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ABSTRACT. The problem of computing saddle points is important in certain problems in numer-
ical partial differential equations and computational chemistry, and is often solved numerically by
a minimization problem over a set of mountain passes. We propose an algorithm to find saddle
points of mountain pass type to find the bottlenecks of optimal mountain passes. The key step is
to minimize the distance between level sets by using quadratic models on affine spaces similar to
the strategy in the conjugate gradient algorithm. We discuss parameter choices, convergence re-
sults, and how to augment the algorithm to a path based method. Finally, we perform numerical
experiments to test the convergence of our algorithm.
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1. INTRODUCTION

We begin with the definition of a mountain pass.

Definition 1.1. Let X be a topological space, and consider a,b ∈ X . For a function f : X → R,
define an optimal mountain pass p̄ ∈ Γ(a,b) to be a minimizer of the problem

inf
p∈Γ(a,b)

sup
0≤t≤1

f ◦ p(t). (1)

Here, Γ(a,b) is the set of continuous paths p : [0,1]→ X such that p(0) = a and p(1) = b.

The point x̄ is a critical point if ∇ f (x̄) = 0, and the critical point x̄ is a saddle point if it is not
a local maximizer or minimizer on X . The value f (x) is a critical value if x is a critical point. We
say that x̄ is a saddle point of mountain pass type if there is an open set U containing x̄ such that x̄
lies in the closure of two path connected components of {x ∈U : f (x)< f (x̄)}. In the case where
f is smooth and an optimal mountain pass p̄ : [0,1]→ X exists, the maximum of f on p̄([0,1]) is
a saddle point.

The problem of finding saddle points numerically is important in the problem of finding weak
solutions to partial differential equations numerically. Some of the theoretical references include
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[15, 20, 21, 22, 25]. See also the more accessible reference [11]. The original paper of a moun-
tain pass algorithm to solve partial differential equations is [4], and it contains several semilinear
elliptic problems. Particular applications in numerical partial differential equations include find-
ing periodic solutions of a boundary value problem modeling a suspension bridge [6] (introduced
by [12]), studying a system of Ginzburg-Landau type equations arising in the thin film model
of superconductivity [7], the choreographical 3-body problem [2], and cylinder buckling [10].
Other notable works in computing saddle points for solving numerical partial differential equa-
tions include the use of constrained optimization [9], extending the mountain pass algorithm to
find saddle points of higher Morse index [5, 14] (See also the theoretical foundations in [19]),
extending the mountain pass algorithm to find nonsmooth saddle points [26], and the exploitation
of symmetry [23, 24].

The problem of finding saddle points numerically is by now well entrenched in the chemistry
curriculum. In transition state theory, the problem of finding the least amount of energy to tran-
sition between two stable states is equivalent to finding an optimal mountain pass between these
two stable states. The highest point on the optimal mountain pass can then be used to determine
the reaction kinetics. The foundations of transition state theory was laid by Marcelin, and impor-
tant work by Eyring and Polanyi in 1931 and by Pelzer and Wigner a year later established the
importance of saddle points in transition state theory. We cite the Wikipedia entry on transition
state theory for more on its history and further references. Numerous methods for computing
saddle points were suggested through the years, and we refer to [8] for a survey. A software for
computing saddle points in chemistry is Gaussian1. Tools for computing transition states2 are also
included in VASP3. Though the entire optimal mountain pass is needed for such an application,
the process of computing saddle points often gives hints on an optimal mountain pass.

As mentioned in [13], our initial interest in the problem of computing saddle points of moun-
tain pass type comes from computing the distance of a matrix A ∈Cn×n to the closest matrix with
repeated eigenvalues (also known as the Wilkinson distance problem).

Many of the prevailing methods of finding an optimal mountain pass make use of the formula-
tion (1) directly and discretize a path in Γ(a,b). See [8, 17] for example. This discretized path is
perturbed so that the maximum value of f along the path is reduced. The proof of the celebrated
mountain pass theorem [1] (which establishes the existence of saddle points under some added
conditions) shows that such a strategy allows one to find a saddle point.

We recall the classical theory of numerical optimization to get some ideas on how to design
algorithms for the mountain pass problem. Global optimization is provably difficult without
additional assumptions, so one looks at the local theory. Optimization algorithms are then judged
based on how well they perform once the iterates get close to the minimizer. The global mountain
pass problem is also provably difficult, so once again we look at local methods. For a local
theory of the mountain pass problem, observe that the saddle points of mountain pass type can
be seen as the bottlenecks at which an optimal mountain pass has to pass through. The process
of identifying such bottlenecks can then give clues to how an optimal mountain pass can be
constructed. Algorithms for finding saddle points of mountain pass type can therefore be judge
based on how well they perform once they get close to the saddle point.

For a value l ∈ R, we say that {x ∈ X | f (x) ≤ l} is a level set. The idea of using level sets
to establish lower bounds for critical values and to successively find the closest points in the
level sets to estimate the saddle point was proposed in [16] and revisited in [13] (written without
knowledge of [16]). Suppose {li} is an increasing sequence and the sequences of points {xi}
and {yi} are such that xi and yi lie in different components of the level set {x | f (x) ≤ li}. If
the sequences {xi} and {yi} have a common limit, then this common limit is a critical point.
Using level sets has several computational advantages. Only two points are needed at any time

1http://www.gaussian.com/
2http://theory.cm.utexas.edu/vtsttools/neb/
3http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html

http://www.gaussian.com/
http://theory.cm.utexas.edu/vtsttools/neb/
http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html
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during the computations instead of a discretized path. Much of the computational effort is then
performed near the saddle point, which can be seen as a bottleneck that all optimal mountain
passes must pass. The distance ‖xi− yi‖ gives an indication of the algorithm progress. Lastly, it
was proven in [13] that, provided black boxes for finding closest points to components of the level
set and for the minimization of the function f on an affine space exist, we have local superlinear
convergence to the saddle point. Figure 1 contrasts the two strategies for finding saddle points of
mountain pass type.

x2 x3x1 y3 y2 y1
z

FIGURE 1. The diagram on the left shows the classical method of perturbing
paths for the mountain pass problem, while the diagram on the right shows
convergence to the critical point by looking at level sets, as was done in [13]
and this paper.

Another technique we borrow from optimization theory is to make use of the fact that the func-
tion f has a quadratic approximation at where it is smooth, and in particular at the critical points.
The quadratic approximation is the basis on which Newton methods, quasi-Newton methods and
the conjugate gradient algorithms are derived. All known algorithms achieving fast convergence
(i.e., quadratic, superlinear, or linear convergence) are one of the above-mentioned algorithms,
trying to find x such that ∇ f (x) = 0 by solving the associated linear system obtained from the
quadratic approximation. Any algorithm that can converge fast to the saddle point should be
similar in some way to the above-mentioned algorithms.

The analysis in [13] uses the following approximation of f at the saddle point x̄:

f (x) = f (x̄)+(x− x̄)T H(x̄)(x− x̄)+o(‖x− x̄‖2). (2)

To simplify our analysis, we assume that X = Rn throughout so that f : Rn → R. A common
assumption in finding saddle points of mountain pass type is that of nondegeneracy. The saddle
point x̄ is said to be nondegenerate if the Hessian H(x̄) is nonsingular. The more restrictive C 2+

condition, equivalent to the Hessian mapping H : Rn→ Rn×n being locally Lipschitz at x̄, can be
realistically assumed for many practical problems.

