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Abstract

An averaging method is applied to derive effective approximation
to the following singularly perturbed nonlinear stochastic damped
wave equation

νutt + ut = ∆u+ f(u) + ναẆ

on an open bounded domain D ⊂ R
n , 1 ≤ n ≤ 3 . Here ν > 0 is

a small parameter characterising the singular perturbation, and να ,
0 ≤ α ≤ 1/2 , parametrises the strength of the noise. Some scaling
transformations and the martingale representation theorem yield the
following effective approximation for small ν,

ut = ∆u+ f(u) + ναẆ

to an error of o
(
να

)
.
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1 Introduction

Wave motion is one of the most commonly observed physical phenomena,
and typically described by hyperbolic partial differential equations. Non-
linear wave equations also have been studied a great deal in many modern
problems such as sonic booms, bottlenecks in traffic flows, nonlinear optics
and quantum field theory [13, 20, e.g.]. However, for many problems, such as
wave propagation through the atmosphere or the ocean, the presence of tur-
bulence causes random fluctuations. More realistic models must account for
such random fluctuations. Hence we study stochastic wave equations [7, 9,
e.g.].

Here we study an effective approximation, in the sense of distribution, for
the following nonlinear wave stochastic partial differential equation (spde).
The spde is a singularly perturbed problem on a bounded open domain
D ⊂ R

n, 1 ≤ n ≤ 3 ,

νuν
tt + uν

t = ∆uν + f(uν) + ναẆ , uν(0) = u0 , uν
t (0) = u1 , (1)

with zero Dirichlet boundary on D. Here να with 0 < ν ≤ 1 and 0 ≤ α ≤ 1/2
parametrises the strength of noise, and ∆ is the Laplace operator in R

n. The
noise W (t) is an infinite dimensional Q-Wiener process which is detailed in
section 2. The spde (1) also describes the motion of a small particle with
mass ν and an infinite number of degrees of freedom [4, 5]. We are concerned
with the effective approximation of the solution to the spde (1) for small
ν > 0 .

For α = 1/2 , the limit of the random dynamics of spde (1) as ν → 0 has
been studied by Lv and Wang [11, 18]. The random attractor and measure
attractor of spde (1) are approximated by those of the deterministic pde

ut = ∆u+ f(u) (2)

as ν → 0 in the almost sure sense [11] and weak topology [18] respectively.
The important case of α = 0 , which is an infinite dimensional version of

the Smolukowski–Kramers approximation, is studied by analysing the struc-
ture of solution of linear stochastic wave equations [4, 5]. For any T > 0 ,
the solution u(t) to the spde (1) is approximated in probability by that of
the stochastic system

ut = ∆u+ f(u) + Ẇ

as ν → 0 in space C(0, T ;L2(D)).
Here we extend the approximating result to the case when 0 ≤ α ≤ 1/2

and derive a higher order approximation in the sense of distribution. Re-
cently, the stochastic averaging approach was developed to study the effective
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approximation to slow-fast spdes [6, 19] in the following form

uν
t = ∆uν + f(uν, vν) + σ1Ẇ1 ,

vνt =
1

ν
[∆vν + g(uν, vν)] +

σ2√
ν
Ẇ2 ,

where f and g are nonlinear terms, σ1 and σ2 are some constants, and
W1 and W2 are Wiener processes. Notice that upon introducing vν = uν

t , the
spde (1) is rewritten as

uν
t = vν , uν(0) = u0 ,

vνt =
1

ν
[−vν +∆uν + f(uν)] +

1

ν1−α
Ẇ , vν(0) = u1 ,

which are also in the form of slow-fast spdes. Then we can follow the stochas-
tic averaging approach to derive an effective averaging approximation of uν ,
the solution of spde (1) as ν → 0 for all 0 ≤ α ≤ 1/2 . Here the case
α = 1/2 is the most important case because all cases of α ∈ [0, 1/2] can
be transformed to the case α = 1/2 , see section 4 and section 5. By an
averaging approach and martingale representation theorem, we prove that
for small ν > 0 with 0 ≤ α ≤ 1/2 the solution of spde (1) is approximated
in the sense of distribution by ūν which solves

ūν
t = ∆ūν + f(ūν) + να ˙̄W , ūν(0) = u0 , (3)

where W̄ (t) is a Wiener process distributes same as W (t). This result shows
that for any small ν > 0 with 0 ≤ α ≤ 1/2 the term νuν

t (t) is a higher order
term than the random force term ναW (t).

