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AN ANALYSIS OF THE PRACTICAL DPG METHOD

J. GOPALAKRISHNAN AND W. QIU

Abstract. In this work we give a complete error analysis of the Discontinuous Petrov
Galerkin (DPG) method, accounting for all the approximations made in its practical imple-
mentation. Specifically, we consider the DPG method that uses a trial space consisting of
polynomials of degree p on each mesh element. Earlier works showed that there is a “trial-to-
test” operator T , which when applied to the trial space, defines a test space that guarantees
stability. In DPG formulations, this operator T is local: it can be applied element-by-
element. However, an infinite dimensional problem on each mesh element needed to be
solved to apply T . In practical computations, T is approximated using polynomials of some
degree r > p on each mesh element. We show that this approximation maintains optimal
convergence rates, provided that r ≥ p+N , where N is the space dimension (two or more),
for the Laplace equation. We also prove a similar result for the DPG method for linear
elasticity. Remarks on the conditioning of the stiffness matrix in DPG methods are also
included.

1. Introduction

In this paper we prove error estimates for the discontinuous Petrov-Galerkin (DPG)
method applied to the Laplace equation and linear elasticity. The approach is applica-
ble more generally to other problems as well. An error analysis of an “ideal” DPG method
was provided in [5]. Although the ideal method is not practically implementable, a number
of important theoretical tools for analysis were developed in [5]. We extend this analysis us-
ing a few new lemmas to provide a complete analysis of the fully implementable “practical”
DPG method. The distinction between the ideal and practical methods will be clear in the
next few paragraphs.

Both methods are easy to describe in a general context. Suppose we want to approximate
U ∈ U satisfying

b(U , V ) = l(V ), ∀V ∈ V. (1.1)

Here U is a reflexive Banach space under the norm ‖ · ‖U and V is a Hilbert space under an
inner product (·, ·)V with corresponding norm ‖ · ‖V . (All spaces are over R.) We assume
that the bilinear form b(·, ·) : U × V 7→ R is continuous and the linear form l(·) : V 7→ R is
also continuous. Define T : U 7→ V by

(TW , V )V = b(W , V ), ∀V ∈ V. (1.2)

Then, the DPG approximation to U , lies in a finite dimensional trial subspace Uh ⊂ U (where
h denotes a parameter determining the finite dimension). It satisfies

b(Uh, V ) = l(V ), ∀V ∈ Vh, (1.3)
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where Vh = T (Uh). Since Uh 6= Vh in general, this is a Petrov-Galerkin approximation. The
method (1.3) is the ideal DPG method. The excellent stability and approximation properties
of this method are well known [4, 5].

The main difficulty of the ideal method is that in order to compute Uh, one needs a basis
for Vh, which must be obtained by applying T . This is infeasible, as seen from (1.2), if
V is infinite dimensional, unless a solution to (1.2) can be written out in closed form. In
certain one-dimensional problems, and in some multi-dimensional problems like the transport
equation, the application of T can be exactly written out in closed form (see [3, 4]). But for
the vast majority of interesting problems, this is not possible.

Yet, one may approximate T by T r, defined as follows. Let V r be a finite dimensional
subspace of V (where r is a parameter determining the finite dimension). Then T r

W in V r

is defined by

(T r
W , V )V = b(W , V ), ∀V ∈ V r. (1.4)

One can then reconsider the DPG method (1.3) with V r
h = T r(Uh) in place of Vh, i.e.,

b(U r
h , V ) = l(V ), ∀V ∈ V r

h . (1.5)

This yields an implementable method that is very generally applicable. We refer to this
method as the practical DPG method.

A serious difficulty still remains when these ideas are applied to standard variational
problems. Namely, one application of T r requires inverting a Gram matrix in the V -inner
product. This is prohibitively expensive for most standard variational formulations. For
instance, if V is H1(Ω), where Ω is the computational domain, then inverting the Gram
matrix is as expensive as solving the Laplace’s equation.

This difficulty can be overcome by hybridization, as shown in the earlier DPG papers [4, 5].
Namely, given a boundary value problem, introducing certain interelement fluxes and traces
as new unknowns, we can design an ultraweak well-posed variational formulation involving
a space V that contains functions discontinuous across mesh element interfaces. This then
implies that the Gram matrix becomes block diagonal, with one block per mesh element
(since V r may now be chosen to be a DG subspace). The application of T r is thus reduced
to an easy block diagonal inversion, i.e., the action of the operator T r is local.

Such an ultraweak variational formulation has been developed for the Poisson equation
in [5], where its wellposedness is also proved. We will heavily rely on such wellposedness
results in this paper. An ultraweak formulation for the linear elasticity system is also avail-
able now [2]. Both these works analyzed the ideal DPG method (1.3) for the respective
ultraweak formulations. The aim of the present paper is to provide an error analysis for the
corresponding practical DPG methods (1.5).

In the next section we will present an approach to the analysis of the practical method,
continuing in the general context and using the abstract notations introduced above. In
Section 3, we perform the error analysis for the practical DPG method for the Laplace
equation. We also provide a condition number estimate. In Section 4, we consider a second
example of linear elasticity and provide an error analysis.

2. The approach to analysis

The purpose of this section is to point out a simple functional analytic route to proving the
discrete stability of the practical DPG method (1.5). This discrete stability will follow from a
discrete inf-sup condition on the space V r

h . However, in applications, it is often inconvenient
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to work directly with this space. We prefer to work with V r, which will be some standard
polynomial space in most applications (as seen in the examples later). The next theorem
shows that the existence of a Fortin operator into this more standard space V r is a sufficient
condition for the convergence of the practical DPG method.

