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Abstract. Some real-world insurance products contain a minimum-wealth or an
income-stream guarantee, both of which have to be met irrespective of capital
market conditions. Therefore, sellers of such products are well advised to pursue
a portfolio strategy that can meet these minimum investment goals if they want to
avoid additional cash payments. Portfolio Insurance seems to be the solution to this
portfolio problem.

However, this paper shows that Portfolio Insurance cannot protect minimum
investment goals because its strategies are fitted to a particular form of market
risk. Decision makers do not know for sure (with probability one) what the true
form of market risk is (model uncertainty); thus model uncertainty makes Portfolio
Insurance fail.
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1 Preliminaries

1.1 Introduction to the problem

In real-world financial markets, there are insurance products that offer their buy-
ers a minimum-wealth or an income-stream guarantee. Two prominent examples
are money-back guarantees at maturity (guaranteed minimum wealth), known in
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Germany as “Riester products”, and life annuities (guaranteed income streams).
By definition, sellers of these products are obliged to meet their guarantees irre-
spective of capital market conditions. Therefore, sellers are well advised to pursue
a portfolio strategy that is able to fulfill these minimum investment goals if they
want to avoid additional cash payments.

Portfolio Insurance seems to offer a solution to this portfolio problem: if wealth
approaches a level that endangers minimum-wealth or income-stream guarantees,
Portfolio Insurance reduces the amount invested in risky assets to (almost) zero
and invests (nearly) all funds in the riskless asset. In other circumstances, Portfolio
Insurance engages in a more aggressive investment style.

It is the objective of this paper to show that Portfolio Insurance cannot protect
minimum investment goals. This is because in the real world, decision makers do
not know for sure (with probability one) what the true form of market risk is; in other
words, decision makers are subject to model uncertainty. But Portfolio Insurance
strategies are fitted to a particular form of market risk, and thus they overlook model
uncertainty.

As proof of this statement, for several (isolated) forms of market risk (Step 1)
portfolio strategies are calculated that are designed to defend a guaranteed mini-
mum wealth (Option Based Portfolio Insurance) and a guaranteed income stream
((Constant) Proportion Portfolio Insurance). In Step 2, these strategies are exam-
ined further to identify which of them are able to meet minimum investment goals
even if the decision maker is subject to model uncertainty.

Option Based Portfolio Insurance calls for duplication of the put option implied
by the minimum-wealth guarantee. Although a duplication portfolio can be adapted
to cope with several sources of market risk, it is fitted to a concrete form of market
risk and can handle this form of market risk only. For that reason, when there is
model uncertainty, i.e., several forms of market risk are possible, there is only one
trivial strategy able to defend guaranteed minimum wealth: invest the present value
of guaranteed wealth in the riskless asset.

A more sophisticated strategy is possible with (Constant) Proportion Portfolio
Insurance. Assume an ex ante unknown number of stock market crashes which all
have a minimum jump amplitude ϕextr > -1. Then (Constant) Proportion Portfolio
Insurance can be based on this worst-case scenario and minimum investment goals
can be defended even when there is model uncertainty with a portfolio strategy that
does more than simply invest the present value of the income stream in the riskless
asset.

With respect to definition of model uncertainty and focusing on worst-case
scenarios, this analysis uses the methodology of Anderson, Hansen, and Sargent
(2000). However, their line of argumentation must be modified to work with mini-
mum investment goals.Anderson, Hansen, and Sargent (2000) argue with an explicit
preference for model similarity, so-called robustness, but do not specifically deal
with meeting minimum investment goals.

With respect to its results, this analysis supplements the Portfolio Insurance
literature by showing how to adapt Option Based Portfolio Insurance to an environ-
ment with several sources of market risk by using roll-over Option Based Portfolio
Insurance. Thereby, Rubinstein (1985) is generalized, a hypothesis formulated in
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Geman (1992) corrected, and an idea in Leland (1992) proven. In addition, (Con-
stant) Proportion Portfolio Insurance strategies are modified to work in a stochastic
volatility environment, thus extending Black and Jones (1987).

This article is organized as follows. The remainder of Section 1 gives some
definitions and outlines the framework of the model used. Section 2 deals with
minimum-wealth guarantees under several forms of market risk, Section 3 conducts
the same analysis for guaranteed income streams. Section 4 concludes the paper;
an Appendix follows.

1.2 Definition and particularization of model uncertainty

In the real world, decision makers do not know for sure (with probability one) what
the true form of market risk is; in other words, they are subject to model uncertainty.
Following Anderson, Hansen, and Sargent (2000, p. 6), model uncertainty is itself
a form of uncertainty. Thus, the total uncertainty confronting a decision maker is a
combination of model uncertainty and market risk. Technically,1 model uncertainty
results in a term g(t), which, when added to the increment of market risk, describes
the increment of total uncertainty, i.e., increment of total risk = g(t)+ increment of
market risk. Yet, the decision maker does not know the distribution of g(t). This is
why the term “model uncertainty” is used instead of “model risk”. To summarize,
model uncertainty can be defined as an unforeseeable shift in the shape (and not just
the parameters) of market risk. This shift, however, has to be close to the assumed
model of market risk as Anderson, Hansen, and Sargent (2000, p. 9) and Cagetti,
Hansen, Sargent, and Williams (2002, p. 374) point out; otherwise the assumed
model of market risk would be rejected empirically.