Section 3 gives the approximation for the important case that α = 1/2 .
Previous research [11] gives an approximation which is a deterministic equa-
tion. However, our new approximation shows that for small ν 6= 0 , there is
a small fluctuation which distributes same as

√
νW (t), see (3). This gives a

more effective approximation.
Section 6 explores a parameter regime where a nonlinear coordinate trans-

formation underlies the existence of a stochastic slow manifold for the case
α = 0. The stochastic slow manifolds of both the spde (1) and the model (3)
have the same evolution in the parameter regime and so provide evidence of
the stronger result of pathwise approximation therein.

2 Preliminaries

Let D ⊂ R
n , 1 ≤ n ≤ 3 , be a regular domain with boundary Γ. Denote

by L2(D) the Lebesgue space of square integrable real valued functions on D,
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which is a Hilbert space with inner product

〈u, v〉 =
∫

D

u(x)v(x) dx , u, v ∈ L2(D) .

Write the norm on L2(D) by ‖u‖0 = 〈u, u〉1/2 . Define the following abstract
operator

Au = −∆u , u ∈ Dom(A) = {u ∈ L2(D) : Au ∈ L2(D) , u|Γ = 0} .
Denote by {λk} the eigenvalues of A with 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · ,
λk → ∞ as k → ∞ . For any s ∈ R , introduce the spaceHs

0(D) = Dom(As/2)
endowed with the norm

‖u‖s = ‖As/2u‖0 , u ∈ Hs
0(D).

Consider the following singularly perturbed stochastic wave equation with
cubic nonlinearity on D:

νuν
tt + uν

t = ∆uν + βuν − (uν)3 + ναẆ (t), (4)

uν(0) = u0 , uν
t (0) = u1 , (5)

uν |Γ = 0 , (6)

with 0 < ν < 1 and 0 ≤ α ≤ 1/2 . Here {W (t)}t∈R is an L2(D)-valued two
sided Wiener process defined on a complete probability space (Ω,F , {Ft}t≥0,P)
with covariance operator Q such that

Qek = bkek , k = 1, 2, . . . ,

where {ek} is a complete orthonormal system in L2(D), bk is a bounded
sequence of non-negative real numbers. Then

W (t) =

∞∑

k=1

√
bkekwk(t),

where wk are real mutually independent Brownian motions [12]. Further, we
assume

B0 =
∞∑

k=1

bk < ∞ and B1 =
∞∑

k=1

λkbk < ∞ . (7)

Then by a standard method [8], for any (u0, u1) ∈ Hs+1
0 (D)×Hs(D), s ∈ R ,

there is a unique solution uν to (4)–(6),

uν ∈ L2(Ω, C(0, T ;Hs+1
0 (D))), (8)

uν
t ∈ L2(Ω, C(0, T ;Hs(D))). (9)

In the following we write f(u) = βu− u3 and F (u) =
∫ u

0
f(r) dr .

For our purpose we need the following lemma.
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Lemma 1 (Simon [17]). Assume E, E0 and E1 be Banach spaces such that
E1 ⋐ E0 , the interpolation space (E0, E1)θ,1 ⊂ E with θ ∈ (0, 1) and E ⊂
E0 with ⊂ and ⋐ denoting continuous and compact embedding respectively.
Suppose p0, p1 ∈ [1,∞] and T > 0 , such that

V is a bounded set in Lp1(0, T ;E1), and

∂V := {∂v : v ∈ V} is a bounded set in Lp0(0, T ;E0).

