions.

2 Preliminary results

One important tool in the proof is the following result known as the Zalcman
Lemma [21]. Let

g# =
|g′|

1 + |g|2
denote the spherical derivative of a meromorphic function g.

Lemma 1. Let F be a non-normal family of meromorphic functions in a

region D. Then there exist a sequence (fn) in F , a sequence (zn) in D, a

sequence (ρn) of positive real numbers and a non-constant function g mero-

morphic in C such that ρn → 0 and fn(zn + ρnz) → g(z) locally uniformly

in C. Moreover, g#(z) ≤ g#(0) = 1 for z ∈ C.

We say that a ∈ C is a totally ramified value of a meromorphic function
f if all a-points of f are multiple. A classical result of Nevanlinna says that
a non-constant function meromorphic in the plane can have at most 4 totally
ramified values, and that a non-constant entire function can have at most
2 finite totally ramified values. Together with Zalcman’s Lemma this yields
the following result [5, 13, 14]; cf. [22, p. 219].

2



Lemma 2. Let F be a family of functions meromorphic in a domain D
and M a subset of C with at least 5 elements. Suppose that there exists

K ≥ 0 such that for all f ∈ F and z ∈ D the condition f(z) ∈ M implies

|f ′(z)| ≤ K. Then F is a normal family.

If all functions in F are holomorphic, then the conclusion holds if M has

at least 3 elements.

Applying Lemma 2 to the family {f(z + c) : c ∈ C} where f is an entire
function, we obtain the following result.

Lemma 3. Let f be an entire function and M a subset of C with at least 3
elements. If f ′ is bounded on f−1(M), then f# is bounded in C.

It follows from Lemma 3 that the conclusion of Theorems 1 and 2 holds
for all entire functions for which f# is unbounded.

We thus consider entire functions with bounded spherical derivative. The
following result is due to Clunie and Hayman [6]. Let

M(r, f) = max
|z|≤r

|f(z)| and ρ(f) = lim sup
r→∞

log logM(r, f)

log r

denote the maximum modulus and the order of f .

Lemma 4. Let f be an entire function for which f# is bounded. Then

logM(r, f) = O(r) as r → ∞. In particular, ρ(f) ≤ 1.

We will include a proof of Lemma 4 after Lemma 6.
The following result is due to Valiron [20, III.10] and H. Selberg [17,

Satz II].

Lemma 5. Let f be a non-constant entire function of order at most 1 for

which 1 and −1 are totally ramified. Then f(z) = cos(az+b), where a, b ∈ C,

a 6= 0.

We sketch the proof of Lemma 5. Put h(z) = f ′(z)2/(f(z)2−1). Then h is
entire and the lemma on the logarithmic derivative [9, p.94, (1.17)], together
with the hypothesis that ρ(f) ≤ 1, yields that m(r, h) = o(log r) and hence
that h is constant. This implies that f has the form given. Another proof is
given in [10]

The next lemma can be extracted from the work of Pommerenke [16,
Sect. 5], see [8, Theorem 5.2].
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Lemma 6. Let f be an entire function and C > 0. If |f ′(z)| ≤ C whenever

|f(z)| = 1, then |f ′(z)| ≤ C|f(z)| whenever |f(z)| ≥ 1.

Lemma 6 implies the theorem of Clunie and Hayman mentioned above
(Lemma 4). For the convenience of the reader we include a proof of a slightly
more general statement, which is also more elementary than the proofs of
Clunie, Hayman and Pommerenke; see also [1, Lemma 1].

Let G = {z : |f(z)| > 1} and u = log |f |. Then |f ′/f | = |∇u| and our
statement which implies Lemmas 4 and 6 is the following.

Proposition. Let G be a region in the plane, u a harmonic function in G,

positive in G, and such that for z ∈ ∂G we have u(z) = 0 and |∇u(z)| ≤ 1.
Then |∇u(z)| ≤ 1 for z ∈ G, and u(z) ≤ |z|+O(1) as z → ∞.