So far, this notion of model uncertainty is too abstract to be useful in devis-
ing concrete portfolio strategies. Therefore, I particularize the shift of the shape
of market risk as a shift of the underlying stochastic process. This shift might
involve homogenous model uncertainty (intra-model-shift, i.e., from diffusion to
diffusion or jump/diffusion to jump/diffusion) or heterogenous model uncertainty
(inter-model-shift, i.e., from diffusion to jump/diffusion). The integration of het-
erogenous model uncertainty denotes a difference to existing particularizations of
model uncertainty in continuous time, which all (see Maenhout, 2001, p. 13; Tro-
jani and Vanini, 2001, p. 7; Uppal and Wang, 2002, p. 10) work within homogenous
model uncertainty. – The problem with heterogenous model uncertainty is that it
seems to violate Cagetti, Hansen, Sargent, and Willliam’s (2002) empirical detec-
tion criterion. Two arguments can be made that indicate this conclusion might be
too hasty. First, the inclusion of jumps does not necessarily change stocks’distribu-
tion. For example, if 1 + jump amplitude is logarithmic-normally distributed as in
Merton (1976), investor’s wealth has the same type of distribution as in the case of
a (pure) geometric Brownian motion. Second, Bates (2000, p. 182) points out that
there are two models vying to explain negative skewness in stock returns after the

1 Alternatively, this statement can be formulated as follows: the distribution function of
market risk is subject to a multiplicative distortion – a Radon-Nikodym derivative unequal
to one (see Anderson, Hansen, and Sargent, 2000, p. 22; Uppal and Wang, 2002, p. 4).
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’87 crash: stochastic volatility and jumps. Since crashes and stochastic volatility
describe the same phenomenon, they are rather difficult to discriminate empirically.

To further illustrate model uncertainty, it is useful to distinguish model uncer-
tainty from estimation risk. Under estimation risk, the parameters of a stochastic
process change stochastically over time like, e.g., in Merton’s (1973) stochastic
volatility model. However, the presence of two such types of risk does not neces-
sarily change the shape of market risk. This can again be seen from Merton’s (1973)
stochastic volatility model: different estimates for parameters of the stochastic pro-
cess clearly mean that estimation risk is present, but the stochastic process itself
remains a process under stochastic volatility, i.e., does not change its shape to, e.g.,
a jump/diffusion process.

1.3 Framework of the analysis

1.3.1 General assumptions

To analyze the consequences of model uncertainty on portfolio selection under
minimum investment goals, it is a good idea to exclude all other circumstances
that might endanger the minimum investment goals. Therefore, I fall back on the
standard assumptions of continuous-time finance and minimum investment goal
literature:2

1. Capital markets are free of arbitrage and perfect, i.e., short selling constraints
or transaction costs do not interfere with meeting minimum investment goals.

2. Trading happens in continuous time, i.e., a potential lack of transaction speed
does not hurt minimum investment goals.

3. There is a riskless asset in the market with dynamics

dP (t) = rP (t)d t (1)

where P (t) denotes the price of the riskless asset at time t, r its interest rate
per unit time, and dt a time period of infinitesimal length.

4. There is one risky asset (stock market index), i.e., there is no basis risk that
endangers minimum investment goals.

In addition to these four standard assumptions is one more added to reflect the
particularization of model uncertainty developed in this paper:

5. The price process of the stock index is subject to model uncertainty since it can
follow a geometric Brownian motion (one source of market risk), a stochastic
volatility model similar to that of Merton (1973) (two homogenous sources of
risk due to estimation risk), or a combined jump/diffusion model (infinitesimal
and non-infinitesimal price changes and thus two heterogenous sources of mar-
ket risk); decision makers do not know the probability with which each type of
price process will occur.

To begin with the reference model (or with g(t) = 0 in Anderson, Hansen, and
Sargent’s (2000) terms), a geometric Brownian motion can be formalized as

dS(t) = α S(t) d t + σ S(t) d z(t) (2)
2 See, e.g., Merton (1973), as well as Black and Perold (1992).



Portfolio Insurance and model uncertainty 299

where S(t) denotes the price of the stock index at time t, dS(t) its infinitesimal
price change, α its per unit time mean, σ its per unit time standard deviation, and
dz(t) the increment of a Wiener process.

Under a combined jump/diffusion process the index evolves according to (or
with g(t) = the stochastic differential equation for a Poisson-driven process; see
Tapiero, 1998, p. 255)

dS(t) = α S(t) d t + σ S(t) d z(t) (3)

with probability 1 − λdt (diffusion case)

∆S(t) = S(t−)(1 + ϕ(t)) − S(t−)

with probability λdt (jump case)

with ∆ signifying a large jump-induced, i.e., non-infinitesimal price change, λdt
denoting the probability3 that a jump occurs between time t and t+dt, i.e., the exact
number and dates of jumps are ex ante unknown, ϕ(t) depicting the stochastic jump
amplitude, and t− meaning a point in time immediately before time t; moreover,
jump and diffusion risk are uncorrelated.

Finally, a stochastic volatility model similar to that of Merton (1973, p. 873)
reads

d σ(t) = ασ σ(t) d t + σσ σ(t) d zσ(t) (4)

with ασ and σσ denoting per unit time mean and standard deviation of d σ(t)
σ(t) , the

relative change in volatility, and d zσ(t) the increment of a Wiener process that is
correlated with d z(t).