Before we give the result, let us state the assumptions that we shall verify for each of our
examples. We assume that

{W ∈ U : b(W , V ) = 0, ∀V ∈ V } = {0} (2.1)

and that there is a positive constant C1 such that

C1‖V ‖V ≤ sup
W ∈U

b(W , V )

‖W ‖U
, ∀V ∈ V. (2.2)

Above and throughout, we will tacitly assume that the suprema such as the above are taken
over nonzero functions. Let C2 ≥ 0 be such that

b(W , V ) ≤ C2‖W ‖U‖V ‖V , ∀W ∈ U, V ∈ V. (2.3)

Clearly, such a C2 exists due to the continuity of b(·, ·). Finally, assume that there exists a
linear operator Π : V 7→ V r such that for all V ∈ V , we have

b(W , V −ΠV ) = 0, ∀W ∈ Uh, (2.4a)

‖ΠV ‖V ≤ CΠ‖V ‖V . (2.4b)

Theorem 2.1. Suppose the assumptions (2.1), (2.2), (2.3), and (2.4) hold. Then the prob-

lem (1.1) is well-posed and

‖U − U
r
h‖U ≤

C2CΠ

C1
inf

W ∈Uh

‖U − W ‖U . (2.5)

Proof. We apply Babuška’s theory [1, 11]. Accordingly, if we prove the discrete inf-sup
condition

C1

CΠ

‖W ‖U ≤ sup
V ∈V r

h

b(W , V )

‖V ‖V
, ∀W ∈ Uh, (2.6)

then (2.5) will follow. We prove (2.6) in three steps, the first two of which are fairly standard
(but included for readability).

As the first step, we prove that the following inf-sup condition holds:

C1‖W ‖U ≤ sup
V ∈V

|b(W , V )|

‖V ‖V
, ∀W ∈ U. (2.7)

This follows from the other inf-sup condition (2.2). Define a linear operator B : U → V ∗

by BW = b(W , ·) ∈ V ∗, for all W ∈ U. It is well known [12] that (2.2) holds if and only if
B∗ is injective and the range of B∗ is closed in U∗. Additionally, by (2.1), B is injective.
Therefore, by the Closed Range Theorem, B∗(V ) = U∗, so (B∗)−1 : U∗ → V exists. Hence
B−1 : V ∗ → U also exists and is continuous. This proves that problem (1.1) is well-posed.

We obviously also have ‖B−1‖ = ‖(B−1)∗‖ = ‖(B∗)−1‖, i.e.,

inf
W ∈U

sup
V ∈V

|b(W , V )|

‖W ‖U‖V ‖V
= ‖B−1‖−1 = ‖(B∗)−1‖−1 = inf

V ∈V
sup
W ∈U

|b(W , V )|

‖W ‖U‖V ‖V
,

which proves (2.7).
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As the second step, we prove the following inf-sup condition.

C1

CΠ

‖W ‖U ≤ sup
V ∈V r

|b(W , V )|

‖V ‖V
, ∀W ∈ Uh. (2.8)

Note that this differs from (2.6) only in the space in which the supremum is sought. To
prove (2.8), we use (2.7) and assumption (2.4) as follows:

C1‖W ‖U ≤ sup
V ∈V

b(W , V )

‖V ‖V
≤ sup

V ∈V

b(W , ΠV )

C−1
Π ‖ΠV ‖V

.

Now, since ΠV is in V r, the last supremum may be bounded by the supremum over all V r,
so we obtain (2.8).

As the third and final step, we prove that if s1 is the supremum in (2.8) and s2 is the
supremum in (2.6), then s1 = s2. Obviously, s1 ≥ s2 as V r ⊇ V r

h . To prove the reverse
inequality, observe that s1 = ‖T r

W ‖V , by (1.4). Since T r
W is in V r

h , we have

s1 =
(T r

W , T r
W )V

‖T r
W ‖V

≤ sup
V ∈V r

h

(T r
W , V )V
‖V ‖V

= s2.

Therefore, the inf-sup condition (2.6) follows from (2.8). �

Remark 2.2 (Test basis). The above proof also shows that under the assumptions of Theo-
rem 2.1, the operator T r : Uh 7→ V r is injective: indeed, if T r

W = 0, then b(W , V ) = 0 for all
V in V r, so by the inf-sup condition (2.8), we conclude that W = 0. Note that the injectivity
of T r implies that

dim(V r
h ) = dim(Uh).

It also implies that a basis for V r
h can be computed by applying T r on any basis for Uh.

Remark 2.3 (Conditioning). Suppose Bi is a basis for Uh. Then, under the assumptions
of Theorem 2.1, T r

Bi is a basis for V r
h , as seen in Remark 2.2. The ij-th entry of the

stiffness matrix of the DPG method with respect to this basis is given by Sij = b(Bj , T
r
Bi) =

(T r
Bj, T

r
Bi)V . Clearly, S is symmetric. The above mentioned injectivity of T r implies that

S is also positive definite. To understand the conditioning of S, let us first note that

C1

CΠ

‖W ‖U ≤ ‖T r
W ‖V ≤ C2‖W ‖U , ∀W ∈ Uh. (2.9)

This follows from the inf-sup condition (2.8) in the proof of Theorem 2.1 and the continuity
property (2.3). Next, suppose X =

∑

i xiBi is the basis expansion of any X in Uh, and λ0, λ1

are positive numbers such that

λ0‖x‖
2
ℓ2 ≤ ‖X ‖2U ≤ λ1‖x‖

2
ℓ2 , ∀X ∈ Uh. (2.10)

Since xtSx = ‖T r
X ‖2U , these estimates imply that the Rayleigh quotient xtSx/xtx is at most

λ1C
2
2 and at least C2

1λ0/C
2
Π
. Hence

κ(S) ≤
λ1

λ0

C2
2C

2
Π

C2
1

, (2.11)

where κ(S) is the spectral condition number of S. This gives condition numbers comparable
to other methods, as we shall see later in our examples.
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3. First example: Laplace equation

The ideal DPG method for the Laplace equation was developed and analyzed in [5]. In
this section, we will set the abstract forms and spaces of the previous section to those from [5]
and verify the hypotheses required to apply Theorem 2.1. Roughly speaking, our main result
shows that if polynomials of degree p are used to approximate the solution of the Laplace
equation, then a sufficient condition for optimal convergence is that T is approximated by
polynomials of degree p+N , where N ≥ 2 is the space dimension. In the wording of [5], this
means the “enrichment degree” should be chosen to be N . Ample numerical evidence, in
support of the choice of 2 as enrichment degree, was presented in [5, § 6.1], but all numerical
experiments were in the two-dimensional case.