The smoothness of f at a critical point x̄ gives the approximation (2), and a similar approxi-
mation can be written for the gradient ∇ f . For the analysis in this paper, we concentrate on the
theory of finding saddle points in the case where the Hessian H(·) is constant. This is equivalent
to assuming that f : Rn→R is defined by f (x) = 1

2 xT Hx+gT x+c and ignoring the higher order
terms, which is analogous to the textbook analysis of the steepest descent and conjugate gradi-
ent algorithms for optimization in quadratic problems. These assumptions simplify much of the
analysis and brings out the main ideas of how an iterative method can find the saddle point with
preferably way fewer than n iterations. Since the textbook analysis of conjugate gradient algo-
rithms discusses only the exact quadratic case and not the smooth case, we shall only analyze the
exact quadratic in this paper. There are some parallels between the saddle point problem surveyed
in [3] and the material in this paper.

The following fact about saddle points of mountain pass type will also be used throughout. The
Morse index of a nondegerate critical point is the number of negative eigenvalues of its Hessian.
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FIGURE 2. Consider f : R3→ R defined by f (x) = −x2
1 + x2

2 + x2
3, which has

a critical point at 0 and critical level 0. Let l < 0. In our algorithm, we first
find the closest points of the two components of {x : f (x)≤ l} on a line. Then
through information obtained from the gradients and function values, we ap-
proximate the behavior of f on a larger affine space and find pairs of points
closer to each other in the respective components. This process continues until
we found points sufficiently close to each other.

Fact 1.2. (Morse index one) Suppose f : Rn → R is C 2 and x̄ is a saddle point of mountain
pass type. If the Hessian H(x̄) ∈ Rn×n is invertible, then H(x̄) has Morse index one. That is, the
Hessian has n−1 positive eigenvalues and one negative eigenvalue.

The main strategy in this paper to find saddle points of mountain pass type is as follows.
Assume that f has a quadratic approximation near the saddle point x̄. Let li be a lower bound
on the critical value f (x̄). Through evaluations of f near x̄, we can find the behavior of f on
successively larger affine spaces. Such a strategy is analogous to the conjugate gradient algorithm.
From these better estimates, we can approximately find the closest pair of points in the respective
components of the level set {x : f (x) ≤ li}. This procedure addresses a difficulty in [13], and is
illustrated in Figure 2 and elaborated in Sections 3 and 4 in particular. We can increase the level
li till li is sufficiently close to the critical level f (x̄), and thus find the critical point x̄.

We outline the sections in this paper. After building the needed background on quadratic
models in Section 2, we propose an algorithm in Section 3 to find saddle points of mountain pass
type using quadratic approximations on affine spaces of the level set. Sections 4 and 5 explain
the choices of d2 and li in the algorithms in Section 3. In Section 6, we explain briefly how our
algorithm can be augmented into a path-based algorithm. We prove some convergence results of
our methods in Section 7, and show how our algorithms perform for quadratic problems in our
numerical experiments in Section 8. These numerical experiments give an indication of how the
algorithm can perform once it gets close to the saddle point.

1.1. Notation. We denote the set of symmetric matrices in Rn×n by Sn. The lineality space of an
affine space A passing through a point z is equal to the subspace A− z.
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2. QUADRATIC MODELS

For f :Rn→R, the second order Taylor approximation motivates the quadratic model 1
2 xT Hx+

gT x+ c to describe the behavior of f near a critical point x̄. This section discusses issues related
to quadratic models.

We begin with the following elementary result. We say that f : Rn → R is a quadratic with
unknown parameters if f (x) = 1

2 xT Hx+ gT x+ c for unknown parameters H ∈ Sn, g ∈ Rn and
c ∈ R. We say that d +1 points are in general position if the affine space containing these points
has dimension d.

Proposition 2.1. (Determining quadratic models) Suppose f : Rn→R is an exact quadratic with
unknown parameters. Suppose L∈Rn×d has linearly independent columns. To determine H̃ ∈ Sd ,
g̃ ∈ Rd and c̃ ∈ R such that

f̃ (v) :=
1
2

vT H̃v+ g̃T v+ c̃ = f (Lv+ x) for all v ∈ Rd ,

we need the value f̃ (vi) and the gradient ∇ f̃ (vi) for d points v1, . . . ,vd in Rd and f̃ (vd+1), where
{v1, . . . ,vd ,vd+1} are in general position.

Proof. The problem is equivalent to determining Ĥ, ĝ and ĉ such that

f̃ (v) =
1
2
(v− v1)

T Ĥ(v− v1)+ ĝT (v− v1)+ ĉ.

The gradient of f̃ is ∇ f (v) = Ĥ(v− v1)+ ĝ. Clearly ĉ = f̃ (v1) = f (Lv1 + x) and ĝ = ∇ f̃ (v1) =
LT ∇ f (Lv+ x).

With an orthogonal transformation, we can assume that the span of {v2− v1,v3− v1, . . . ,vd −
v1} is equal to the span of the first d−1 elementary vectors. Through

Ĥ(vi− v1) = ∇ f̃ (vi)−∇ f̃ (v1) = LT [∇ f (Lvi + x)−∇ f (Lv1 + x)] for i = 2, . . .d,

we can determine Ĥi, j for 1 ≤ i ≤ d− 1 and 1 ≤ j ≤ d. Through the symmetry of H, we can
determine all entries of Ĥ except for Ĥd,d . Since the points {v1, . . . ,vd+1} are in general position,
vd+1− v1 must have a nonzero d-th component. With

f̃ (vd+1) =
1
2
(vd+1− v1)Ĥ(vd+1− v1)+ ĝT (vd+1− v1)+ ĉ,

we can determine the value of Ĥd,d . �

The next result describes the behavior of the level sets of a quadratic near a saddle point.

Proposition 2.2. (Optimality in quadratic models) Suppose f : Rn → R is defined by f (x) =
1
2 xT Hx+gT x+c, where H has eigenvalues {λi}n

i=1 arranged in decreasing order, with λi > 0 for
1≤ i≤ n−1 and λn < 0.

(1) The critical point of f is −H−1g, and the critical level of f is c− 1
2 gT H−1g.

(2) For a level l < c− 1
2 gT H−1g, the level set {x′ ∈ Rn : f (x′) ≤ l} consists of two convex

components. The points x̃ and ỹ defined by −H−1g±
√

2l−[2c−gT H−1g]
λn

qn, where qn is
the eigenvector of unit length corresponding to the negative eigenvalue of H, are the
minimizers of

min
x,y
‖x− y‖

s.t. x and y are in different components of {x′ ∈ Rn : f (x′)≤ l}.

Proof. Part (1) follows by noticing that ∇ f (x) = Hx+g and writing f (x) as

f (x) =
1
2
(x+H−1g)T H(x+H−1g)+ c− 1

2
gT H−1g.
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For part (2), we first show that {x ∈ Rn : f (x) ≤ l} is the union of two convex components.
Write H = QDQT so that D is diagonal and Q is orthogonal, and write h(u) = 1

2 uT Du. We have
h(u) = f (QT u−H−1g)− c+ 1

2 gT H−1g. To simplify notation, let

l̄ := l− [c− 1
2

gT H−1g].

Consider the set

S+ := {u ∈ Rn : h(u)≤ l̄,un > 0}.

Now,

h(u) ≤ l̄

⇐⇒ 1
2

n

∑
i=1

λiu2
i ≤ l̄

⇐⇒
n−1

∑
i=1

λiu2
i ≤ 2l̄−λnu2

n.

For given values u1, . . . ,un−1, provided that un ≥ 0, we have

un ≥

√
−2l̄ +∑

n−1
i=1 λiu2

i
−λn

.