Here ∂ denotes the distributional derivative. If 1− θ > 1/pθ with

1

pθ
=

1− θ

p0
+

θ

p1
,

then V is relatively compact in C(0, T ;E).

In the following, for any T > 0 , we denote by CT a generic positive
constant which is independent of ν.

3 The case of α = 1/2

We first consider the special case of α = 1/2 which was recently studied by a
direct approximation method [11, 18]. Here we apply an averaging method
to give more effective approximation to equation (4)–(6). We rewrite (4)–(6)
in the form of slow-fast spdes:

duν = vν dt , uν(0) = u0 , (10)

dvν = −1

ν
[vν −∆uν − f(uν)] dt+

1√
ν
dW (t) , vν(0) = u1 . (11)

Notice that the slow part uν and fast part vν are linearly coupled. For
simplicity we consider (u0, u1) ∈ (H2(D) ∩ H1

0 (D)) × H1(D). Then (4)–(6)
has a unique solution in L2(Ω, C(0, T ; (H2(D) ∩H1

0 (D))×H1(D))).

3.1 Tightness of solutions

Let (uν , vν) be a solution to (10)–(11) with ν > 0 . In order to pass to the
limit ν → 0 in the averaging approach, we need some a priori estimates on
the solutions.

Theorem 1. Assume B1 < ∞ . For any T > 0 , there is a positive con-
stant CT such that

E

[
max
0≤t≤T

‖uν(t)‖22 + max
0≤t≤T

‖vν(t)‖20
]
≤ CT , (12)
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and for any integer m > 0

E

∫ T

0

‖uν(t)‖2m1 dt ≤ CT .

Proof. The result on ‖uν(t)‖2 is found by a simple energy estimate [18]. Now
we give the estimate on ‖vν(t)‖0. By equation (11),

vν(t) = e−t/νu1 +
1

ν

∫ t

0

e−(t−s)/ν [∆uν(s) + f(uν(s))] ds

+
1√
ν

∫ t

0

e−(t−s)/ν dW (s).

Noticing assumption (7), by the estimate on ‖uν(t)‖2 and maximal inequality
of stochastic convolution [12, Lemma 7.2],

E

[
max
0≤t≤T

‖vν(t)‖20
]
≤ CT

for some positive constant CT . The last inequality of the theorem is obtained
by the same method [18] and Poincaré inequality. This completes the proof.

Now by the above estimates and Lemma 1, we have the following theorem.

Theorem 2. For any T > 0, {L(uν)}0<ν≤1 the distribution of uν is tight in
the space C(0, T ;H1

0(D)).

By the above tightness result, to determine the limit of uν we can pass
to the limit ν → 0 in a weak sense; that is, for any ϕ ∈ C∞

0 (D), we consider
the limit of uν,ϕ(t) = 〈uν(t), ϕ〉 in the space C(0, T ) as ν → 0 .

3.2 Limit of uν,ϕ in C(0, T )

Now we pass to the limit ν → 0 in {uν,ϕ} in the space C(0, T ) for any T > 0 .
First, by equations (10)–(11),

duν,ϕ = vν,ϕ dt , (13)

dvν,ϕ = −1

ν
[vν,ϕ + 〈∇uν ,∇ϕ〉 − 〈f(uν), ϕ〉] dt+ 1√

ν
dW ϕ(t), (14)

with uν,ϕ(0) = 〈u0, ϕ〉 and vν,ϕ(0) = 〈u1, ϕ〉 where vν,ϕ = 〈vν, ϕ〉 andW ϕ(t) =
〈W (t), ϕ〉. In the following we also write vν,ϕ as vν,ϕ,u(t) which shows the
dependence of vν,ϕ on the slow part uν .
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Second, for any fixed u ∈ H2(D) ∩H1
0 (D) we consider the fast equation

dvν,u = −1

ν
[vν,u −∆u− f(u)] dt+

1√
ν
dW (t) . (15)

Equation (15) has a unique stationary solution v̄ν,u. Moreover, the stationary
solution v̄ν,u is exponentially mixing and the distribution of v̄ν,u is the normal
distribution N (∆u+ f(u), Q/2) [4].