Consequently, one obtains the following dynamics of the index under stochastic
volatility (or with g(t) = S(t) (σ(t) − σ) d z(t)):

dS(t) = α S(t) d t + σ(t) S(t) d z(t) (5)

1.3.2 Minimum investment goals

In this paper two legally different minimum investment goals are considered:
minimum-wealth guarantees and guaranteed income streams. Are these guaran-
tees different from an economic point of view as well and will thus have to be
analyzed separately?

Although wealth can be transformed into an annuity, a minimum-wealth guar-
antee is not the same as an income-stream guarantee because this annuity turned
wealth might not last over the uncertain lifespan of an individual, whereas a guar-
anteed income stream covers the entire lifespan of an individual. – Likewise, just

3 As λdt just states the probability that a jump occurs assuming that a combined
jump/diffusion model is the correct specification of the stock price model, this specifica-
tion of a jump probability does not contradict the statement that decision makers are unable
to specify probabilities for a certain stock price process under model uncertainty. Thus, it
should not be confused with an assertion on the probability that the combined jump/diffusion
model itself is valid.
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because it is possible to defend an income stream and an income stream can be ac-
cumulated to a wealth level, this fact does not mean the same is true of a minimum-
wealth guarantee. The income stream simply needs some re-investment in order to
be transferred into wealth; the search for a non-trivial portfolio strategy that guar-
antees minimum wealth starts anew. For these reasons, both types of guarantees
must be examined.

1.3.3 Methodology

The literature (see in particular Anderson, Hansen, and Sargent (2000)) contains
a general solution principle for portfolio strategies even under model uncertainty:
follow that portfolio strategy that performs best in a reasonable worst-case capi-
tal market scenario. Therefore, I will develop portfolio strategies under minimum
investment goals along the lines of Anderson, Hansen, and Sargent (2000).

However, the details of their argumentation must be modified to work under
minimum investment goals. Anderson, Hansen, and Sargent (2000) take model
uncertainty into account by adding an explicit preference for model similarity,
so-called robustness, to the objective function of the decision problem. Minimum
investment goals constitute an extreme preference for robustness in that they show
zero tolerance (penalty term of −∞) below the minimum investment goal and full
tolerance (no penalty term) above, i.e., for these wealth regions a preference for
robustness is unnecessary. Hence, minimum investment goals are better integrated
into the decision problem by adding a strict minimum-wealth or an income-stream
constraint to the decision problem instead of modifying the objective function itself.
–An investment strategy based on a normal preference for robustness is undoubtedly
more conservative than one without any preference for robustness, but might still
be too aggressive if there are minimum investment goals that must be met.

Using this modification of the decision problem, I identify that portfolio strategy
under minimum investment goals that performs best in a reasonable worst-case
capital market scenario (portfolio strategy in the spirit of Anderson, Hansen, and
Sargent (2000)) as follows: I calculate in a first step the optimum portfolio strategy
under minimum investment goals for each of the (isolated) three price processes
– as if there was no model uncertainty. In a second step, I confront the portfolio
strategies derived from the (isolated) prices processes with model uncertainty, i.e., I
determine from the set of isolated strategies those that are able to defend minimum
investment goals in the worst-case scenario that model uncertainty incorporates.

2 Minimum-wealth guarantees (Option Based Portfolio Insurance)

2.1 Decision problem and general structure of portfolio strategies that solve it

A minimum-wealth guarantee promises its buyer (for the sake of simplicity, I as-
sume that there is just one buyer) at the beginning of his retirement at T to pay
back his investment if the world is in bad states, or to capitalize on a positive wealth
development if the world is in good states; formally:

max {W (T ), K} (6)
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where W (T ) denotes total wealth of the seller’s portfolio, and K is the guaranteed
minimum wealth (the so-called floor).

The seller of this guarantee is characterized with the help of a fairly stylized
model:4 a risk averse decision maker who wants to create a payoff structure over
time. As payoffs are comprised of money that is no longer available for investment
purposes, the payoff structure can be particularized as a consumption stream. To
achieve his goals, the seller determines his consumption (C(t), t ≥ 0) and portfolio
strategy (w(t), t ≥ 0, where w(t) denotes the weight invested in the risky index).

Because the seller is obliged to meet the guarantee irrespective of capital mar-
ket conditions, the minimum-wealth guarantee (eq. (6)) enters the seller’s decision
problem in form of a minimum terminal wealth constraint – assuming that the seller
does not want to put additional funds into his company just to reach the required
wealth level and that bankruptcy is excluded.

Formalizing these verbal descriptions, the decision problem of the seller of the
minimum-wealth guarantee reads

Max
C(t), w(t)

E0




∞∫
0

e−ρ t C(t)γ

γ
d t


 (7)

s.t.: W (T ) ≥ K
wealth dynamics according to eqs. (2), (3), or (5)

where ρ denotes the time preference rate of the seller, and 1 − γ his (constant)
relative risk aversion.