Consider the function g : Rn−1→R defined by g(v) =

√
−2l̄+∑

n−1
i=1 λiv2

i
−λn

. The set S+ is the epigraph

of g, so S+ is a convex set if and only if g is a convex function. We proceed to show that g is
convex, that is 1

2 [g(v)+g(w)]≥ g( 1
2 (v+w)) for all v,w ∈ Rn−1. We have

1
2
[g(v)+g(w)] ≥ g

(
1
2
(v+w)

)

⇐⇒ 1
2

√−2l̄ +∑
n−1
i=1 λiv2

i
−λn

+

√
−2l̄ +∑

n−1
i=1 λiw2

i
−λn

 ≥

√
−2l̄ +∑

n−1
i=1 λi

[ vi+wi
2

]2
−λn

⇐⇒ −2l̄ +
n−1

∑
i=1

λiv2
i −2l̄ +

n−1

∑
i=1

λiw2
i +

+2

√
−2l̄ +

n−1

∑
i=1

λiv2
i

√
−2l̄ +

n−1

∑
i=1

λiw2
i ≥ −8l̄ +4

n−1

∑
i=1

λi

[
vi +wi

2

]2

⇐⇒

√
−2l̄ +

n−1

∑
i=1

λiv2
i

√
−2l̄ +

n−1

∑
i=1

λiw2
i ≥ −2l̄ +

n−1

∑
i=1

λiviwi. (3)

Let ṽ, w̃ ∈ Rn be such that

ṽi =
√

λivi for 1≤ i≤ n−1,

ṽn =
√
−2l̄,

w̃i =
√

λiwi for 1≤ i≤ n−1,

and w̃n =
√
−2l̄.

The Cauchy-Schwarz inequality gives ‖ṽ‖2‖w̃‖2 ≥ 〈ṽ, w̃〉, which is exactly (3), establishing the
convexity of g as needed. Similarly, S− defined by {u ∈Rn : h(u)≤ l̄,un < 0} is also convex, and
so {u ∈Rn : h(u)≤ l̄}, being the union of S+ and S−, is the union of two convex sets. The closest

points between the sets S+ and S− are ±
√

2l̄
λn

en, where en is the n-th elementary vector.
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The sets {u ∈Rn : h(u)≤ l̄} and {u ∈Rn : f (QT u−H−1g)−c+ 1
2 gT H−1g≤ l̄} are identical,

and is related to {x ∈Rn : f (x)≤ l} by an orthogonal transformation and a translation. This gives
the formula of x̃ and ỹ as needed. �

3. ALGORITHM FOR FINDING SADDLE POINTS

In this section, we present an optimality condition for the closest points of level sets, followed
by our main algorithm to find saddle points of mountain pass type. Here is our first observation
of level sets.

Proposition 3.1. (Closest points to level sets of functions) Suppose that two sets A,B in Rn are
defined by A = {x : f (x)≤ l} and B = {x : g(x)≤ l} for l ∈ R and C 1 functions f : Rn→ R and
g : Rn→R. Assume that A and B are convex, and that A∩B = /0. The points ā ∈ A and b̄ ∈ B are
minimizers of

min‖a−b‖2

s.t. a ∈ A and b ∈ B, (4)

if and only if

f (ā) = l, g(b̄) = l, and
〈

∇ f (ā)
‖∇ f (ā)‖

,
b̄− ā
‖b̄− ā‖

〉
=

〈
∇g(b̄)
‖∇g(b̄)‖

,
ā− b̄
‖ā− b̄‖

〉
= 1. (5)

Proof. For the forward direction, fix ā and consider

min‖ā−b‖2

s.t. b ∈ B.

Since B is convex, it is well known that the minimizer to the problem is the projection of ā to the
set B and is unique. Furthermore,

〈
∇g(b̄)
‖∇g(b̄)‖ ,

ā−b̄
‖ā−b̄‖

〉
= 1. The equation for the other inner product

comes by fixing b̄ and varying a.
For the backward direction, suppose that (5) holds. So ‖ā− b̄‖2 is an upper bound on (4). The

halfspace A′ := {x | ∇ f (ā)T (x− ā)≤ 0} contains A, and similarly for B′ = {x | ∇g(b̄)T (x− b̄)≤
0}. The distance between A′ and B′ can be easily checked to be ‖ā− b̄‖2. This means that ‖ā− b̄‖2
equals the value of (5), which gives us what we need. �

We now propose an algorithm for finding saddle points of mountain pass type, concentrating
on the case where f is an exact quadratic to simplify our analysis.

Algorithm 3.2. (Estimating critical level) Suppose f : Rn → R is an exact quadratic with un-
known parameters that has a Hessian with n−1 positive eigenvalues and one negative eigenvalue.
This algorithm approximates x̄ such that ∇ f (x̄) = 0.

(1) Fix i = 1 and ε > 0.
(2) Let li := max{ f (x0), f (y0)}.
(3) Run Algorithm 3.3 to find 2 points xi and yi satisfying (7) for x̃ = xi and ỹ = yi.
(4) If one of the convergence criteria holds:

(a) ‖xi− yi‖ is sufficiently small, or
(b) 1

2 [∇ f (xi)+∇ f (yi)], which equals ∇ f ( 1
2 (xi + yi)), is sufficiently small in norm,

then return 1
2 [xi+yi]. Otherwise, let li+1 > li be a lower approximate of the critical value,

increase the value of i and return to step 3.

Algorithm 3.2 uses the following algorithm to find iterates in step 2.

Algorithm 3.3. (Estimating closest points in level sets) Consider f : Rn→ R in Algorithm 3.2.
Our terminating condition is motivated by the optimality condition (5). For inputs li < f (x̄) and
x,y∈Rn such that f (x) = f (y) = li and a parameter 0 < ε� 1, this algorithm returns two points
x̃, ỹ ∈ Rn such that f (x̃) = f (ỹ) = li and (7) holds.
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(1) Fix j = 1, x̃1 = x and ỹ1 = y.
(2) Let d1 =

ỹ j−x̃ j
‖ỹ j−x̃ j‖ . Choose a second direction d2 from x̃ j, ỹ j, ∇ f (x̃ j) and ∇ f (ỹ j).

(3) Let A j be the affine space passing through x̃ j with lineality space the span of d1 and d2.
Use Proposition 2.1 and further evaluations of f on A j to determine the quadratic model
of f on A j (which will be exact since f is assumed to be quadratic). Consider

min ‖x− y‖
s.t. x ∈ S(x̃ j),y ∈ S(ỹ j), (6)

where S(z) is the component of the level set {u ∈ A j : f (u) ≤ li} that contains the point
z. Use Proposition 2.2 to find the minimizers to (6), and let them be the new iterates x̃ j+1
and ỹ j+1. Clearly, we have f (x̃ j+1) = f (ỹ j+1) = li.

(4) Increase j, and go back to step 2 unless one of the convergence criteria holds:
(a) For x̃ = x̃ j and ỹ = ỹ j, we have〈

∇ f (x̃)
‖∇ f (x̃)‖

,
ỹ− x̃
‖ỹ− x̃‖

〉
≥ (1− ε) and

〈
∇ f (ỹ)
‖∇ f (ỹ)‖

,
x̃− ỹ
‖x̃− ỹ‖

〉
≥ (1− ε). (7)

(b) 1
2 [∇ f (x̃ j)+∇ f (ỹ j)] has sufficiently small norm.

Note that in the algorithms above, there are still choices to be made on the value li+1 in step
4 of Algorithm 3.2 and the direction d2 in Step 2 of Algorithm 3.3, which we will discuss later.
In Subsection 4.2, we shall see that the conjugate gradient algorithm is similar to Algorithms 3.2
and 3.3 combined.

Remark 3.4. (Using largest affine space possible) In Algorithm 3.3, the affine space A j is only of
dimension 2. A straightforward extension of Algorithm 3.3 is to amend step (3) in as follows:
(3(H)) In step (3), let A j be the affine space passing through all previously evaluated points and

x̃ j +d2 instead, and proceed as in the rest of step (3).
This approach also corresponds to finding the quadratic approximation on the largest possible
affine space with the data at hand. We refer to this the algorithm with this modification as Algo-
rithm 3.2(H) and Algorithm 3.3(H).