In the remainder of this paper, we let Ω be a Lipschitz polyhedron in RN . We denote by
{Ωh}h∈I a family of conforming shape regular simplicial finite element triangulations of Ω.
The index h now stands for the maximal diameter of simplexes in Ωh.

3.1. Infinite dimensional spaces. Let V = RN . We use L2(Ω,V) to denote the set of
vector-valued functions whose components are square integrable. We set the trial and test
spaces by

U = L2(Ω;V)× L2(Ω)×H
1/2
0 (∂Ωh)×H−1/2(∂Ωh),

V = H(div, Ωh)×H1(Ωh),

where the “broken” Sobolev spaces (admitting interelement discontinuities) are defined by
H(div, Ωh) = {τ : τ |K ∈ H(div, K), ∀K ∈ Ωh} and H1(Ωh) = {v : v|K ∈ H1(K), ∀K ∈
Ωh}. They have the natural norms

‖v‖2H1(Ωh)
= (v, v)Ωh

+ (grad v, grad v)Ωh
,

‖q‖2H(div,Ωh)
= (q, q)Ωh

+ (div q, div q)Ωh
.

The derivatives above, and in such notations throughout, are calculated element by element
and

(r, s)Ωh
=

∑

K∈Ωh

(r, s)K , 〈w, ℓ〉∂Ωh
=

∑

K∈Ωh

〈w, ℓ〉1/2,∂K .

and 〈·, ℓ〉1/2,∂K denotes the action of a functional ℓ in H−1/2(∂K). We will also use ‖r‖Ωh
to

denote the norm (r, r)
1/2
Ωh

. The spaces of traces and fluxes are defined by H
1/2
0 (∂Ωh) = {η :

∃w ∈ H1
0 (Ω) such that η|∂K = w|∂K ∀K ∈ Ωh}, and H−1/2(∂Ωh) = {η ∈

∏

K H−1/2(∂K) :
∃ q ∈ H(div, Ω) such that η|∂K = q · n|∂K ∀K ∈ Ωh}, with respective norms

‖û‖
H

1/2
0

(∂Ωh)
= inf

{

‖w‖H1(Ω) : ∀w ∈ H1
0 (Ω) such that û|∂K = w|∂K

}

, (3.1)

‖σ̂n‖H−1/2(∂Ωh)
= inf

{

‖q‖H(div,Ω) : ∀q ∈ H(div, Ω) such that σ̂n|∂K = q · n|∂K
}

. (3.2)

The spaces U and V are endowed with product norms, i.e.,

‖(σ, u, û, σ̂n)‖
2
U = ‖σ‖2Ω + ‖u‖2Ω + ‖û‖2H1/2(∂Ωh)

+ ‖σ̂n‖
2
H−1/2(∂Ωh)

,

‖(τ, v)‖2V = ‖τ‖2H(div,Ωh)
+ ‖v‖2H1(Ωh)

.
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3.2. Forms. The ultraweak formulation of the Laplace equation derived in [5] reads as
follows: Find U ≡ (σ, u, û, σ̂n) ∈ U satisfying (1.1) for V ≡ (τ, v) ∈ V where the forms b(·, ·)
and l(·) are set by

b(U , V ) = (σ, τ)Ω − (u, div τ)Ωh
+ 〈û, τ · n〉∂Ωh

− (σ, grad v)Ωh
+ 〈v, σ̂n〉∂Ωh

,

l(V ) = (f, v)Ω,

for some f in L2(Ω). The u-component of U solves the Laplace equation with zero Dirichlet
boundary conditions on ∂Ω. For details, consult [5].

3.3. Discrete spaces. Let us first establish notation for a few polynomial spaces that we
will use here and throughout. Let Pp(K) denote the space of polynomials of degree at most
p on a simplex K. We write Pp(K;V) for vector valued functions whose components are in
Pp(K). Let △m(K) denote the set of all m-dimensional sub-simplices of K. Define

P̊p(K) = {pp ∈ Pp(K) : pp|∂K = 0},

Pp(∂K) = {µ : µ|F ∈ Pp(F ), ∀F ∈ △N−1(K)},

P̃p(∂K) = Pp(∂K) ∩ C
0(∂K),

where C
0(D) denotes the set of continuous functions on any domain D.

Using these notations, we set the trial approximation space for the DPG method by

Uh = {(σ, u, û, σ̂n) ∈ U : σ|K ∈ Pp(K;V), u|K ∈ Pp(K),

û|∂K ∈ P̃p+1(∂K), σ̂n|∂K ∈ Pp(∂K), ∀K ∈ Ωh}.

The discrete test space is defined by V r
h = T r(Uh), so to complete the prescription of the

practical DPG method, we only need to specify V r. Set

V r = {(τ, v) ∈ V : τ |K ∈ Pr(K;V), v|K ∈ Pr(K), ∀K ∈ Ωh}. (3.3)

where the degree r ≥ p+N . Clearly, the application of T r, as defined by (1.4), can proceed
locally, element by element, since V r has no interelement continuity constraints.