According to Grossman and Zhou (1996, p. 1379), the general structure of the
portfolio strategy w(t) that solves the decision problem (7) consists of two parts: the
(usual) expected utility maximizing portfolio and a correction portfolio that takes
the constraint into account. The reasons for this portfolio structure are as follows.
The constraint is identical with an investment in the index and the purchase of a
(implied) put option F impl with strike price K and maturity T because it can be
written as

max {W (T ), K} = W (T ) + max {K − W (T ), 0}︸ ︷︷ ︸
F impl

(8)

Since real-world options do not necessarily offer the desired strike price or the
adequate maturity, the implied put’s payoff at time T has to be duplicated by a
dynamic portfolio strategy. This means that the solution to the decision problem
(7) involves as an integral part a well-known portfolio concept, namely, Option
Based Portfolio Insurance.

In other words, the task of finding a portfolio strategy, w(t), that solves the
decision problem under minimum terminal wealth constraints boils down to the
question of whether Option Based Portfolio Insurance can be implemented suc-
cessfully. Therefore, the expected utility maximizing portfolio, which stems from
the objective function of the decision problem, will not be examined further.

4 Further institutional details do not offer additional insights regarding the interplay be-
tween minimum-wealth guarantees and model uncertainty, as will shortly become clear.
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2.2 Option Based Portfolio Insurance under isolated price processes

So far, just the basic structure of portfolio strategies that solve the decision problem
(7) has been identified. In this section, Option Based Portfolio Insurance is partic-
ularized for each of the (isolated) three price processes as if there was no model
uncertainty (Step 1 of the analysis).

2.2.1 “Classical” Option Based Portfolio Insurance
under different volatility scenarios

Leland (1980) and Rubinstein and Leland (1981) have demonstrated under geo-
metric Brownian motion that the price of the implied put option at every time t, and
thus also at maturity T , can be duplicated by trading in the index and the riskless
asset because implied option and index depend linearly on the same single source
of market risk. The duplication portfolio consists of investing the number F impl

S in
stocks (delta of the implied put option calculated with the help of the Black/Scholes
formula) and the amount F impl − F impl

S S in the riskless asset.
However, under combined jump/diffusion processes (see Merton, 1976) and

stochastic volatility (see Johnson and Shanno, 1987; Hull and White, 1987), dupli-
cation fails. There are two sources of market risk, but only one risky asset. Therefore,
decision makers can eliminate one source of market risk only, leaving them fully
exposed with respect to the other source of market risk.

2.2.2 Roll-over Option Based Portfolio Insurance
under geometric Brownian motion

Unlike “classical” Option Based Portfolio Insurance, roll-over Option Based Port-
folio Insurance employs traded options on the same underlying, but with shorter
maturities, to duplicate the implied put. After the first set of options matures, roll-
over Option Based Portfolio Insurance switches to the next set of options and so
forth, until the implied put becomes due at time T .

To put this verbal description into practice, consider the dynamics of every
(implied or traded) derivative F j under geometric Brownian motion:

d F j(t) = F j
t d t + F j

S α S(t) d t + F j
S σ S(t) d z(t) +

1
2
F j

SS σ2 S2(t) d t (9)

Complete replication of the implied put F impl requires that the duplication port-
folio must replicate the stochastic component F j

S σ S(t) d z(t). Since a geometric
Brownian motion contains only one source of market risk, one (traded) option F i

is needed (see Rubinstein, 1985, p. 46):

N i(t) · F i
S σ S(t) d z(t) = F impl

S σ S(t) d z(t) (10)

Therefore, the duplication portfolio consists of the number

N i(t) =
F impl

S

F i
S

(11)
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2.2.3 Roll-over Option Based Portfolio Insurance
under combined jump and diffusion risk

The price dynamics of every (implied or traded) derivative F j under combined
jump/diffusion risk follows

d F j(t) = F j
t d t + F j

S α S(t) d t + F j
S σ S(t) d z(t) +

1
2
F j

SS σ2 S2(t) d t (12)

with probability 1 − λdt (diffusion case)

F j
(
S(t−) (1 + ϕ(t))

) − F j(S(t−))

with probability λdt (jump case)

Since there are two sources of market risk (jump and diffusion risk), two (traded)
options are required to duplicate the implied put option:

• diffusion risk

N i(t) ·F i
S σ S(t) d z(t)+Nk(t) ·F k

S σ S(t) d z(t) = F impl
S σ S(t) d z(t)(13a)

• jump risk

N i(t)∆F i + Nk(t)∆F k = ∆F impl (13b)

It is at this point that the advantage of roll-over Option Based Portfolio Insurance,
compared to “classical” Option Based Portfolio Insurance, becomes obvious. Fol-
lowing Ross (1976), increasing the number of derivatives makes the market “more
complete”, i.e., allows for more sources of market risk to be duplicated, although
the number of spot market instruments does not change. Consequently, the desired
duplication portfolio under combined jump/diffusion risk, first, exists and, second,
reads (from eqs. (13a) and (13b))

N i(t) =
F impl

S ∆ F k − F k
S ∆ F impl

F i
S ∆ F k − F k

S ∆ F i
(14a)

Nk(t) =
F i

S ∆ F impl − F impl
S ∆ F i

F i
S ∆ F k − F k

S ∆ F i
(14b)

Equations (14a) and (14b) correct a common statement (see, e.g., Geman, 1992,
p. 187; Zhou and Kavee, 1988, p. 54), namely, that Option Based Portfolio Insurance
does not work in a jump/diffusion environment. These equations demonstrate that
this statement is true for “classical” Portfolio Insurance only, not for roll-over
Option Based Portfolio Insurance strategies.