For readers who wish to apply the methods in this paper for finding saddle points of Morse
index higher than 1, the algorithms here can be extended in the spirit of [18].

4. CHOICE OF SECOND DIRECTION d2 IN ALGORITHM 3.3

As remarked after Algorithm 3.3, the choice of d2 has to be made in step (3) there. In this
section, we present and explain the different choices of d2 summarized in Table 2.

4.1. Choosing two additional directions d2 and d3 instead of one additional direction d2.
The strategy in (3D) is to obtain the directions d2 and d3 such that both ∇ f (x̃ j) and ∇ f (ỹ j) lie in
the span of {d1,d2,d3}. We shall see in Remark 4.4 that this strategy is the best among the five
strategies presented.

4.2. Straightforward generalization of the conjugate gradient algorithm. We recall that the
conjugate gradient algorithm, which is now considered classical in optimization, can be stated as
follows.

Algorithm 4.1. (Conjugate gradient algorithm) Suppose f :Rn→R is defined by f (x)= 1
2 xT Hx+

gT x+c, where H ∈Rn×n is positive definite. Then the conjugate gradient algorithm with starting
iterate z0 can be expressed as follows:

(1) Start with iterate z0 ∈ Rn, and let i = 0.
(2) Evaluate ∇ f (zi), and let Ai be the affine space through z0 with lineality space spanned

by {∇ f (z0), . . . ,∇ f (zi)}. Let zi+1 be the point on Ai such that ∇ f (zi+1) is orthogonal to
all elements in {∇ f (z0), . . . ,∇ f (zi)}.
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Choice of d2 in Algorithm 3.3
(3D) (Three directions) Instead of choosing one direction d2, choose two

directions d2 and d3 such that both ∇ f (x̃ j) and ∇ f (ỹ j) lie in the span of
{d1,d2,d3}. The affine space in in Algorithm 3.3 is 3-dimensional instead of
2-dimensional. See Subsection 4.1.

(MG) (Midpoint gradient) Let d2 =
1
2 [∇ f (x̃ j)+∇ f (ỹ j)], which is an approximate

of ∇ f ( 1
2 [x̃ j + ỹ j]). See Subsection 4.2.

(MV) (Maximum violation of (7)) Choose d2 by

d2 =

{
∇ f (x̃ j) if

〈
∇ f (x̃ j)

‖∇ f (x̃ j)‖ ,
ỹ j−x̃ j
‖ỹ j−x̃ j‖

〉
≤
〈

∇ f (ỹ j)

‖∇ f (ỹ j)‖ ,
x̃ j−ỹ j
‖x̃ j−ỹ j‖

〉
∇ f (ỹ j) otherwise.

See Subsections 4.3 and 4.4.
(PM) (Power maximization) Choose d2 so that ‖vx‖2 +‖vy‖2 is maximal, where vx

is the projection of ∇ f (x̃ j) onto the space spanned by d1 and d2, and
similarly for vy. See Subsection 4.3.

(MD) (Midpoint distance) Find the minimizer z̄ of

min
z

{∥∥∥∥ x̃ j + ỹ j

2
− z
∥∥∥∥ :
〈
z− x̃ j,∇ f (x̃ j)

〉
= 0,

〈
z− ỹ j,∇ f (ỹ j)

〉
= 0
}
,

and let d2 = z̄− x̃ j+ỹ j
2 . If ∇ f (x̃i)

‖∇ f (x̃i)‖ +
∇ f (ỹ j)

‖∇ f (ỹ j)‖ gets too close to 0, we use (MV)
instead to avoid numerical difficulties. See Subsection 4.4.

(H) (Using largest affine space possible) In Remark 3.4, we suggested using the
largest affine space possible that can be created from previous evaluations of
f (·) and the gradients ∇ f (·). The Hessian H̃ of the model f̃ in Assumption
4.2 grows in size as the algorithm progresses.

TABLE 2. List of strategies to find second direction d2 in step 2 of Algorithm 3.3.

(3) Increase i by 1 and go to step 2 till ‖∇ f (zi)‖ is sufficiently small.

In step 2, the point zi+1 also minimizes f on the affine space Ai. The gradient ∇ f (zi+1) is also
orthogonal to the lineality space of Ai.

We now explain the strategy (MG). Let the midpoint of the iterates x̃ j and ỹ j in Algorithm 3.3
be z̃ j. We see that ∇ f (z̃ j) is orthogonal the lineality space of the affine space A j. The midpoint
z̃ j plays the role of zi in the conjugate gradient algorithm above. If the direction d2 in Algorithm
3.3(H) was chosen to be ∇ f (z̃ j), then Algorithm 3.3(H)(MG) is identical to the conjugate gradient
algorithm stated in Algorithm 4.1 but with the condition that H be positive definite dropped. The
midpoint z̃ j can also be calculated without computing x̃ j and ỹ j.

This strategy is also appealing for a few reasons. In Algorithm 4.1, finding the point zi+1 in
Step 2 using Proposition 2.2 requires the solution of a linear system with a symmetric (though
not necessarily positive definite) matrix but not an eigen-decomposition like in Algorithm 3.3.
Algorithm 4.1 also does not require the knowledge of the Morse index of the critical point.

4.3. Preserving the optimality condition (7). We now state an assumption that will be used
later.

Assumption 4.2. Suppose f (x) = 1
2 xT Hx+gT x+c. At iteration j of Algorithm 3.3, let L j ∈Rn×2

be such that the columns of L j are orthogonal and span the directions d1 and d2 in Algorithm 3.3,
with the first column of L j being d1. Let H̃ j ∈ S2, g̃ j ∈ R2 and c̃ j ∈ R be defined by

H̃ j = LT
j HL j, g̃ j = LT

j [Hx̃ j +g] and c̃ j =
1
2

x̃ jHx̃ j +gT x̃ j + c. (8)
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so that f̃ j : R2→ R defined by f̃ j(v) = f (L jv+ x̃ j) equals 1
2 vT H̃ jv+ g̃T

j v+ c̃ j.

Other facts immediate from Assumption 4.2 are that the mapping v 7→ L jv+ x̃ j is a bijection
between R2 and the affine space A j passing through x̃ j with lineality space spanned by d1 and d2.

We now explain the strategies (MV) and (PM), and first note the following easy result.

Fact 4.3. (Preservation of constraint violation) Suppose Assumption 4.2 holds. Let ek be the kth
elementary vector in Rn. We have

∇ f̃ j(0) = g̃ = LT
j Hx̃ j = LT

j ∇ f (x̃ j),

and

∇ f̃ j(‖ỹ j− x̃ j‖e1) = H̃ j‖ỹ j− x̃ j‖e1 + g̃ j

= LT
j (HL j‖ỹ j− x̃ j‖e1 +Hx̃ j)

= LT
j Hỹ j.

If d2 is chosen to be ∇ f (x̃ j), then ‖∇ f̃ j(0)‖= ‖LT
j ∇ f (x̃ j)‖= ‖∇ f (x̃ j)‖, which gives〈

∇ f̃ j(0)
‖∇ f̃ j(0)‖

,e1

〉
=

〈
LT

j ∇ f (x̃ j)

‖∇ f (x̃ j)‖
,e1

〉

=

〈
∇ f (x̃ j)

‖∇ f (x̃ j)‖
,L je1

〉
=

〈
∇ f (x̃ j)

‖∇ f (x̃ j)‖
,

ỹ j− x̃ j

‖ỹ j− x̃ j‖

〉
. (9)

Similarly, if d2 is chosen to be ∇ f (ỹ j), then
∥∥∇ f̃ j(‖ỹ j− x̃ j‖e1)

∥∥= ‖∇ f (ỹ j)‖, which gives〈
∇ f̃ j(‖ỹ j− x̃ j‖e1)∥∥∇ f̃ j(‖ỹ j− x̃ j‖e1)

∥∥ ,−e1

〉
=

〈
∇ f (ỹ j)

‖∇ f (ỹ j)‖
,

x̃ j− ỹ j

‖x̃ j− ỹ j‖

〉
. (10)

In view of the optimality conditions in (5), one choice of d2 is marked as (MV) in Table 2.
In other words, the maximum violation of the optimality conditions is preserved in the model
f̃ j : R2→ R. It is clear that (3D) preserves the violation in both optimality conditions.