3.4. Verification of the assumptions. To apply Theorem 2.1 to the above setting, we
need to verify its assumptions.

• Assumption (2.1) is verified by [5, Lemma 4.1].
• Assumption (2.2) is verified by [5, Theorem 4.2].
• Assumption (2.3) is easy to verify. E.g., to show the continuity of the term 〈û, τ · n〉,
we let w ∈ H1(Ω) be any extension of û and observe that

〈û, τ · n〉∂Ωh
= (gradw, τ)Ωh

+ (w, div τ)Ωh
≤ ‖w‖H1(Ω)‖τ‖H(div,Ωh).

Taking the infimum over all such extensions w, we obtain

〈û, τ · n〉∂Ωh
≤ ‖û‖

H
1/2
0

(∂Ωh)
‖τ‖H(div,Ωh).

The other terms in the bilinear form are similar or simpler.
• Assumption (2.4) is verified below.

An operator Π satisfying (2.4) will be constructed in the form ΠV = (Πdiv
p+2τ,Π

grad
r v).

We construct the operator Πgrad
r in Lemma 3.2 below, and we construct the operator Πdiv

p+2

in Lemma 3.7. But first, we need the following intermediate result. Let Bgrad
r (K) = {pr ∈

Pr(K) : pr|E = 0, ∀E ∈ △N−2(K)} and hK = diam(K). And, we construct the operator
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Πdiv
p+2 in Lemma 3.7. Hereon we use c and C to denote a generic constants (whose value at

different occurrences may differ) independent of hK , but possibly dependent on the shape
regularity of K and the polynomial degree p. We also let 〈·, ·〉∂K denote the L2(∂K)-inner
product.

Lemma 3.1. Let r = p+N . Then, for every v ∈ H1(K), there is a unique Π0
r v ∈ Bgrad

r (K)
satisfying

(Π0
r v − v, qp−1)K = 0, ∀qp−1 ∈ Pp−1(K), (3.4a)

〈Π0
r v − v, µp〉∂K = 0, ∀µp ∈ Pp(∂K), (3.4b)

‖Π0
r v‖K + hK‖ gradΠ

0
r v‖K ≤ C (‖v‖K + hK‖ grad v‖K) . (3.4c)

Proof. First, to see that the number of the equations in (3.4a)-(3.4b) equal dimBgrad
r (K),

observe that

dimBgrad
r (K) = dim P̊r(K) +

∑

F∈△N−1(K)

dim P̊r(F ). (3.5)

Let bK and bF denote the product of all barycentric coordinates that do not vanish everywhere
on K and F , resp. Then P̊r(K) = bKPr−N−1(K) and P̊r(F ) = bFPr−N(F ). Therefore, by

our choice of r, we have dim P̊r(K) = dimPp−1(K) and dim P̊r(F ) = dimPp(F ). It then
follows from (3.5) that (3.4a)-(3.4b) is a square system for Π0

r v.
Hence, to prove that (3.4a)-(3.4b) has a unique solution, it suffices to prove that if v = 0,

then Π0
r v = 0. Since Π0

r v ∈ Bgrad
r (K), on any face F ∈ △N−1(K), we may write (Π0

r v)|F =
bFwp for some wp ∈ Pp(F ). But then, (3.4b) implies that Π0

r v must vanish on ∂K, so
Π0

r v = bKzp−1 for some zp−1 ∈ Pp−1(K). Then (3.4a) implies that Π0
r v = 0 on K.

Finally, one can prove (3.4c) using a standard affine mapping argument. �

Lemma 3.2. Let r = p+N . Define Πgrad
r = Π0

r (v− v) + v, where v|K = |K|−1
∫

K
v. Then,

(Πgrad
r v − v, qp−1)K = 0, ∀qp−1 ∈ Pp−1(K), (3.6a)

〈Πgrad
r v − v, µp〉∂K = 0, ∀µp ∈ Pp(∂K), (3.6b)

‖Πgrad
r v‖H1(K) ≤ C‖v‖H1(K), ∀v ∈ H1(K). (3.6c)

Proof. Obviously, Πgrad
r v−v = (Π0

r −I)(v−v). Hence, (3.6a) and (3.6b) follows from (3.4a)
and (3.4b) of Lemma 3.1. It remains to prove (3.6c). By (3.4c) and the Poincaré-Friedrichs
inequality,

‖Πgrad
r v‖K ≤ ‖v‖K + ‖Π0

r (v − v)‖K

≤ ‖v‖K + C (‖v − v‖K + hK‖ grad(v − v)‖K)

≤ C (‖v‖K + hK‖ grad v‖K) , and

hK‖ gradΠ
grad
r v‖K = hK‖ gradΠ

0
r (v − v)‖K

≤ C (‖v − v‖K + hK‖ grad(v − v)‖K)

≤ ChK‖ grad v‖K .

Canceling out hK and adding, (3.6c) follows. �
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Lemma 3.3. There is an operator Πdiv
p+2 : H(div, K) 7→ Pp+2(K;V) such that for every

τ ∈ H(div, K), we have

(Πdiv
p+2τ, qp)K = (τ, qp)K , ∀qp ∈ Pp(K;V), (3.7a)

〈Πdiv
p+2τ · n, µp+1〉∂K = 〈τ · n, µp+1〉∂K , ∀µp+1 ∈ P̃p+1(∂K), (3.7b)

‖Πdiv
p+2τ‖H(div,K) ≤ C‖τ‖H(div,K). (3.7c)

Proof. We will first construct the operator on the unit simplex K̂ in R
N . Recalling the

notations in §3.3, define P⊥
p (∂K̂) to be the L2(∂K̂)-orthogonal complement of P̃p(∂K̂) in

Pp(∂K̂), and

Bdiv
p+2(K̂) = {τ̂ ∈ Pp+1(K̂;V) + x̂Pp+1(K̂) : 〈p̂⊥, τ̂ · n̂〉∂K̂ = 0, ∀p̂⊥ ∈ P⊥

p+1(∂K̂)}.