Equations (14a) and (14b) also elaborate on Leland’s (1992, p. 155) idea of
extending Option Based Portfolio Insurance to an environment of combined jump/
diffusion risk, and generalize a result of Rubinstein (1985, p. 49), who uses just one
option F i to duplicate the implied put. His result, however, only holds if and only
if both FS = a · F i

S (with a an arbitrary constant) and ∆F = a · ∆F i
S are true.
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2.2.4 Roll-over Option Based Portfolio Insurance under stochastic volatility

The price of every derivative F j in a market under stochastic volatility has the
following dynamics:

d F j(t) = F j
t dt + F j

SαS(t)dt + F j
Sσ(t)S(t)dz(t) +

1
2
F j

SSσ2(t)S2(t)dt (16)

+F j
σασσ(t)dt + F j

σσσσ(t)dzσ +
1
2
F j

σσσ2
σσ2(t)dt

+F j
σScovσSσ(t)S(t)dt

where covσS denotes the covariance per unit time between σ(t) and S(t).
To eliminate both sources of market risk (diffusion and volatility risk), the

duplication portfolio of the implied put consists of two options,

• diffusion risk

N i(t) · F i
S σ(t) S(t) d z(t) + Nk(t) · F k

S σ(t) S(t) d z(t) (16a)

= F impl
S σ(t) S(t) d z(t)

• stochastic volatility risk

N i(t) · F i
σ σσ σ(t) d zσ(t) + Nk(t) · F k

σ σσ σ(t) d zσ(t) (16b)

= F impl
σ σσ σ(t) d zσ(t)

which numbers can be obtained by solving eqs. (16a) and (16b):

N i(t) =
F impl

S F k
σ − F k

S F impl
σ

F i
S F k

σ − F k
S F i

σ

(17a)

Nk(t) =
F i

S F impl
σ − F impl

S F i
σ

F i
S F k

σ − F k
S F i

σ

(17b)

Again, eqs. (17b) and (17b) are a practical illustration of Leland’s (1992, p. 155) idea
of adapting Option Based Portfolio Insurance to stochastic volatility; the equations
correct Geman (1992, p. 187) in that only “classical” Option Based Portfolio Insur-
ance does not work under stochastic volatility; and generalize Rubinstein (1985,
p. 49), who uses just one option F i to achieve duplication, meaning that he must
assume that FS = a · F i

S implies Fσ = a · F i
σ .

2.3 Consequences of model uncertainty to Option Based Portfolio Insurance

Having calculated Option Based Portfolio Insurance strategies for each (isolated)
price process, the second step of the analysis becomes possible: the confrontation
of (isolated) Option Based Portfolio Insurance strategies with model uncertainty,
i.e., the determination of those portfolio strategies from the set of isolated strategies
that are able to defend minimum investment goals in the worst-case scenario that
model uncertainty incorporates.

Analysis of “classical” Option Based Portfolio Insurance under several price
process specifications, and thus model uncertainty, has shown that “classical” Op-
tion Based Portfolio Insurance can duplicate the desired option only under geo-
metric Brownian motion. Or, more generally, “classical” Option Based Portfolio



Portfolio Insurance and model uncertainty 305

Insurance has to operate in an environment characterized by just one source of risk.
Whenever there is a second source of uncertainty (combined jump/diffusion pro-
cesses, estimation risk, or model uncertainty), “classical” Option Based Portfolio
Insurance cannot assure guaranteed minimum wealth. In other words, “classical”
Option Based Portfolio Insurance is completely unable to cope with model uncer-
tainty.

In comparison, roll-over Option Based Portfolio Insurance is able to dupli-
cate options under all three classes of (isolated) price processes considered. How-
ever, each duplication portfolio requires different numbers N(t) for different price
processes. Under geometric Brownian motion, there is just one option involved
(eq. (11)); however, jumps need two options to finish duplication and the duplica-
tion portfolio under jumps cannot coincide with that under geometric Brownian
motion (eqs. (14a) and (14b) on the one hand and eq. (11) on the other hand di-
verge). Basically, the same argument holds for stochastic volatility, wherefore the
duplication portfolios under geometric Brownian motion (eq. (11)) and stochastic
volatility (eqs. (17a) and (17b)) are different. Moreover, the number of options held
under stochastic volatility (eqs. (17a) and (17b)) and jumps (eqs. (14a) and (14b))
are unequal; the reaction of the option price to a change of volatility (Fσ = linear
change of the option price) does not coincide with its price movement due to a
stock price jump (∆F = non-linear change of the option price).

One could argue that increasing the number of options used for duplication
purposes might circumvent these problems. That is, to cope with model uncertainty,
the following strategy could be applied: use three options so as to be able to manage
three types of market risks – normal risk, jump risk, and stochastic volatility risk.
The problem with this argument is that it assumes that all three sources of market
risk are present at the same time. Thus, it does not constitute the worst-case scenario
for situations when all three risks may or may not be present at the same time. In fact,
under minimum-wealth guarantees there is no longer “the” worst-case scenario in
the spirit of Anderson, Hansen, and Sargent (2000). Instead, there is just one price
process that allows for duplication.

In summary, roll-over Option Based Portfolio Insurance can solve the dupli-
cation problem for all (isolated) price processes and hence is an improvement
over “classical” Option Based Portfolio Insurance. However, model uncertainty
makes roll-over Option Based Portfolio Insurance unable to adequately deal with
guaranteed minimum wealth. – This observation delivers an alternative proof of
a statement made by Avramov (2001, p. 21) that model uncertainty seemed to be
more important than estimation risk.