Notice also in Fact 4.3 that if d2 were chosen to be ∇ f (x̃ j), then the projection of ∇ f (x̃ j) onto
the subspace spanned by d1 and d2 is exactly ∇ f (x̃ j) itself. A similar thing happens if d2 were
chosen to be ∇ f (ỹ j). This motivates another strategy (PM) in Table 2.

4.4. Using affine spaces to approximate the level set. We now explain strategy (MD), and give
a second explanation for (MV). As illustrated in Figure 3, the region {u ∈ Rn : f (u) = li} near x̃ j
and ỹ j can be approximated by

{u ∈ Rn : ∇ f (x̃ j)
T (u− x̃ j) = 0}

and {u ∈ Rn : ∇ f (ỹ j)
T (u− ỹ j) = 0} respectively. (11)

Provided that ∇ f (x̃ j) and ∇ f (ỹ j) are not multiples of each other, the two affine spaces intersect
in an affine space of dimension n− 2. Let the projection of 1

2 (x̃ j + ỹ j) onto this affine space be
z̄. We shall choose d2 so that the affine space through x̃ j with lineality space spanned by d1 and
d2 passes through z̄. Such a strategy is sensible because if perturbing x̃ j and ỹ j with z̄− x̃ j and
z̄− ỹ j as tangent directions respectively can give good decrease, though not necessarily optimal
decrease. To calculate d2, we observe that the normals of the intersection of the affine spaces in
(11) are linear combinations of ∇ f (x̃ j) and ∇ f (ỹ j). We can then write d2 = α∇ f (x̃ j)+β∇ f (ỹ j),
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xj yj

d2

m

z

FIGURE 3. We illustrate the method (MD) of finding the direction d2. The
boundaries of the level set {x : f (x) ≤ l} is approximated by affine spaces in
(11), and the direction d2 equals the vector z̄−m, where m =

x̃ j+ỹ j
2 and z̄ is the

closest point from m to the intersection of the affine spaces.

where α and β are determined by

∇ f (x̃ j)
T
[

1
2
(x̃ j + ỹ j)+d2− x̃ j

]
= 0

and ∇ f (ỹ j)
T
[

1
2
(x̃ j + ỹ j)+d2− ỹ j

]
= 0

⇒
(

∇ f (x̃ j)
T ∇ f (x̃ j) ∇ f (x̃ j)

T ∇ f (ỹ j)
∇ f (x̃ j)

T ∇ f (ỹ j) ∇ f (ỹ j)
T ∇ f (ỹ j)

)(
α

β

)
=

1
2

(
∇ f (x̃ j)

T [ỹ j− x̃ j]
∇ f (ỹ j)

T [x̃ j− ỹ j]

)
.

If ∇ f (x̃i)
‖∇ f (x̃i)‖ +

∇ f (ỹ j)

‖∇ f (ỹ j)‖ gets too close to 0, the value of ‖ 1
2 (x̃ j + ỹ j)− z̄‖ is likely to be much

larger than ‖x̃ j − ỹ j‖, and is likely to cause numerical difficulties. For this reason, the method
(MD) needs to switch to some other method if ‖ 1

2 (x̃ j + ỹ j)− z̄‖ is greater than a fixed multiple of
‖x̃ j− ỹ j‖.

More sophisticated estimates of the closest points can be devised, but we shall see in Section
8 that (MD) performs well compared to the other algorithms.

Lastly, we consider the case of fixing ỹ j and perturbing x̃ j. The region {u ∈ Rn : f (u) = li}
near x̃ j can be approximated by {u ∈ Rn : ∇ f (x̃ j)

T (u− x̃ j) = 0}. With elementary geometry,
we can show that the best tangent direction to perturb x̃ j in is d1− 1

‖∇ f (x̃ j)‖2
[∇ f (x̃ j)

T d1]∇ f (x̃ j).

Choosing d2 to be ∇ f (x̃ j) allows one to perturb x̃ j in that direction. This strategy gives the same
choice of d2 as (MV) earlier. The case of fixing x̃ j and perturbing ỹ j is similar.

Remark 4.4. (Directions in (3D)) The directions d2 in the methods (MV), (PM), (MD) and (MG)
in Table 2 are linear combinations of ∇ f (x̃ j) and ∇ f (ỹ j). Hence the method (3D) will always be
better than the other methods.

5. MORE ON li IN ALGORITHM 3.2, AND METHODS (MG) AND (3D)

In the case where f :Rn→R is not necessarily a quadratic, the level li in Algorithm 3.2 clearly
needs to converge to a critical value so that the iterates converge to the corresponding critical
point. Once near the critical point, the quadratic approximation gets better, and Algorithms 3.2
and 3.3 become more effective. In this section, we clarify that when f is a quadratic function, the
role of li is, on the contrary, not as important.
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We look at the method (MG) in Table 2. As remarked in Subsection 4.2, the strategy (MG)
does not use the level set structure for its computations. The next result explains that the choice
of li is irrelevant for both (MG) and (3D).

Proposition 5.1. (Irrelevance of li in (MG) and (3D)) If f : Rn → R is a quadratic f (x) =
1
2 xT Hx+ gT x+ c, then the two dimensional space spanned by d1 and d2 in Algorithm 3.3(MG)
does not depend on li. Similarly, the three dimensional subspace spanned by d1, d2 and d3 does
not depend on li in Algorithm 3.3(3D). Similar conclusions hold for Algorithm 3.3(H)(MG) and
Algorithm 3.3(H)(3D).

Proof. Let x̃ j and ỹ j be iterates in Algorithm 3.3. The direction d1 is common to both strategies
(MG) and (3D). By looking at the quadratic models on the affine space and using Proposition 2.2,
we see that the direction of ỹ j− x̃ j is independent of li.

We first look at the case of strategy (MG). The corresponding d2 equals ∇ f ( 1
2 (x̃ j + ỹ j)), which

in turn does not depend on l j. For strategy (3D), the directions d2 and d3 can be chosen to
be d2 = ∇ f ( 1

2 (x̃ j + ỹ j)), and d3 = ∇ f (x̃ j)− d2. Given that f is quadratic, the gradient map
∇ f : Rn→ Rn can be written as ∇ f (x) = Hx+g, and is affine. We have

∇ f (x̃ j) = Hx̃ j +g

= H
(1

2
[x̃ j− ỹ j]

)
+H

(1
2
[x̃ j + ỹ j]

)
+g

= H
(1

2
[x̃ j− ỹ j]

)
+d2.

Since the direction of x̃ j− ỹ j does not depend on li, the direction of d3 = H( 1
2 [x̃ j− ỹ j]) does not

depend on l j too. The analysis for (H)(MG) and (H)(3D) is similar. �

The above result shows that in the case when f is quadratic, we can rewrite Algorithm 3.2
(MG) and (3D) as the following equivalent algorithm without making use of the variable li.

Algorithm 5.2. (Equivalent algorithms for (MG) and (3D)) Given a quadratic function f : Rn→
R where f (x) = 1

2 xT Hx+gT x+ c, and the critical point x̄ =−H−1g has Morse index one,

(1) Let i = 0. Start with approximate critical point z0, and let A0 be some affine space
containing z0.

(2) Use Proposition 2.1 and further evaluations of f on Ai to determine the quadratic model
of f on Ai (which will be exact since f is assumed to be quadratic). From the quadratic
model, find the point zi+1 in Ai where ∇ f (zi+1) is orthogonal to the lineality space of Ai.