Now for any u ∈ H2(D) ∩H1
0 (D) define

Hν(u, t) = ν [vν,u(t)− vν,u(0)] +

∫ t

0

[vν,u(s)−∆u− f(u)] ds .

Then uν,ϕ solves the following equation

uν,ϕ(t) = 〈u0, ϕ〉 −
∫ t

0

[〈∇uν(s),∇ϕ〉 − 〈f(uν(s)), ϕ〉] ds

+ 〈Hν(uν(t), t), ϕ〉 − ν 〈vν,u(t)− vν,u(0), ϕ〉 . (16)

Third, we study the behaviour of 〈Hν(uν(t), t), ϕ〉 for small ν. LetHν,ϕ(u, t) =
〈Hν(u, t), ϕ〉 , then define

Mν,ϕ
t =

1√
ν
Hν,ϕ(uν(t), t) . (17)

By the definition of Hν,ϕ(u, t) and equation (15), Mν,ϕ
t is a martingale with

respect to {Ft : t ≥ 0}, and the quadratic covariance is 〈Mν,ϕ〉t = t〈Qϕ, ϕ〉.
Now define Rν,ϕ(t) = −〈vν,u(t)− vν,u(0), ϕ〉, then rewrite (16) as

uν,ϕ(t) = 〈u0, ϕ〉−
∫ t

0

[〈∇uν(s),∇ϕ〉 − 〈f(uν(s)), ϕ〉] ds+√
νMν,ϕ

t +νRν,ϕ(t) .

(18)
Invoking Theorem 1,

lim
ν→0

E

[
max
0≤t≤T

√
ν |Rν,ϕ(t)|

]
= 0 . (19)

Then define the process

Mν,ϕ
t =

1√
ν

{
uν,ϕ(t)− 〈u0, ϕ〉+

∫ t

0

[
〈∇uν(s),∇ϕ〉 − 〈f(uν(s)), ϕ〉

]
ds

}
.

(20)
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By the definition of Hν,ϕ(u, t) and (19) we have the tightness of Mν,ϕ
t in

space C(0, T ) for any T > 0 . Let P be a limit point of the family of prob-
ability measures {L(Mν,ϕ

t )}0<ν≤1 and denote by Mϕ
t , a C(0, T )-valued ran-

dom variable with distribution P . Let Ψ be a continuous bounded function
on C(0, T ). Set Ψν(s) = Ψ(uν,ϕ(s)), then noticing (19),

E [(Mν,ϕ
t −Mν,ϕ

s )Ψν(s)] = E
[√

ν(Rν,ϕ(t)− Rν,ϕ(s))Ψν(s)
]
→ 0 , ν → 0 ,

which yields that the process {Mϕ
t }0≤t≤T is a P -martingale with respect to

the Borel σ-filter of C(0, T ).
We consider the quadratic covariation of the martingale Mϕ

t . By the
definition of Mν,ϕ

t , passing to the limit ν → 0 in (20), we derive Mϕ
t is a

square integrable martingale with the associated quadratic covariation pro-
cess is 〈Qϕ, ϕ〉t. Then by the representation theorem for martingales [10],
without changing the distributions of Mν,ϕ

t and Mϕ
t , one extends the origi-

nal probability space (Ω,F ,P) and chooses a new Wiener process Ŵ ϕ(t) such
that Mϕ

t =
√
QŴ ϕ(t), which is unique in the sense of distribution.