These results have one remarkable consequence for Option Based Portfolio
Insurance (portfolio strategies designed to defend minimum-wealth guarantees)
under model uncertainty. Since duplication is fitted to one particular price process,
there is only one trivial strategy able to defend guaranteed minimum wealth: in-
vest the present value of the guaranteed wealth in the riskless asset.5 This outcome
holds irrespective of whether there is homogenous or heterogonous model uncer-

5 Technically speaking, this strategy equals a super-replicating strategy in its extreme, i.e.,
most expensive, form. It assumes, however, that there is a (globally) riskless asset. If there is
just an asset with a local riskfree rate, as is the case in the real world, even the trivial strategy
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tainty and by construction does not depend on sellers’ coefficients of risk aversion.
Nevertheless it does not imply that total wealth must be invested in the riskless
asset because total investment consists of the sum of the utility maximizing portfo-
lio and the correction portfolio. Instead, the correction portfolio, i.e., the portfolio
that deals with the minimum terminal wealth constraint, is identical with a riskless
investment.

3 Guaranteed income stream ((Constant) Proportion Portfolio Insurance)

3.1 Decision problem and general structure of portfolio strategies that solve it

By selling a life annuity, the seller guarantees that the buyer can withdraw every
period the amount K d t as long as he lives. As opposed to minimum-wealth guar-
antees, K (the so-called floor) now denotes withdrawal per unit time, i.e., a rate,
and not an amount of money.

The seller of this guarantee is the same stylized decision maker who sold the
minimum-wealth guarantee (see Sect. 2.1) and he faces the following formalized
decision problem:

Max
C(t), w(t)

E0




∞∫
0

e−ρ t C(t)γ

γ
d t


 (18)

s.t.: C(t) ≥ Cmin = K
wealth dynamics according to eq. (2), (3), or (5)

Two remarks might prove useful to distinguish the decision problem under
income-stream guarantees (18) from that under minimum-wealth guarantees (7).
First, assuming that a seller of an income-stream guarantee has an infinite planning
horizon simplifies the setup because it avoids the problem of specifying a date at
which the buyer of the annuity will die, thus ending the obligation to pay the annuity.
Under minimum-wealth guarantees, specification of the buyer’s planning horizon
T is an integral part of the problem; hence it cannot be circumvented. Second,
to simplify calculations, the payment for the annuity is integrated into the seller’s
consumption constraint because both consumption and payment for the annuity are
withdrawals. There is one disadvantage to this procedure: it assumes that the seller
encounters a positive utility by meeting the guarantee. However, since this utility is
the (absolute) minimum utility, the seller’s incentive to achieve higher utility levels
by pursuing an adequate portfolio and consumption strategy is not hampered by
considering this (combined) consumption constraint.

According to Black and Jones (1987), the portfolio strategy, w(t), that solves
the decision problem (18) is distinguished by the fact that the seller of the guarantee
invests under some circumstances a multiple of total wealth in the risky asset, under
other circumstances a multiple of W (t)− K

r ; in other words, he pursues a so-called
(Constant) Proportion Portfolio Insurance strategy.

of investing the present value of guaranteed wealth in the (local) riskless asset might miss
this minimum investment goal.
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This strategy can be illustrated as follows. If at the beginning of each period
(of infinitesimal length) the amount K

r can be invested in the riskless asset, the
income-stream guarantee will be defended. This means the investment in the risky
asset must equal zero whenever W (t) reaches K

r . Therefore, a portfolio strategy
that continuously re-balances a portfolio that invests a multiple of W (t) − K

r in
the risky asset ((Constant) Proportion Portfolio Insurance) will indeed be able to
defend the income stream guarantee.

3.2 (Constant) Proportion Portfolio Insurance under isolated price processes

So far, just the basic structure of portfolio strategies that solve the decision problem
(18) has been identified; the circumstances under which (Constant) Proportion
Portfolio Insurance is applied and the calculation of the multiplier m are yet to be
discussed. Both will be covered in this subsection using (isolated) price process,
i.e., as if there was no model uncertainty (Step 1 of the analysis).

3.2.1 (Constant) Proportion Portfolio Insurance under geometric Brownian
motion

Black and Perold (1992, pp. 420, 425) particularize (Constant) Proportion Portfolio
Insurance under geometric Brownian motion as follows:

w(t) · W (t) =




1
1 − γ

· α − r

σ2 · W (t) for W (t) ≥ W+

1
1 − γ′ · α − r

σ2︸ ︷︷ ︸
m

·
[
W (t) − K

r

]
for W (t) < W+ (19)

with W+ = K
r · γ−1

γ−γ′ .

According to eq. (19), the optimum portfolio weight of the risky asset calls for
a division of the portfolio strategy into two parts: above wealth level W+, deci-
sion makers follow the well-known portfolio strategy under geometric Brownian
motion (see Merton, 1969). Below the critical wealth level W+, (Constant) Pro-
portion Portfolio Insurance is used. Obviously, the circumstances under which a
decision maker follows (Constant) Proportion Portfolio Insurance under geometric
Brownian motion read: wealth does not exceed level W+. – This outcome is rather
intuitive since “high” wealth levels are able to bear “high” losses without putting
pressure on the guarantee.