(3) Let the lineality space of Ai be spanned by the columns of the matrix Li, where Li has or-
thogonal columns. To find the next affine space Ai+1, we need to figure out the directions
d1, d2 and d3 as follows:
(a) d1 is the eigenvector corresponding to the negative eigenvector of H̃ = LT

i HLi.
(b) d2 equals ∇ f (zi+1).
(c) d3 equals ∇ f (zi+1 +λd1), where λ is any nonzero scalar. The vector d3 needs to be

calculated for (3D), but not for (MG).
The affine space Ai+1 for the different strategies all pass through zi+1, but have different
lineality spaces:

(i) For (MG), the lineality space of Ai+1 is spanned by {d1,d2}.
(ii) For (3D), the lineality space of Ai+1 is spanned by {d1,d2,d3}.

(iii) For (H)(MG), the lineality space of Ai+1 is spanned by the columns of Li and d2.
(Note that d1 lies in the column space of Li.)

(iv) For (H)(3D), the lineality space of Ai+1 is spanned by the columns of Li, d2 and d3.
From this information we can deduce Li+1. Increase the counter i by one and return to
step 2 until the convergence criteria of ∇ f (zi) being small in norm is met.
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As can be seen from Algorithm 5.2, methods (H)(MG) and (H)(3D) are equivalent to a Krylov
subspace method. In (H)(3D), the Krylov subspace grows by two dimensions instead of one in
each iteration.

It is clear that while the other strategies in Table 2 do not enjoy the property in Proposition 5.1,
they can be more effective when f is not a quadratic function. We have the following heuristic on
the choice of li+1.

Remark 5.3. (Choice of li+1) To choose li+1 from li in Algorithm 3.2, one possible strategy is to
make use of Proposition 2.2. Given f (x) = 1

2 xT Hx+gT x+c, the critical level is c− 1
2 gT H−1g, the

distance between the components is 2
√

1
λn
[2l− (2c−gT H−1g)], where the negative eigenvalue

λn of H is approximated in step 3 of Algorithm 3.3. The critical level can be estimated from λn
and the distance between the components.

For x̃ j and ỹ j to be well defined, li needs to be a lower bound of the critical level. If li is found
to be larger than the critical value, then li can be reduced so that it is below the critical value.
Contrast the management of li to that in the main algorithm in [13], where a sequence of lower
bounds {li} of the critical value is obtained through an optimization procedure. The {li} there
converges superlinearly to the critical value.

6. AUGMENTING IDEAS TO A PATH BASED ALGORITHM

A commonly used method of finding an optimal mountain pass is still to discretize and perturb
a path between two endpoints so that the maximum along the path decreases. We now remark on
how the idea of finding a quadratic expression near a critical point can be augmented to a path
based algorithm.

A basic path-based algorithm can be described as follows.

Algorithm 6.1. (Basic path based algorithm) Given f : X → R and two points a,b ∈ X, find an
optimal mountain pass p : [0,1]→ X connecting a and b.

(1) Consider a discretized path p1, p2, . . . , pk, where p1 = a and pk = b.
(2) Find the maximizer of f on the line segments [p1, p2], [p2, p3], . . . , [pk−1, pk], say p̄.
(3) If ‖∇ f (p̄)‖ sufficiently close to 0, then algorithm ends. Otherwise, perturb the path

p1, p2, . . . , pk based on the gradient ∇ f (p̄) and other information. The path may also be
refined (i.e., more points can be used to describe the path) as necessary. Return to step
1.

The ideas on finding a quadratic approximation near the saddle point x̄ can be incorporated
into the basic path based algorithm. The point p̄ is the point most likely to be closest to the saddle
point, and the evaluations of f near p̄ can be used to deduce the quadratic approximation of f
near x̄. The quadratic approximation of f on an affine space through p̄ can be constructed through
Propositions 2.1 and 2.2. The critical point is estimated to be p̄−H(p̄)−1∇ f (p̄) like in a Newton
method, but because the full information of H(p̄)−1 may not be easily available, ideas from the
algorithm we proposed can give a good indication of how to perturb the path p1, p2, . . . , pk to
reduce the maximum value of f along the path.

7. CONVERGENCE ANALYSIS

In this section, we prove in Theorem 7.1 a formula describing the rate of convergence of
algorithm (MG), and prove in Theorem 7.2 that Algorithm 3.3 will eventually find two points so
that (7) is satisfied. We begin with the analysis of Algorithm 5.2(H)(MG). For a positive definite
matrix A, let the norm ‖ · ‖A be defined by ‖v‖A :=

√
vT Av.

Theorem 7.1. (Rate of convergence of (MG)) Suppose that H ∈ S n has n− 1 positive eigen-
values and one negative eigenvalue, all of which lie in [λ ,λ ]∪ {−λ̂}, where 0 < λ < λ and
λ̂ > 0. Consider Algorithm 5.2(H)(MG) applied to finding the saddle point z̄ = −H−1g for
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f (x) = 1
2 xT Hx+ gT x+ c. For the ith iterate zi, let the error ei be zi− z̄. Then for any posi-

tive definite matrix A, the errors ei satisfy

‖ei‖A

‖e0‖A
≤ 2

λ + λ̂

λ̂

(√
κ−1√
κ +1

)i−1

,

where κ = λ/λ .

Proof. Let Πi be the set of polynomials p such that p(0) = 1. Then by using standard methods
in the study of the convergence of the conjugate gradient algorithm (see for example [3, Section
9]), we have

‖ei‖A

‖e0‖A
≤ min

p∈Πi
max

λ∈
(
[λ ,λ ]∪{−λ̂}

) p(λ )

≤ min
p∈Πi−1

max
λ∈[λ ,λ ]

p(λ )
λ + λ̂

λ̂

≤ λ + λ̂

λ̂
min

p∈Πi−1
max

λ∈[λ ,λ ]
p(λ )

≤ 2
λ + λ̂

λ̂

(√
κ−1√
κ +1

)i−1

.

�

Theorem 7.2. (Convergence of iterates of Algorithm 3.3(MV)) Suppose Assumption 4.2 holds at
iteration j. Then for any ε > 0, Algorithm 3.3(MV) produces some iterate x̃ j∗ and ỹ j∗ satisfying
(7) for x̃ = x̃ j∗ and ỹ = ỹ j∗ .

Proof. From Assumption 4.2, we infer that the second column of L is the unit vector in the
direction of d2− 1

‖d1‖2
(dT

1 d2)d1. Consider the model f̃ j(v) = 1
2 vT H̃ jv+ g̃T

j v+ c̃ j, where H̃ j, g̃ j

and c̃ j are as chosen in (8) based on the iterates x̃ j and ỹ j. Seeking a contradiction, suppose that
(7) is violated for all iterates.

Recall that at iteration j, if d2 was chosen to be ∇ f (x̃ j), then from Fact 4.3,〈
∇ f̃ j(0)
‖∇ f̃ j(0)‖

,e1

〉
=

〈
∇ f (x̃ j)

‖∇ f (x̃ j)‖
,

ỹ j− x̃ j

‖ỹ j− x̃ j‖

〉
< 1− ε.

A similar inequality can be obtained if d2 was chosen to be ∇ f (ỹ j) instead. This means that
the pair (0,‖ỹ j− x̃ j‖e1) are not the points in the model that minimize the distance between the
components of {u ∈R2 : f̃ j(u)≤ li}. Step 3 in Algorithm 3.3 chooses iterates x̃ j+1 and ỹ j+1 such
that ‖x̃ j+1− ỹ j+1‖< ‖x̃ j− ỹ j‖.