We construct an operator Π̂div
p+2 mapping H(div, K̂) into Bdiv

p+2(K̂) by

(Π̂div
p+2τ̂ , q̂p)K̂ = (τ̂ , q̂p)K̂ , ∀q̂p ∈ Pp(K̂;V), (3.8a)

〈Π̂div
p+2τ̂ · n̂, µ̂p+1〉∂K̂ = 〈τ̂ · n̂, µ̂p+1〉∂K̂ , ∀µ̂p+1 ∈ P̃p+1(∂K̂). (3.8b)

We claim that (3.8a)–(3.8b) uniquely determine Π̂div
p+2τ̂ ∈ Bdiv

p+2(K̂). Indeed, if their right

hand sides vanish, then since Π̂div
p+2τ̂ is in Bdiv

p+2(K̂), we find that Π̂div
p+2 is a function in the

Raviart-Thomas space whose canonical degrees of freedom vanish (see e.g., [10, Definition 5]),

so Π̂div
p+2τ̂ = 0. Hence (3.8a)–(3.8b) uniquely defines Π̂div

p+2τ̂ .

Now, we define Πdiv
p+2 on any general simplex K by mapping Π̂div

p+2τ̂ from K̂ using the

Piola transform, as follows. Let GK be the affine homeomorphism from K̂ onto K and let
A denote its Fréchet derivative. Given any τ ∈ H(div, K), let τ̂ (x̂) in H(div, K̂) be defined
by τ ◦GK = (detA)−1Aτ̂ . Then, define Πdiv

p+2τ by

Πdiv
p+2τ(x) =

A

detA
Π̂div

p+2τ̂(x̂), with x = GK(x̂).

We will now show that this Πdiv
p+2τ satisfies the three properties in (3.7).

First, observe that (3.8a) and (3.8b) imply the corresponding identities on K, namely,

(Πdiv
p+2τ − τ, A−tq̂p ◦G

−1
K )K = 0, ∀q̂p ∈ Pp(K̂;V),

〈Πdiv
p+2τ · n− τ · n, µ̂p+1 ◦G

−1
K 〉∂K = 0, ∀µ̂p+1 ∈ P̃p+1(∂K̂).

This implies (3.7a) and (3.7b).
It only remains to prove (3.7c). We do this in two steps. First, we prove an L2(K) bound

using the Piola map’s well-known estimates for shape regular {Ωh}h∈I , namely

‖τ̂‖K̂ ≤ C‖τ‖K
|K|1/2

hK
≤ C‖K̂‖K̂ ,

‖ d̂iv τ̂‖K̂ ≤ C‖ div τ‖K |K|1/2 ≤ C‖ div K̂‖K̂ .

Combining, we have

‖Πdiv
p+2τ‖K + hK‖ divΠ

div
p+2τ‖K ≤ C (‖τ‖K + hK‖ div τ‖K) . (3.9)

In particular, this proves the L2(K)-bound ‖Πdiv
p+2τ‖K ≤ C‖τ‖H(div,K).
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Next, we prove a better bound on the divergence norm ‖ divΠdiv
p+2τ‖K by showing that

div(Πdiv
p+2τ) = Πp+1 div τ

where Πp+1 is the L2(K)-orthogonal projection onto Pp+1(K). Indeed, for any ωp+1 ∈
Pp+1(K), we have, due to (3.7a) and (3.7b), that

(div(Πdiv
p+2τ), ωp+1)K = −(Πdiv

p+2τ, gradωp+1)K + 〈(Πdiv
p+2τ) · n, ωp+1〉∂K

= −(τ, gradωp+1)K + 〈τ · n, ωp+1〉∂K

= (div τ, ωp+1)K .

Hence,
‖ div(Πdiv

p+2τ)‖K = ‖Πp+1 div τ‖K ≤ ‖ div τ‖K . (3.10)

Estimates (3.9) and (3.10) prove (3.7c). �

Now we are ready to apply Theorem 2.1 to obtain a convergence result for the practical
DPG method for the Laplace equation.

Theorem 3.4. Let r ≥ p + N . Then the exact and discrete solutions for the DPG method

for the Laplace’s equation, namely U = (σ, u, û, σ̂n) and Uh = (σh, uh, ûh, σ̂n,h), satisfy

‖σ − σh‖L2(Ω) + ‖u− uh‖L2(Ω) + ‖û− ûh‖H1/2
0

(∂Ωh)
+ ‖σ̂n − σ̂n,h‖H−1/2(∂Ωh)

≤ C inf
(ρh,wh,ŵh,η̂h)∈Uh

(

‖σ − ρh‖L2(Ω) + ‖u− wh‖L2(Ω)

+ ‖û− ûh‖H1/2
0

(∂Ωh)
+ ‖σ̂n − σ̂n,h‖H−1/2(∂Ωh)

)

.

Proof. As already observed, we have verified the first three assumptions of Theorem 2.1. To
verify Assumption (2.4), let V = (τ, v) and set ΠV = (Πdiv

p+2τ,Π
grad
r v). The continuity esti-

mates of Πdiv
p+2 and Πgrad

r of Lemmas 3.2 and 3.3 (namely (3.6c) and (3.7c)) show that (2.4b)
holds. To see that (2.4a) also holds, observe that the identities of these lemmas also imply

(ρh, τ −Πdiv
p+2τ)Ω = 0, (wh, div(τ −Πdiv

p+2τ))Ωh
= 0,

〈ŵh, (τ −Πdiv
p+2τ) · n〉∂Ωh

= 0, (ρh, grad(v −Πgrad
r v))Ωh

= 0,

〈v −Πgrad
r v, η̂h〉∂Ωh

= 0,

for all (ρh, wh, ŵh, η̂h) ∈ Uh. While the identities above on the left follow from the identities
of (3.6) and (3.7), those on the right are proved by integration by parts. Together these
identities imply that b(W , V −ΠV ) = 0 for all W ∈ Uh, so Assumption (2.4) is satisfied. �

Remark 3.5 (Enrichment degree). The above arguments point to the potential of choosing
different enrichment degrees for the scalar and flux components of the test space. We have
in fact proved that if, in place of the V r set in (3.3), we revise our choice of V r to

V r = {(τ, v) ∈ V : τ |K ∈ Pp+2(K;V), v|K ∈ Pp+N(K), ∀K ∈ Ωh},

then, we obtain the same convergence result. Obviously, the revised V r defines a smaller
space if N ≥ 3. The present DPG software packages are set to approximate all components
of T by polynomials of the same degree r. Our results indicate that this is unnecessary.