By the definition of Mν,ϕ
t , Ŵ ϕ can be chosen as 〈Ŵ , ϕ〉 where Ŵ is a

cylindrical Wiener process. Then from (20) we have in the sense of distribu-
tion

〈uν(t), ϕ〉

= 〈u0, ϕ〉 −
∫ t

0

[〈∇uν(s),∇ϕ〉 − 〈f(uν(s)), ϕ〉]ds+√
νMϕ

t + o
(√

ν
)

= 〈u0, ϕ〉 −
∫ t

0

[〈∇uν(s),∇ϕ〉 − 〈f(uν(s)), ϕ〉]ds+√
ν
√

Q〈Ŵ , ϕ〉+ o
(√

ν
)

for any ϕ ∈ C∞
0 (D). Then by discarding the higher order term and the

tightness of uν, we have the following approximating equation

dūν = [∆ūν + f(ūν)]dt +
√
ν dW̄Q , (21)

where W̄Q is some an L2(D) valued Q-Wiener process.

Theorem 3. Assume B1 < ∞ and α = 1/2 . For small ν > 0 , there
is a new probability space (Ω̄, F̄ , P̄), an extension of the original probabil-
ity space (Ω,F ,P), such that for any T > 0 , the solution uν to (10)–
(11) is approximated by ūν which solves (21), to an error of o

(√
ν
)
, in the

space C(0, T ;H1
0(D)) for almost all ω ∈ Ω̄ .

The above spde (21) is more effective than the limit pde (2) [11] as it
incorporates fluctuations for small ν > 0 . This result also implies that the
singular term νuν

t (t) is a higher order term than
√
νW (t) for small ν > 0 in

the sense of distribution at least. The following two sections show that νuν
t (t)

is always a higher order term than ναW (t) for any 0 ≤ α ≤ 1/2 .
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4 The case of α = 0

Next we consider the case of α = 0 ; that is, consider the following spde

νuν
tt + uν

t = ∆uν + βuν − (uν)3 + Ẇ (t), (22)

uν(0) = u0 , uν
t (0) = u1 , (23)

uν |Γ = 0 . (24)

First we have the following a priori estimates on uν in the space C(0, T ;H1
0(D)).

Theorem 4 (Cerrai & Freidlin [5]). Assume B1 < ∞ . For any T > 0 , there
is a positive constant CT such that

E

[
max
0≤t≤T

‖uν(t)‖21
]
≤ CT .

We follow the approach for the case of α = 1/2 . For this we introduce
the scalings ũν =

√
νuν and ṽν =

√
νuν

t . Then

dũν = ṽνdt , ũν(0) =
√
νu0 ,

dṽν = −1

ν

[
ṽν −∆ũν −√

νf

(
ũν

√
ν

)]
dt+

1√
ν
dW (t), ṽν(0) =

√
νu1 .

By standard energy estimates [18], by a similar discussion to that in Section 3,
and by Theorem 4, we have the following theorem.

Theorem 5. Assume B1 < ∞ . For any T > 0 , there is a positive con-
stant CT such that

E

[
max
0≤t≤T

‖ũν(t)‖22 + max
0≤t≤T

‖ṽν(t)‖20
]
≤ CT ,

and for any integer m > 0

E

∫ T

0

‖ũν(t)‖2m1 dt ≤ CT .

Moreover, the distribution of ũν is tight in space C(0, T ;H1
0(D)).

We consider the asymptotic approximation of ũν for small ν > 0 . For
any ϕ ∈ C∞

0 (D), let ũν,ϕ = 〈ũν, ϕ〉, ṽν,ϕ = 〈ṽν , ϕ〉 and W ϕ(t) = 〈W (t), ϕ〉.
Then

dũν,ϕ = ṽν,ϕdt ,

dṽν,ϕ = −1

ν

[
ṽν,ϕ + 〈∇ũν ,∇ϕ〉 − √

ν〈f(ũν/
√
ν), ϕ〉

]
dt+

1√
ν
dW ϕ(t),
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with ũν,ϕ(0) = 〈ũν(0), ϕ〉 and ṽν,ϕ(0) = 〈ṽν(0), ϕ〉.
We also consider the following fast spde for fixed ν and ũ ∈ H2(D) ∩

H1
0 (D):

dṽν,ũ = −1

ν

[
ṽν,ũ −∆ũ−√

νf
(
ũ/

√
ν
)]

dt+
1√
ν
dW (t) . (25)

For fixed ν ∈ (0, 1] and ũ ∈ H2(D)∩H1
0 (D), spde (25) has a unique station-

ary solution with the normal distribution N (∆ũ+
√
νf(ũ/

√
ν), Q/2) [4].