From the formulas of the columns of L j in terms of d1 and d2, we see that L j depends contin-
uously on d1 and d2. We shall first assume that〈

∇ f (x̃ j)

‖∇ f (x̃ j)‖
,

ỹ j− x̃ j

‖ỹ j− x̃ j‖

〉
6=
〈

∇ f (ỹ j)

‖∇ f (ỹ j)‖
,

x̃ j− ỹ j

‖x̃ j− ỹ j‖

〉
. (12)

Under this assumption, d1 and d2 are continuous on the iterates (x̃ j, ỹ j), so the parameters H̃ j,
g̃ j and c̃ j in (8) depend continuously on (x̃ j, ỹ j) as well. This implies that the eigenvalues and
eigenvectors of H̃ j also depend continuously, and thus the next iterates also depend continuously
on that of the previous iterates through Proposition 2.2.

Recall our earlier assumption that Algorithm 3.3 does not produce the iterates satisfying (7).
By compactness arguments in Rn, there is a subsequence of the iterates {(x̃ j, ỹ j)} not satisfying
(7) converging to some (x′,y′). Since f (x̃ j) = f (ỹ j) = li for all i, it follows that f (x′) = f (y′) = li,
and that (x′,y′) do not satisfy (7) for x̃ = x′ and ỹ = y′. If a step of Algorithm 3.3 were to be
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Objective
(1) Minimizing ‖x̃ j− ỹ j‖, the distance between points in different

components of {u | f (u)≤ li}
(2) Maximizing min

(〈
∇ f (x̃ j)

‖∇ f (x̃ j)‖ ,
ỹ j−x̃ j
‖ỹ j−x̃ j‖

〉
,
〈

∇ f (ỹ j)

‖∇ f (ỹ j)‖ ,
x̃ j−ỹ j
‖x̃ j−ỹ j‖

〉)
, an

optimality condition for (1). (See Proposition 3.1.)
(3) Minimizing

∥∥∇ f
( 1

2 (x̃ j + ỹ j)
)∥∥, the gradient at the midpoint.

(4) Minimizing ‖z̄− 1
2 (x̃ j + ỹ j)‖, the distance between the critical point and

the midpoint.
TABLE 3. Objective functions used in our numerical experiments and the as-
sociated greedy algorithms.

applied to {(x′,y′)}, then we get new iterates (x′′,y′′) such that ‖x′′ − y′′‖ < ‖x′ − y′‖. If the
assumption in (12) were dropped, then if the iterates (x̃ j, ỹ j) approach (x′,y′), then next iterates
(x̃ j+1, ỹ j+1) approach two possible limits, say (x̂, ŷ) and (x̌, y̌), and both ‖x̂− ŷ‖ < ‖x′− y′‖ and
‖x̌− y̌‖< ‖x′− y′‖.

The assumption that a subsequence of {(x̃ j, ỹ j)} converges to (x′,y′) implies that the distance
between iterates will not go below ‖x′− y′‖, while the continuity of new iterates from the old
iterates implies that there are sequences of iterates whose distances is arbitrarily close to ‖x′′−
y′′‖. With minor adjustments, we can show that a similar condition holds for the case where (12)
fails. This is a contradiction, and gives us the conclusion we seek. �

This theorem also tells us that Algorithm 3.3(H)(MV), Algorithm 3.3(3D) and Algorithm
3.3(H)(3D) converge.

While the convergence analysis pales in comparison to analogous results in optimization, it

highlights that the second direction d2 should be chosen so that
〈

∇ f̃ j(0)
‖∇ f̃ j(0)‖

,e1

〉
and

〈
∇ f̃ j(‖ỹ−x̃‖e1)∥∥∇ f̃ j(‖ỹ−x̃‖e1)

∥∥ ,−e1

〉
should be as far away from 1 as possible to obtain decrease in the distance between components
in the next iterate.

Note that if f were assumed to be such that the Hessian is locally Lipschitz instead, the state-
ment in Theorem 7.2 need not hold for all ε > 0 because the errors in estimating a quadratic model
may lead to an inaccurate estimate of the points minimizing the distance between the components
of the level sets in the affine space.

8. NUMERICAL EXPERIMENTS

We now describe our numerical experiments in Matlab to test our algorithm.4 Specifically, we
shall test Algorithm 3.3 for the various choices of d2 in Table 2.

8.1. Objectives and greedy algorithms. We shall only be concerned with running Algorithm
3.3(H) for a particular value li. While the clear objective in Algorithm 3.3(H) is to find the two
closest points of the components of {u | f (u)≤ li}, we also use other objectives listed in Table 3
in our numerical experiments. Objectives (1) to (3) can be calculated as the algorithm progresses,
but objective (4) is what one really wants to compute. In ill-conditioned problems, objective (2)
may be close to the optimal value of 1, but far from achieving the minimum distance in objective
(1).

Other than the choice of directions in Table 2, we introduce greedy algorithms to study whether
the choice of direction d2 in Algorithm 3.3. In what follows, the strategy (G1) will mean that at
each step of the iteration, Algorithm 3.3 tries out all directions d2 in Table 2, then chooses the
direction that best minimizes objective (1) in Table 3. The strategies (G2), (G3) and (G4) are
similar. Strategy (G4) is an “invisible hand” that brings the iterates as close to the true saddle

4The Matlab codes are available in http://math.mit.edu/∼chj2pang/mtn_code.tar.gz

http://math.mit.edu/~chj2pang/mtn_code.tar.gz
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point 0 as possible. It is not practical because the knowledge of the true saddle would mean that
there is no need to run the algorithm.

In typical applications of the problem of finding a saddle point of mountain pass type, the cost
of evaluating the function and its gradient is high, and may take hours or longer. Compared to
Algorithm 3.3, Algorithm 3.3(H) (see Remark 3.4) takes advantage of the quadratic formulation
to obtain fast convergence to the saddle point. Therefore, we shall only perform experiments to
study Algorithm 3.3(H). Our experiments would give an indication of how fast the convergence
to the critical point would be once the quadratic approximation is reliable.

8.2. Numerical experiments. If f : Rn → R is a quadratic, then we can, with an orthogonal
transformation and translation, assume that f (x) = 1

2 xT Dx, where D ∈ Rn×n is diagonal. The
critical point is 0, and the critical value is 0. We shall also assume that the diagonal entries in D
are arranged in descending order. This method also produces ill-conditioned matrices D. In an
implementation of Algorithm 3.3, invoking Proposition 2.1 in step 3 to approximate the param-
eters of the quadratic approximation can be numerically difficult. We ignore such difficulties for
the time being and study the effects of the different strategies discussed in this paper instead.

To start off our experiments, we generate the diagonal entries of D randomly from the uniform
distribution on [0,1] using the “rand” function in Matlab. The last eigenvalue will be chosen to be
negative, and the rest will be positive. The critical level of f is 0, and we choose two points x̃0 and
ỹ0 such that f (x̃0) = f (ỹ0) = −1. The points x̃0 and ỹ0 are chosen as follows. First, we choose
the first n−1 coordinates of x̃0 and ỹ0 randomly from the normal distribution using the “randn”
function in Matlab. Next, we choose the last coordinate of x̃0 and ỹ0 so that f (x̃0) = f (ỹ0) =−1.

We first observe the effect of different strategies in the Tables 2 and 3 (except for (3D), which
is provably superior to the others). The results are summarized in Tables 4 and 5.

The following observations can be made for the different strategies:

(1) A greedy method may not be better than a pure strategy in the long term.
(2) The iterates produced by (MV) is the best for objectives (1) and (2) in the short and

medium term.
(3) The iterates produced by (MG) has the best convergence of 1

2 (x̃ j + ỹ j) to the critical point
(objective (4)) and of reducing the norm of the gradient (objective (3)). Note that as the
algorithm progresses, ‖x̃ j − ỹ j‖ will get smaller, so ∇ f (x̃ j) and ∇ f (ỹ j) will be far too
similar after some point. While (3D) can provably do a much better job if such numerical
errors are not encountered, the above observation suggests that (MG) is a good strategy
once close to the critical point.