The multiplier m depends on mean and variance of the index as well as on the
risk aversion parameter γ′.6 γ′ is a function of the (model-exogenously specified)
risk aversion parameter γ of the decision maker and thus investor-specific. However,
it deviates from γ because it is determined model-endogenously to finetune the
portfolio strategy if wealth is low and the withdrawal constraint might soon become
binding.

6 γ′ can be calculated from eq. (A.5a). This section, however, focuses on the fundamentals
of the optimum solution and not on its details. Therefore, the explicit calculation of γ′ is
omitted.
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3.2.2 (Constant) Proportion Portfolio Insurance
under combined jump/diffusion risk

Under combined jump/diffusion processes, the optimum investment in the risky
asset reads (see Sect.A of the Appendix)

w(t) · W (t) = − 1
ϕextr︸ ︷︷ ︸
m

·
(

W (t−) − K

r

)
(20)

As opposed to the situation under geometric Brownian motion, the optimum portfo-
lio strategy under combined jump/diffusion processes (eq. (20)) does not distinguish
between a critical and an uncritical region; thus it does not switch between more or
less conservative portfolio strategies. This is easily explained by the fact that there
are two completely different sources of market risk and it is impossible to define a
critical wealth level that works under both types of risk. Jumps lead to potentially
higher losses and thus call for higher wealth levels than diffusion processes. Ex
ante, however, the loss in each period induced by the jump is unknown because
the jump amplitude is defined as a percentage of future wealth. – Consequently,
under combined jump/diffusion risk, the decision maker will never deviate from
(Constant) Proportion Portfolio Insurance.

The multiplier m is specified as the minimum jump amplitude (ϕextr).7 Choos-
ing W (t−) − K

r as the basis of the risky investment is not conservative enough
– the large price movements caused by jumps can nevertheless violate the floor.
Therefore, the multiplier must be restricted from above in each period. This fact
makes the multiplier independent of investors’ coefficients of risk aversion.

By adapting (Constant) Proportion Portfolio Insurance to jumps, eq. (20) cor-
rects the statement by Black and Jones (1987, p. 49) that the performance of (Con-
stant) Proportion Portfolio Insurance is inappropriate under jumps. (Constant) Pro-
portion Portfolio Insurance can be modified to work under combined jump/diffusion
risk.

3.2.3 (Constant) Proportion Portfolio Insurance under stochastic volatility

The optimum investment in the risky asset under stochastic volatility can be deter-
mined as follows8

w(t)·W (t) =
[

1
1 − δ

· α − r

σ2(t)
+

1
1 − δ

Bσ(σ(t))
B(σ(t))

· covσW (t)
σ2(t)

]
︸ ︷︷ ︸

m

[
W (t) − K

r

]
(21)

Similar to the situation under combined jump/diffusion risk, the optimum portfolio
strategy under stochastic volatility (eq. (21)) does not distinguish between a critical

7 Concentrating on jumps with negative amplitude implies that the risky asset is not sold
short in the optimum. Otherwise, the “minimum jump amplitude” would be the maximum
price increase of the risky asset. Yet, selling the risky asset short would signify that the only
risky asset in the market would be worse than the riskless asset. For that reason, this case is
excluded from further analysis.

8 A proof can be found in Sect. B of the Appendix. – Similar to γ′, δ can be obtained from
eq. (A.5a).
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and an uncritical region, i.e., does not switch between more or less conservative
strategies. Since there are two completely different sources of market risk, it is
impossible to define a critical wealth level that works under both types of risk. A
high volatility leads to potentially higher losses and thus calls for higher wealth
levels than a low volatility. Ex ante, however, the volatility level is unknown and
thus the critical wealth level. Consequently, under stochastic volatility (estimation
risk), a decision maker will never deviate from (Constant) Proportion Portfolio
Insurance.

The multiplier m depends on mean and variance of the index, terms evaluating
the stochastic volatility risk, and on the risk aversion parameter δ. δ is a function of
the (model-exogenously specified) risk aversion parameter γ of the decision maker
and thus investor-specific. However, it deviates from γ because it is determined
model-endogenously to finetune the portfolio strategy if wealth is low and the
withdrawal constraint might soon become binding.

In summary, eq. (21) adapts (Constant) Proportion Portfolio Insurance strategies
– to my knowledge for the first time in literature – to work in a stochastic volatility
environment. The equation also makes obvious that the term Constant Proportion
Portfolio Insurance is no longer justified. The multiplier m depends on parameters
of the stochastic volatility risk; as such, it varies with time. The term time-varying
Proportion Portfolio Insurance seems more appropriate.

3.3 Consequences of model uncertainty
to (Constant) Proportion Portfolio Insurance

Having set forth the circumstances under which (Constant) Proportion Portfolio
Insurance is applied and the calculation of the multiplier m for (isolated) price
processes, the second step of the analysis becomes possible: the confrontation of
(Constant) Proportion Portfolio Insurance strategies with model uncertainty, i.e.,
the determination of those portfolio strategies from the set of isolated strategies
that are able to defend minimum investment goals in the worst-case scenario that
model uncertainty incorporates.