Proof. It is enough to consider the case of unbounded G with non-empty
boundary. For a ∈ G, consider the largest disc B centered at a and contained
in G. The radius d = d(a) of this disc is the distance from a to ∂G. There
is a point z1 ∈ ∂B such that u(z1) = 0. Put z(r) = a + r(z1 − a), where
r ∈ (0, 1). Harnack’s inequality gives

u(a)

d(1 + r)
≤ u(z(r))

d(1− r)
=

u(z(r))− u(z1)

d(1− r)
.

Passing to the limit as r → 1 we obtain

u(a) ≤ 2d(a)|∇u(z1)| ≤ 2d(a).

This holds for all a ∈ G. Now we take the gradient of both sides of the
Poisson formula and, noting that u(a + d(a)eit) ≤ 2d(a + d(a)eit) ≤ 4d(a),
obtain the estimate

|∇u(a)| ≤ 1

πd(a)

∫ π

−π
|u(a+ d(a)eit)|dt ≤ 8.

So ∇u is bounded in G. As the complex conjugate of ∇u is holomorphic
in G and |∇u(z)| ≤ 1 at all boundary points z of G, except infinity, the
Phragmén–Lindelöf theorem [15, III, 335] gives that |∇u(z)| ≤ 1 for z ∈ G.
This completes the proof of the Proposition.

We recall that for a non-constant entire function f the maximum modulus
M(r) = M(r, f) is a continuous strictly increasing function of r. Denote by
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ϕ the inverse function of M . Clearly, for |w| > |f(0)| the equation f(z) = w
has no solutions in the open disc of radius ϕ(|w|) around 0. The following
result of Valiron ([18, 19], see also [7]) says that for functions of finite order
this equation has solutions in a somewhat larger disc.

Lemma 7. Let f be a transcendental entire function of finite order and

η > 0. Then there exists R > |f(0)| such that for all w ∈ C, |w| ≥ R, the

equation f(z) = w has a solution z satisfying |z| < ϕ(|w|)1+η.

We note that Hayman ([11], see also [2, Theorem 3]) has constructed
examples which show that the assumption about finite order is essential in
this lemma.

3 Proof of Theorem 2

Suppose that the conclusion is false. Then there exists ε > 0, a tran-
scendental entire function f and a sequence (wn) tending to ∞ such that
|f ′(z)| ≤ |wn|1−ε whenever f(z) = wn. By Lemma 3, the spherical derivative
of f is bounded, and we may assume without loss of generality that

f#(z) ≤ 1 for z ∈ C. (1)

We may also assume that f(0) = 0. It follows from (1) that |f ′(z)| ≤ 2 if
|f(z)| = 1, and thus Lemma 6 yields

∣

∣

∣

∣

∣

f ′(z)

f(z)

∣

∣

∣

∣

∣

≤ 2 if |f(z)| ≥ 1. (2)

It also follows from (1), together with Lemma 4, that ρ(f) ≤ 1. We may
thus apply Lemma 7 and find that if η > 0 and if n is sufficiently large, then
there exists ξn satisfying

|ξn| ≤ ϕ(|wn|)1+η and f(ξn) = wn.

We put
τn = ϕ(|wn|)1+2η

and define

Φn(z) =
wn − 2f(τnz)

wn

= 1− 2
f(τnz)

wn

.
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Then Φn(0) = 1, Φn(ξn/τn) = −1, and ξn/τn → 0 as n → ∞. Thus the
sequence (Φn) is not normal at 0, and we may apply Zalcman’s Lemma
(Lemma 1) to it. Replacing (Φn) by a subsequence if necessary, we thus find
that

gn(z) = Φn(zn + ρnz) = 1− 2

wn
f(τnzn + τnρnz) → g(z)

locally uniformly in C, where |zn| ≤ 1, ρn > 0, ρn → 0, and g is a non-
constant entire function with bounded spherical derivative. With ζn = τnzn
and µn = τnρn we have

gn(z) = 1− 2

wn
f(ζn + µnz), (3)

and

g′n(z) = −2µn

wn
f ′(ζn + µnz). (4)