As an example of how Theorem 3.4 implies h-convergence rates, we state the following.
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Corollary 3.1 (Convergence rates). Let h = maxK∈Ωh
diam(K) and let the assumptions of

Theorem 3.4 hold. Then

‖σ − σh‖L2(Ω) + ‖u− uh‖L2(Ω) + ‖û− ûh‖H1/2
0

(∂Ωh)
+ ‖σ̂n − σ̂n,h‖H−1/2(∂Ωh)

≤ Chs
(

‖u‖Hs+1(Ω) + ‖σ‖Hs+1(Ω)

)

,

for all 1/2 < s ≤ p + 1.

Proof. The proof proceeds by bounding the best approximation terms in Theorem 3.4. All
terms are obviously handled, except the flux and trace approximation terms, which can be
bounded as in [5, Cor. 4.1]. �

To conclude this section, we prove that the condition number of the stiffness matrix of the
DPG method is no worse than other standard methods – see Remark 2.3 for the definition
of the stiffness matrix with respect to a basis {Bi}. Consider, for definiteness, the three-
dimensional tetrahedral case. We tacitly assume that the basis functions Bi are obtained,
as in usual finite element practice, by mapping from the (reference) unit tetrahedron. For
example, a basis for the trial space for the numerical traces is built using a local basis
{ej} for P̃p+1(∂K), which in turn is obtained by mapping over a basis {êj} for P̃p+1(∂K̂)
(where ej = êj ◦ G

−1
K and we use the other mapping notations in the proof of Lemma 3.3).

Consequently, if ŝ =
∑

j sj êj is the basis expansion for any ŝ ∈ P̃p+1(∂K), then by the
equivalence of norms in finite dimensional spaces

c
∑

j

|sj|
2 ≤ inf

ê∈Pp+1(K̂),
(ê−ŝ)|∂K̂=0

‖ê‖2
H1(K̂)

≤ C
∑

j

|sj|
2. (3.11)

Such arguments will be used in the following proof without further explanation.

Theorem 3.6 (Conditioning). Suppose Ωh is a quasiuniform tetrahedral mesh and the as-

sumptions of Theorem 3.4 hold. Then the spectral condition number of the stiffness matrix

S of the DPG method satisfies

κ(S) ≤ Ch−2.

Proof. Let us apply (2.11). We have already shown above that C1, C2 and CΠ are independent
of h. Hence it only suffices to find the dependence of λ0 and λ1 on h in (2.10).

Let X = (ρ, w, ẑ, η̂) in Uh. As a first step to bound the norm of ẑ, we recall that the

existence of an H1(K̂) polynomial extension [7] implies that for any ŝ in P̃p+1(∂K̂),

inf
êp∈Pp+1(K̂),

ep|∂K̂=ŝ

‖êp‖
2
K̂
+ ‖ grad êp‖

2
K̂
≤ C inf

ê∈H1(K̂),
e|∂K̂=ŝ

‖ê‖2
K̂
+ ‖ grad ê‖2

K̂
.

Mapping to K and scaling both sides by |K|, we obtain

inf
ep∈Pp+1(K),

ep|∂K=ŝ

‖ep‖
2
K + h2

K‖ grad ep‖
2
K ≤ C inf

e∈H1(K),
e|∂K=ŝ

‖e‖2K + h2
K‖ grad e‖

2
K . (3.12)

Let us denote the function which achieves the left infimum by Egrad
p ŝ. Applying the above

inequality for ẑ, element by element, and using hK ≤ diamΩ, we have proved that

‖Egrad
p ẑ‖2Ω ≤ Cmax(1, diamΩ)2 inf

e∈H1(Ω),
(e−ẑ)|∂K=0

(

‖e‖2Ω + ‖ grad e‖2Ω
)

≤ C‖ẑ‖2
H

1/2
0

(∂Ωh)
.
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Thus,
C‖Egrad

p ẑ‖2Ω ≤ ‖ẑ‖2
H

1/2
0

(∂Ωh)
≤ ‖Egrad

p ẑ‖2H1(Ω), (3.13)

where the upper inequality is obvious from the definition of the H
1/2
0 (∂Ωh)-norm. A similar

argument using the H(div, K̂) polynomial extension in [8], gives a similar two-sided bound
for ‖η̂‖H−1/2(∂Ωh)

using the L2(Ω) and H(div, Ω) norm of the corresponding extension, Ediv
p η̂.