(4) The iterates produced by (MD) has the best decrease for objectives (1), (3) and (4) in the
first iteration, and this decrease is sustained for the next few iterations for (3) and (4).
For objectives (1) and (2), once (MD) switches to (MV) to overcome ill-conditioning,
the performance of the iterates catches up quickly to do just as well as the pure strategy
(MV).

We now study the performance of all pure strategies, including (3D). The performance is
shown in Figure 4. Here are some observations from Figure 4:

(1) The strategy (3D) is the best among all choices in Table 2, as expected.
(2) The strategy (MG) performs the poorest in the long run for objectives (1) and (2), as is

consistent with the data in Tables 4 and 5.
(3) The strategy (MG) performs better than (MV), (PM) for objectives (3) and (4), as is

consistent with the data in Tables 4 and 5.
(4) The strategy (MD) is the best in the first few iterations for objectives (3) and (4). This

behavior persists even as (MD) switches to (MG) when ill conditioning is encountered.
For objectives (1) and (2), (MD) becomes competitive with the other strategies after it
switches to (MV). This switching explains the sharp decline in the graphs in objectives
(1) and (2) in Figure 4.
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Percentage of times Objective (1) is optimal for different strategies
# (H) + Strategy

Pure strategies Pure and greedy strategies
(MV) (PM) (MD)∗ (MG) (MV) (PM) (MD)∗ (MG) (G1) (G2) (G3) (G4)

1 1 2 75 22 1 2 75 22 0 0 0 0
2 51 29 0 13 21 0 14 13 39 0 0 0
3 34 23 0 43 0 3 0 0 63 34 0 0
4 70 23 0 7 1 6 0 0 36 56 1 0
5 78 21 0 1 33 14 0 0 24 28 1 0
6 83 17 0 0 12 10 0 0 43 35 0 0
7 74 22 4 0 3 10 0 0 47 40 0 0
8 48 22 30 0 9 13 4 0 20 54 0 0
9 37 14 49 0 8 8 16 0 34 33 1 0

10 27 20 53 0 0 13 15 0 45 26 1 0
11 23 21 56 0 4 10 13 0 38 34 1 0
12 27 22 51 0 4 10 10 0 34 39 3 0
13 24 27 49 0 1 18 11 0 35 32 3 0
14 22 31 47 0 1 13 14 0 32 37 3 0
15 22 34 44 0 3 19 10 0 39 26 3 0

Percentage of times Objective (2) is optimal for different strategies
# (H) + Strategy

Pure strategies Pure and greedy strategies
(MV) (PM) (MD)∗ (MG) (MV) (PM) (MD)∗ (MG) (G1) (G2) (G3) (G4)

1 84 10 4 2 84 10 4 2 0 0 0 0
2 94 6 0 0 46 5 0 0 0 49 0 0
3 75 24 0 1 1 4 0 0 38 57 0 0
4 68 32 0 0 41 26 0 0 5 28 0 0
5 45 55 0 0 42 51 0 0 2 5 0 0
6 64 36 0 0 28 21 0 0 10 41 0 0
7 59 41 0 0 13 17 0 0 12 58 0 0
8 57 41 2 0 27 28 2 0 8 35 0 0
9 53 37 10 0 37 26 6 0 9 21 1 0

10 53 37 10 0 22 23 6 0 10 39 0 0
11 42 34 24 0 15 24 10 0 7 44 0 0
12 40 34 26 0 19 23 15 0 7 36 0 0
13 35 33 32 0 23 28 18 0 6 24 1 0
14 31 33 36 0 22 24 24 0 2 27 1 0
15 36 40 24 0 19 34 16 0 4 26 1 0

TABLE 4. In a run of 100 experiments for n= 100 for the first 15 iterations, the
percentage of times for which the corresponding strategy is optimal is recorded.
We compare among pure strategies in the first four columns, and compare the
pure strategies together with the greedy strategies in the next eight columns. In
strategy (MD), once ill-conditioning is encountered, we switch to (MV).

9. CONCLUSION AND OPEN QUESTIONS

We presented an algorithm for finding a saddle point of mountain pass type using quadratic
models on affine spaces. Our algorithm is similar in some ways to the conjugate gradient al-
gorithm. The choices one has to make in implementing the algorithm are explained, and some
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Percentage of times Objective (3) is optimal for different strategies
# (H) + Strategy

Pure strategies Pure and greedy strategies
(MV) (PM) (MD)∗ (MG) (MV) (PM) (MD)∗ (MG) (G1) (G2) (G3) (G4)

1 0 5 68 27 0 5 68 27 0 0 0 0
2 1 1 83 15 0 1 52 4 2 1 26 14
3 0 0 93 7 0 0 53 2 1 0 24 20
4 0 0 90 10 0 0 54 2 0 0 25 19
5 0 0 90 10 0 0 57 3 0 0 19 21
6 0 0 88 12 0 0 46 3 0 0 21 30
7 0 0 84 16 0 0 44 6 0 0 15 35
8 0 1 78 21 0 1 37 9 0 1 19 33
9 1 1 68 30 1 1 35 12 0 0 13 38

10 1 1 63 35 1 1 36 15 0 0 10 37
11 2 1 58 39 2 1 31 22 1 1 6 36
12 3 2 15 45 2 2 37 24 0 1 4 30
13 4 2 51 43 2 2 31 22 1 1 7 34
14 3 4 51 42 2 4 30 23 0 1 6 36
15 5 5 50 40 2 5 29 25 1 3 6 29

Percentage of times Objective (4) is optimal for different strategies
# (H) + Strategy

Pure strategies Pure and greedy strategies
(MV) (PM) (MD)∗ (MG) (MV) (PM) (MD)∗ (MG) (G1) (G2) (G3) (G4)

1 0 3 66 31 0 3 66 31 0 0 0 0
2 0 1 84 15 0 0 52 6 2 0 33 7
3 0 0 81 19 0 0 43 8 0 0 33 16
4 0 0 78 22 0 0 44 10 0 0 32 14
5 0 0 78 22 0 0 44 9 0 0 33 14
6 0 0 74 26 0 0 40 13 0 0 29 18
7 0 0 60 40 0 0 28 28 0 0 29 15
8 0 0 42 58 0 0 21 42 0 0 18 19
9 0 0 27 73 0 0 15 54 0 0 18 13

10 0 0 34 66 0 0 21 43 0 0 15 21
11 1 0 44 55 0 0 29 35 0 1 16 19
12 1 1 47 51 0 0 26 28 1 0 11 34
13 1 0 46 53 0 0 22 28 1 0 14 35
14 0 3 51 46 0 0 30 24 0 0 14 32
15 3 2 46 49 1 0 24 28 1 0 16 30

TABLE 5. Continuation of the same experiment from Table 4. In strategy
(MD), once ill-conditioning is encountered, we now switch to (MG) instead.

theoretical and numerical results are presented. We also explain briefly how our ideas can be
implemented in a path-based mountain pass algorithm.

Much still needs to be done. For example, formulas similar to that of Theorem 7.1 describ-
ing the convergence of the various implementations will be helpful in fine tuning the algorithm.
Lastly, our algorithm is only “local” in the sense that it works well only when the iterates are
close to the saddle point where the quadratic approximation becomes more accurate. An empha-
sis should also be placed on designing a “global” algorithms.
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FIGURE 4. Performance of various strategies for a random example. For ob-
jectives (1) and (2), the strategies (MD) and (3D) switch to (MV) once ill-
conditioning in encountered. For objectives (3) and (4), the strategies (MD)
and (3D) switch to (MG) instead if ill-conditioning is encountered.
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