Now for any ũ ∈ H2(D) ∩H1
0 (D) define

H̃ν(ũ, t) = ν
[
ṽν,ũ(t)− ṽν,ũ(0)

]
+

∫ t

0

[
ṽν,ũ(s)−∆ũ−√

νf(ũ/
√
ν)
]
ds .

Thus we can follow the same discussion in last section for the case of α = 1/2 .
We write

ũν,ϕ(t) =
√
ν〈u0, ϕ〉 −

∫ t

0

〈∇ũν(s),∇ϕ〉ds+√
ν

∫ t

0

〈f
(
ũν(s)/

√
ν
)
, ϕ〉ds

+
√
νM̃ν,ϕ

t , (26)

where
√
νM̃ν,ϕ

t is the remainder term. By a similar discussion to that of the
last section, M̃ν,ϕ

t is tight in space C(0, T ) for any T > 0 . Let P̃ be a limit
point of the family of probability measures L{M̃ν,ϕ

t }0<ν≤1 in space C(0, T ).
Let M̃ϕ

t be a C(0, T )-valued random variable with distribution P̃ . Then we
have the following lemma.

Lemma 2. For any ϕ ∈ C∞
0 (D), the process M̃ϕ

t defined on the probabil-
ity space (C(0, T ),B(C(0, T )), P̃ ) is a square integrable martingale with the
associated quadratic covariation process 〈Qϕ, ϕ〉t .

By the representation theorem for martingales [10], without changing
the distributions of M̃ν,ϕ

t and M̃ϕ
t one can extend the original probability

space (Ω,F ,P) and choose a new cylindrical Wiener process W̃ (t) such that
M̃ϕ

t =
√
Q〈W̃ , ϕ〉, which is unique in the sense of distribution.

Then in the sense of distribution by (26) we write out

〈ũν(t), ϕ〉 =
√
ν〈u0, ϕ〉 −

∫ t

0

〈∇ũν(s),∇ϕ〉ds+√
ν

∫ t

0

〈f
(
ũν(s)/

√
ν
)
, ϕ〉ds

+
√
νM̃ϕ

t + o
(√

ν
)

=
√
ν〈u0, ϕ〉 −

∫ t

0

〈∇ũν(s),∇ϕ〉ds+√
ν

∫ t

0

〈f
(
ũν(s)/

√
ν
)
, ϕ〉ds

+
√
ν
√
Q〈W̃ , ϕ〉+ o

(√
ν
)

(27)
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for any ϕ ∈ C∞
0 (D). Then we have, noticing that ũν =

√
νuν , the following

approximating spde for small ν > 0 :

dūν = [∆ūν + f(ūν)]dt+ dW̄Q, ūν(0) = u0 , (28)

where W̄Q is some L2(D) valued Q-Wiener process. Then we infer the fol-
lowing result.

Theorem 6. Assume B1 < ∞ and α = 0 . Then for small ν > 0 , there
is a new probability space (Ω̄, F̄ , P̄) which is an extension of the original
probability space (Ω,F ,P) such that for any T > 0 , the solution uν to (22)–
(24) is approximated by ūν which solves (28), to an error of o

(
1
)
, in the

space C(0, T ;H1
0(D)) for almost all ω ∈ Ω̄ .

5 The case of 0 < α < 1/2

Now we consider the case of 0 < α < 1/2 ; that is, consider the following
spde

νuν
tt + uν

t = ∆uν + βuν − (uν)3 + ναẆ (t), (29)

uν(0) = u0 , uν
t (0) = u1 , (30)

uν |Γ = 0 . (31)

First, by the same analysis as Theorem 4, we also have the following
result on the a priori estimates on uν .

Theorem 7 (Cerrai & Freidlin [5]). Assume B1 < ∞ . For any T > 0 , there
is a positive constant CT such that

E

[
max
0≤t≤T

‖uν(t)‖21
]
≤ CT .