Using two inverse inequalities, we conclude from (3.13) that

c‖X ‖20 ≤ ‖X ‖2U ≤ Ch−2‖X ‖20, ∀X ∈ Uh, (3.14)

where ‖X ‖20 = ‖ρ‖2Ω + ‖w‖2Ω + ‖Egrad
p ẑ‖2Ω + ‖Ediv

p η̂‖2Ω.
From (3.14), the inequality (2.10) follows with

λ0 = c min
K∈Ωh

|K| and λ1 = Ch−2 max
K∈Ωh

|K|,

by obtaining two-sided bounds in terms of the basis expansion coefficients for each term in
the definition of ‖X ‖20. (The norms of the extensions can be estimated as in (3.11). The
terms with the norms of ρ and w terms are easier.) �

4. Second example: Linear elasticity

Two ideal DPG methods for the linear elasticity equation were developed and analyzed
in [2]. The two methods are equivalent for homogeneous isotropic materials. Among their
many interesting properties is their robustness with respect to the Poisson ratio, i.e., the
method is locking-free. In this section, we will consider the practical version of one of these
two methods and prove its optimal convergence. We proceed as in the previous example, by
first setting the abstract forms and spaces to those specific to this method then proceed to
verify the hypotheses required to apply Theorem 2.1. In this section, we restrict to N = 2
or 3. The results and the analysis are similar to those in Section 3, so we will be brief.

4.1. The spaces. We set the trial and test spaces by

U = L2(Ω;M)× L2(Ω;V)×H
1/2
0 (∂Ωh;V)×H−1/2(∂Ωh;V)× R,

V = H(div, Ωh; S)×H1(Ωh;V)× L2(Ω;K)× R,

where M = R
N×N , S consists of symmetric matrices in M, and K consists of skew-symmetric

matrices in M. The trial and test spaces are normed by

‖(σ, u, û, σ̂n, α)‖
2
U = ‖σ‖2Ω + ‖u‖2Ω + ‖û‖2H1/2(∂Ωh)

+ ‖σ̂n‖
2
H−1/2(∂Ωh)

+ |α|2,

‖(τ, v, q, β)‖2V = ‖τ‖2H(div,Ωh)
+ ‖v‖2H1(Ωh)

+ ‖q‖2Ω + |β|2.

4.2. The forms. The (second) ultraweak formulation derived in [2] reads as follows: Find
U ≡ (σ, u, û, σ̂n, α) ∈ U satisfying (1.1) for all V ≡ (τ, v, q, β) ∈ V where the forms b(·, ·) and
l(·) are set by

b(U , V ) = (Aσ, τ)Ωh
+ (u, div τ)Ωh

− 〈û, τ n〉∂Ωh
+Q−1

0 (αI,Aτ)Ω

+ (σ, grad v)Ωh
+ (σ, q)Ω − 〈v, σ̂n〉∂Ωh

+Q−1
0 (Aσ, βI)Ω

l(V ) = (f, v)Ω,
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for some f in L2(Ω;V). Here, A is the generalized compliance tensor (see e.g., [2, Re-
mark 2.1]) and Q0 is the essential infimum of the trace of the matrix A(x)I over x ∈ Ω.
Throughout, we assume that A is element-wise constant. We note that above and through-
out, the inner products of matrix-valued functions, such as (σ, τ)K , are computed by inte-
grating the Frobenius product of the two matrices.

It is easy to see that the resulting σ and u satisfies Aσ = ε(u), where ε(u) = (gradu +
(gradu)′)/2, and div σ = f on Ω, and u = 0 on ∂Ω, and α = 0. For details, consult [2].

4.3. Discrete spaces. Symmetric, skew-symmetric, and general matrix-valued functions
whose entries are in Pp(K) are denoted by Pp(K; S), Pp(K;K), and Pp(K;M), resp. Using
these notations, we set the trial approximation space for the DPG method by

Uh = {(σ, u, û, σ̂n, α) ∈ U : σ|K ∈ Pp(K;M), u|K ∈ Pp(K;V),

û|∂K ∈ P̃p+1(∂K;V), σ̂n|∂K ∈ Pp(∂K;V), α ∈ R, ∀K ∈ Ωh}.

The discrete test space is defined by V r
h = T r(Uh), so to complete the prescription of the

practical DPG method, we only need to specify V r. Set

V r = {(τ, v, q, β) ∈ V : τ |K ∈ Pr(K; S), v|K ∈ Pr(K;V),

q|K ∈ Pp(K;K), β ∈ R, ∀K ∈ Ωh},

for some integer r ≥ p +N .

4.4. Verification of the assumptions. To apply Theorem 2.1 to the above setting, we
need to verify its assumptions.

• Assumption (2.1) is verified by [2, Lemma 5.2].
• Assumption (2.2) is verified by [2, Lemma 5.3].
• Assumption (2.3) can be easily verified, as in the case of the Laplace equation.
• Assumption (2.4) is verified next.

Let V = (τ, v, q, β) ∈ V . The operator Π satisfying (2.4) will take the form

ΠV = (Π
(div,S)
p+2 τ,Πgrad

r v,ΠK

p q, β). (4.1)

We choose Πgrad
r v to be one defined in Lemma 3.2, but applied component by component, to

the vector valued function v. The operator ΠK
p is simply the L2-orthogonal projection onto

{q ∈ L2(Ω;K) : q|K ∈ Pp(K;K), ∀K ∈ Ωh}. It remains to construct the operator Π
(div,S)
p+2 .

We do so, based on a set of degrees of freedom given in [9], in the next lemma.

Lemma 4.1. There is an operator Π
(div,S)
p+2 : H(div, K; S) → Pp+2(K; S) such that for every

τ ∈ H(div, K; S), we have

(Π
(div,S)
p+2 τ, qp)K = (τ, qp)K , ∀qp ∈ Pp(K; S), (4.2a)

〈Π
(div,S)
p+2 τ · n, µp+1〉∂K = 〈τ · n, µp+1〉∂K , ∀µp+1 ∈ P̃p+1(∂K;V), (4.2b)

‖Π
(div,S)
p+2 τ‖H(div,K) ≤ C‖τ‖H(div,K). (4.2c)

Proof. We only give the proof for N = 3 as the proof for N = 2 is similar. As in the proof
of Lemma 3.3, we will first construct the operator on the unit simplex K̂ in RN . Define
P⊥
p+1(∂K̂;V) = L2(∂K̂;V)-orthogonal complement of P̃p+1(∂K̂;V) in Pp+1(∂K̂;V) and set

P 0
p+2(K̂; S) = {τ̂ ∈ Pp+2(K̂; S) : 〈ŝ, τ̂ n̂− · n̂+〉ê = 0, ∀ŝ ∈ Pp+2(ê), ∀ê ∈ △1(K̂)} where,
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for each edge ê ∈ △1(K̂), n̂+ and n̂− are the normal vectors of the two faces sharing ê.