We may assume that ρn ≤ 1 and hence |ζn| ≤ τn and µn ≤ τn for all n.
If gn(z) = 1, then f(ζn+µnz) = 0, hence |f ′(ζn+µnz)| ≤ 1 by (1). Since

µn ≤ τn, we deduce that

|g′n(z)| ≤
2τn
wn

if gn(z) = 1. (5)

If gn(z) = −1, then f(ζn +µnz) = wn, and hence |f ′(ζn +µnz)| ≤ |wn|1−ε by
our assumption. Thus

|g′n(z)| ≤
2µn

|wn|
|wn|1−ε ≤ 2τn

|wn|ε
if gn(z) = −1. (6)

It follows from the definition of τn that

τn = o(|wn|)δ) as n → ∞, (7)

for any given δ > 0.
We deduce from (5), (6) and (7) that g′(z) = 0 whenever g(z) = 1 or

g(z) = −1. Since g has bounded spherical derivative, we conclude from
Lemmas 3 and 4 that g(z) = cos(az + b). Without loss of generality, we
may assume that g(z) = cos z so that g′(z) = − sin z. In particular, there
exist sequences (an) and (bn) both tending to 0, such that gn(an) = 1 and
g′n(bn) = 0. From (5) we deduce that

|g′n(an)| ≤
2τn
|wn|

. (8)
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Noting that g′′(z) = − cos z we find that

g′n(an) = g′n(an)− g′n(bn) =
∫ an

bn
g′′n(z)dz ∼ bn − an (9)

as n → ∞, and thus

|bn − an| ≤
3τn
|wn|

(10)

for large n, by (8). This implies that

|gn(bn)− 1| = |gn(bn)− gn(an)| =
∣

∣

∣

∣

∣

∫ bn

an
g′n(z)dz

∣

∣

∣

∣

∣

≤ 2|bn − an| ≤
6τn
|wn|

(11)

for large n.
We put

hn(z) = gn(z + bn)− gn(bn)

and note that hn(0) = 0, h′
n(0) = g′n(bn) = 0 and

hn(z) → cos z − 1 as n → ∞.

It follows that
hn(z)

z2
→ cos z − 1

z2
as n → ∞,

which implies that there exists r > 0 such that

1

4
≤ |hn(z)|

|z2| ≤ 3

4
for |z| ≤ r. (12)

and large n.
Now we fix any γ ∈ (0, 1/2) and put

cn = bn +
1

|wn|γ
.

Then
gn(cn)− 1 = hn(|wn|−γ) + g(bn)− 1

and thus, using (11) and (12) we obtain for large n:

|gn(cn)− 1| ≤
∣

∣

∣hn(|wn|−γ)
∣

∣

∣+ |g(bn)− 1| ≤ 3

4|wn|2γ
+

6τn
|wn|

≤ 1

|wn|2γ
. (13)
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Similarly

|gn(cn)− 1| ≥
∣

∣

∣hn(|wn|−γ)
∣

∣

∣− |g(bn)− 1| ≥ 1

5|wn|2γ
. (14)

On the other hand, arguing as in (9), we have

g′n(cn) = g′n(cn)− g′n(bn) =
∫ cn

bn
g′′n(z)dz ∼ bn − cn = − 1

|wn|γ
,

and thus

|g′n(cn)| ≥
1

2|wn|γ
(15)

for large n. Put vn = ζn + µncn. Then

f(vn) =
wn

2
(1− gn(cn)) and f ′(vn) =

wn

2µn
g′n(cn),

by (3) and (4). Hence

1

10
|wn|1−2γ ≤ |f(vn)| ≤

1

2
|wn|1−2γ , (16)

by (13) and (14) while

|f ′(vn)| ≥
|wn|γ
2µn

.

Since |f(vn)| ≥ 1 for large n, by (16), this contradicts (2) and (7).
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