We also apply the method in Section 3. Make the following scaling trans-
formation ũν = ν1/2−αuν and ṽν = ν1/2−αvν . Then

dũν = ṽνdt ,

dṽν = −1

ν

[
ṽν −∆ũν − ν1/2−αf

(
ũν

ν1/2−α

)]
dt+

1√
ν
dW (t),

ũν(0) = ν1/2−αu0 , ṽν(0) = ν1/2−αu1 .

By a direct energy estimate or the scaling transformation and Theorem 7 we
deduce the following theorem.
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Theorem 8. Assume B1 < ∞ . For any T > 0 , there is a positive con-
stant CT such that

E

[
max
0≤t≤T

‖ũν(t)‖22 + max
0≤t≤T

‖ṽν(t)‖20
]
≤ CT ,

and for any integer m > 0

E

∫ T

0

‖ũν(t)‖2m1 dt ≤ CT .

Moreover, the distribution of ũν is tight in space C(0, T ;H1
0(D)).

Then we can follow the same discussion of Section 4 and have the following
result.

Theorem 9. Assume B1 < ∞ and 0 < α < 1/2 . For small ν > 0 , there
is a new probability space (Ω̄, F̄ , P̄) which is an extension of the original
probability space (Ω,F ,P) such that for any T > 0 , the solution uν to (29)–
(31) is approximated by ūν which solves

dūν = [∆ūν + f(ūν)]dt+ ναdW̄Q, ūν(0) = u0 , (32)

to an error of o
(
να

)
, in the space C(0, T ;H1

0(D)) for almost all ω ∈ Ω̄.

6 A stochastic slow manifold compares the

SPDEs for the case of α = 0

This section shows the long time effectiveness of the averaged model by com-
paring it to the original via their stochastic slow manifolds.

We compare the spde (22) and its model spde (28) in a parameter
regime where both have an accessible stochastic slow manifold. Consider
the spde (22) restricted to one spatial dimension as

νutt + ut = uxx + f(u) + σẆ where f = (1 + β ′)u− u3. (33)

Consider this spde on the non-dimensional domain D = (0, π) with bound-
ary conditions u = 0 on x = 0, π . The parameter σ here explicitly measures
the overall size of the Q-Wiener process W (t) which by (7) is finite. The
small parameter β ′ measures the distance from the stochastic bifurcation
that occurs near β ′ = 0 . In this domain there will be a stochastic slow man-
ifold of the spde (33) that matches the slow dynamics in the approximating
spde (28). This section compares the stochastic slow manifolds.
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The spde (33) has a technically challenging spectrum. However, the con-
struction of its stochastic slow manifold is easiest by embedding the spde (33)
as the γ = 1 case of the following slow-fast system of spdes

ut = uxx + u+ v , (34)

νvt = − v − γν (∂xx + 1) ut + β ′u− u3 + σẆ . (35)

The parameter γ controls the homotopy: from a tractable base when γ = 0
as then all linear modes in the very fast v equation (35) decay at the same
rate 1/ν (and the slow u modes of sin kx have decay rates 1 − k2); to the
original spde (33) when γ = 1 (upon eliminating v).

A stochastic slow manifold appears On the non-dimensional inter-
val (0, π), with Dirichlet boundary conditions on u, the eigenmodes must
be proportional to sin kx for integer wavenumber k. Neglecting noise tem-
porarily, σ = 0 in this sentence, for all ν < 1 and all homotopy parame-
ter 0 ≤ γ ≤ 1 there is one zero eigenvalue and all the rest of the eigenvalues
have negative real part; the slow subspace corresponding to the neutral mode
is spanned by (u, v) ∝ (sin x, 0) (local in (u, v, σ), but global in ν and γ).
By stochastic center manifold theory [1, 3], and supported by stochastic nor-
mal form transformations [2, 15, 16], when the noise spectrum truncates and
the nonlinearity is small enough, the dynamics of the spdes (34)–(35) are
essentially finite dimensional and a stochastic slow manifold exists which is
exponentially quickly attractive to all nearby trajectories.