Let Bdiv
p+2(K̂; S) = {τ̂ ∈ P 0

p+2(K̂; S) : 〈v̂, τ̂ n̂〉∂K̂ = 0 for all v̂ ∈ P⊥
p+1(∂K̂;V)}. We define

Π̂
(div,S)
p+2 : H(div, K̂; S) 7→ Bdiv

p+2(K̂; S) by

(Π̂
(div,S)
p+2 τ̂ , q̂p)K̂ = (τ̂ , q̂p)K̂ , ∀q̂p ∈ Pp(K̂; S), (4.3a)

〈Π̂
(div,S)
p+2 τ̂ · n̂, µ̂p+1〉∂K̂ = 〈τ̂ · n̂, µ̂p+1〉∂K̂ , ∀µ̂p+1 ∈ P̃p+1(∂K̂;V). (4.3b)

By [9, Theorem 2.1], these equations are uniquely solvable, so Π̂
(div,S)
p+2 is well defined.

Next, we define Π
(div,S)
p+2 on any general simplex K by mapping Π̂

(div,S)
p+2 from K̂ using the

Piola transform for symmetric matrix-valued functions. Recalling the mapping GK from K̂
onto K and its derivative A, we define

Π
(div,S)
p+2 τ(x) =

1

detA
AΠ̂

(div,S)
p+2 τ̂(x̂)At,

for any τ ∈ H(div, K; S). Here, given τ onK, the function τ̂ on K̂ is defined by (detA)τ(x) =

Aτ̂ (x̂)At, with x = GK(x̂). As in the proof of Lemma 3.3, it is now easy to see that Π
(div,S)
p+2 τ

satisfies (4.2a) and (4.2b).
Next, we observe that the commutativity property

divΠ
(div,S)
p+2 τ = Πp+1 div τ, (4.4)

holds, where Πp+1 denotes the L
2(K;V)-orthogonal projection onto Pp+1(K,V). Let ωp+1 ∈

Pp+1(K;V). Then

(div(Π
(div,S)
p+2 τ), ωp+1)K = −(Π

(div,S)
p+2 τ, gradωp+1)K + 〈(Π

(div,S)
p+2 τ) · n, ωp+1〉∂K

= −(Π
(div,S)
p+2 τ, ε(ωp+1))K + 〈(Π

(div,S)
p+2 τ) · n, ωp+1〉∂K

= −(τ, ε(ωp+1))K + 〈τ · n, ωp+1〉∂K , by (4.1),

= −(τ, gradωp+1)K + 〈τ · n, ωp+1〉∂K

= (div τ, ωp+1)K .

which proves (4.4).
It only remains to prove the estimate of (4.2c). This can now be done as in the proof of

the estimate (3.7c) of Lemma 3.3, in two steps, using (4.4) in place of the commutativity
property used there. �

The main result of this section is the following.

Theorem 4.2. Suppose that r ≥ p + N and suppose that the compliance tensor A is

element-wise constant. Then, the difference between the discrete solution of the practical

DPG method, Uh = (σh, uh, ûh, σ̂n,h, αh), and the exact solution U = (σ, u, û, σ̂n, α) satisfies

‖σ − σh‖L2(Ω) + ‖u− uh‖L2(Ω) + ‖û− ûh‖H1/2
0

(∂Ωh)
+ ‖σ̂n − σ̂n,h‖H−1/2(∂Ωh)

+ |α− αh|

≤ C inf
(ρh,wh,ŵh,η̂h,γh)∈Uh

(

‖σ − ρh‖L2(Ω) + ‖u− wh‖L2(Ω)

+ ‖û− ûh‖H1/2
0

(∂Ωh)
+ ‖σ̂n − σ̂n,h‖H−1/2(∂Ωh)

+ |α− γh|

)

.

Notice that the term |α− γh| in the right side of the above inequality can be taken to zero.
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Proof. As mentioned above, we only need to verify Assumption (2.4) for the Π in (4.1) and
apply Theorem 2.1. By the inequalities of previous lemmas, the estimate (2.4b) is obvious.
To prove (2.4a), namely b(W , V − ΠV ) = 0 for all W ∈ Uh, it suffices to prove the following
eight identities

(Aρh, τ −Π
(div,S)
p+2 τ)Ω = 0, (wh, div(τ −Π

(div,S)
p+2 τ))Ωh

= 0,

〈ŵh, (τ −Π
(div,S)
p+2 τ) · n〉∂Ωh

= 0, (ρh, grad(v −Πgrad
r v))Ωh

= 0,

〈v −Πgrad
r v, η̂h〉∂Ωh

= 0, Q−1
0 (γhI,A(τ −Π

(div,S)
p+2 τ))Ω = 0

(ρh, q −ΠK

p q)Ω = 0, Q−1
0 (Aρh, (β − β)I)Ω = 0,

for all W ≡ (ρh, wh, ŵh, η̂h, γh) ∈ Uh. The first five are proved exactly as in the proof of
Theorem 3.4 but using the new lemma. The sixth is obvious from (4.2a). To see the
seventh, denoting by skw ρh the skew-symmetric part of ρh, observe that (ρh, q −ΠK

p q)Ω =

(skw(ρh), q −ΠK

p q)Ω = 0, by the definition of ΠK

p . �

We conclude by noting that results similar to Corollary 3.1 and Theorem 3.6 can be
established for this example as well. We omit the very similar arguments.
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