Computer algebra constructs the stochastic slow manifold We seek
the stochastic slow manifold as a systematic perturbation of the slow sub-
space u = a sin x . The intricate algebra necessary to handle the multitude of
nonlinear noise interactions is best left to a computer [14, 16, e.g.]. However,
the following expressions may be checked by substituting into the govern-
ing spdes (34)–(35) and confirming the order of the residuals is as small as
quoted—albeit tedious, this check is considerably easier than the derivation.
The evolution on the stochastic slow manifold may be written

ȧ = β ′a− 3
4
a3 +

[
1− 2νβ ′ + 9

2
νa2 − 9

1024
a4
]
b1ẇ1

+
[
( 3
32

+ 3
128

β ′)a2 − 21
1024

a4
]
b3ẇ3 +

5
1024

a4b5ẇ5 + o
(
ν2 + β ′2 + a4, σ

)

(36)

The stochastic slow manifold itself involves Ornstein–Uhlenbeck processes
written as convolutions over the past history of the noise processes: define

13



e−µt⋆ẇ =
∫ t

−∞
exp[−µ(t − s)]dws for decay rates µk = k2 − 1 characteristic

of the kth mode. Then the stochastic slow manifold is

u = a sin x+ 1
32
a3 sin 3x− 3

32
a2

[
b3e

−8t⋆w3 sin x+ b1e
−8t⋆w1 sin 3x

]

+
∑

k≥2

bk
[
1 + µkν + γν(µk − µ2

ke
−µkt⋆)

]
e−µkt⋆ẇk sin kx

−
∑

k≥1

bke
−t/ν⋆ẇk sin kx+ β ′

∑

k≥2

bke
−µkt⋆e−µkt⋆ẇk sin kx

+ 3
4

∑

k≥2

{
bk+2e

−µkt⋆e−µk+2t⋆ẇk+2 sin kx− 2bke
−µkt⋆e−µkt⋆ẇk sin kx

+ bke
−µk+2t⋆e−µkt⋆ẇk sin[(k + 2)x]

}
+O

(
ν2 + β ′2 + a4, σ2

)
, (37)

and a correspondingly complicated expression for the field v(x, t). Observe
that the slow sde (36) does not contain any fast time convolutions from
the Ornstein–Uhlenbeck processes: it would be incongruous to have such
fast processes in a supposedly slow model. We keep fast time convolutions
out of the slow sde (36) by introducing carefully crafted terms in the slow
mode sin x in the parametrization of the stochastic slow manifold (37): here
the amplitude of the slow mode sin x is approximately a − 3

32
a2b3e

−8t⋆w3 −
b1e

−t/ν⋆ẇ1 . Other methods which do not adjust the slow mode either average
over such adjustments and so are weak models, or invoke fast processes in
the slow model.

Note that the homotopy parameter γ affects the stochastic slow manifold
shape (37), but only weakly. To this order the homotopy has no effect on
the evolution on the stochastic slow manifold (36).

Compare with SPDE (28) The corresponding stochastic slow manifold
of the spde (28), in this parameter regime, is straightforward to construct,
via the web server [16] for example. For stochastic slow manifold ū ≈ ā sin x
one finds the corresponding slow sde

˙̄a = β ′ā− 3
4
ā3 +

[
1− 9

1024
a4
]
b̄1 ˙̄w1

+
[
( 3
32

+ 3
128

β ′)ā2 − 21
1024

a4
]
b̄3 ˙̄w3 +

5
1024

a4b̄5 ˙̄w5 + o
(
β ′2 + ā4, σ

)
. (38)

This slow sde is symbolically identical with the sde (36), one just removes
the overbars. We conclude that these stochastic slow manifolds confirm the
modeling of the spde (22) by its model spde (28); at least in the regime of
one space dimension with small amplitude a, bifurcation parameter β ′, and
finite truncation to the noise.
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