A pure geometric Brownian motion calls for (Constant) Proportion Portfolio
Insurance to be applied only when wealth is low (see eq. (19)), whereas combined
jump/diffusion risk (eq. (20)) and stochastic volatility (estimation) risk (eq. (21))
apply (Constant) Proportion Portfolio Insurance to all wealth levels. To cope with
model uncertainty under income-stream guarantees hence means to fall back on the
most conservative representation of a portfolio strategy, i.e., to follow (Constant)
Proportion Portfolio Insurance at all wealth levels.

In a similar way, the multiplier that works even under model uncertainty can be
characterized: it is the smallest multiplier that occurs under all three (isolated) price
processes: − 1

φextr
. Jumps, therefore, depict a clear-cut worst-case scenario (see

Sect. B of the Appendix for a proof) under income-stream guarantees as opposed to
minimum-wealth guarantees where no (real) worst-case scenario was observable.

These conclusions regarding (Constant) Proportion Portfolio Insurance (opti-
mum portfolio strategies under income-stream guarantees) are in stark contrast



310 B. Nietert

to those of Option Based Portfolio Insurance (portfolio strategies designed to de-
fend minimum-wealth guarantees). First, (Constant) Proportion Portfolio Insurance
(usually) does not have to rely on investing the present value of the floor in the risk-
less asset, which makes income-stream guarantees easier to defend than minimum-
wealth guarantees. Only if a stock exchange does not specify9 an upper limit for
stock price movements will the minimum jump amplitude read ϕextr = -1 and make
that part of (Constant) Proportion Portfolio Insurance that defends the guarantee
indistinguishable from a buy and hold strategy in the riskless asset.10 Second, there
is a huge difference between portfolio strategies under homogenous and heteroge-
nous model uncertainty. Under homogenous model uncertainty, the multiplier m
and, hence, the portfolio strategy, is investor-specific. Under heterogenous model
uncertainty, the multiplier m stems from the minimum jump amplitude, thus mak-
ing (Constant) Proportion Portfolio Insurance independent of sellers’ coefficients
of risk aversion in that it yields strategies identical for all types of decision makers.

4 Conclusion

This paper began by stating that in real-world market financial markets there are
insurance products that offer their buyers a minimum-wealth or an income-stream
guarantee irrespective of capital market conditions, i.e., stock price processes as-
sumed. Therefore, sellers of these products are well advised to pursue a portfolio
strategy that is able to meet these minimum investment goals if they want to avoid
additional cash payments. Portfolio Insurance seems to offer a solution to this
portfolio problem.

However, it was the objective of this paper to show that Portfolio Insurance
cannot protect minimum investment goals because it overlooks a real-world phe-
nomenon: model uncertainty.

Option Based Portfolio Insurance (portfolio strategies designed to defend mi-
nimum-wealth guarantees) calls for duplication of the put option implied by the
minimum-wealth guarantee. Although a duplication portfolio can be adapted to
cope with several sources of market risk, it is fitted to a concrete form of market
risk and can handle this form of market risk only. For that reason, when there is
model uncertainty, i.e., several forms of market risk are possible, there is only one
strategy able to defend guaranteed minimum wealth: invest the present value of
guaranteed wealth in the riskless asset.

A more sophisticated strategy is possible with (Constant) Proportion Portfolio
Insurance (portfolio strategies to defend income-stream guarantees). Assume an ex
ante unknown number of stock market crashes which all have a minimum jump
amplitude ϕextr > −1. Then (Constant) Proportion Portfolio Insurance can be

9 See Roll (1989, p. 54) for an overview on stock exchanges that have limits for maximum
possible price changes per day.

10 As opposed to minimum-wealth guarantees, the riskless investment under income-stream
guarantees will be able to defend the floor even if there is only a local riskless asset. (Constant)
Proportion Portfolio Insurance works with a riskless investment that matures after one period.
Therefore, it is not subject to the uncertainty imposed by the local riskfree rate.
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based on this worst-case scenario and minimum investment goals can be defended
even when there is model uncertainty with a portfolio strategy that does more than
simply invest the present value of the income stream in the riskless asset.

These results on the performance of Portfolio Insurance strategies can be applied
to judge the benefits of products with a minimum-wealth or an income-stream
guarantee.

Minimum-wealth guarantees can be defended under the real-world phenome-
non of model uncertainty only by following a trivial portfolio strategy – trivial in the
sense that the minimum investment goal is achieved by riskless investment. For that
reason, buyers of minimum-wealth guarantees are buying a product that performs
like a riskless investment. Sellers of minimum-wealth guarantees cannot fall back
on their superior portfolio selection skills because employing a sophisticated port-
folio strategy, i.e., a strategy that involves risky investment, automatically means
speculating on model uncertainty. This speculation, though, differs from that of
“normal” portfolio selection. Whereas “normal” portfolio selection tries to forecast
stocks’ means in particular, which is difficult as Merton (1980) has shown, specu-
lation on model uncertainty must determine the probabilities that a certain class of
price processes is the true one; this job might be an even tougher task. In summary,
minimum-wealth guarantees offer, at least in the stylized world of this paper, no
advantage to either buyer or seller.

Since meeting guaranteed income streams allows for non-trivial portfolio strate-
gies under the real-world phenomenon of model uncertainty, both buyers and sell-
ers of such products can capitalize on the sellers’ superior portfolio selection skills.
Thus, in the stylized world of this paper, guaranteed-income stream products are
valuable to both buyer and seller.

Appendix

A. A derivation of Constant Proportion Portfolio Insurance strategies
under combined jump/diffusion processes

After having specified the wealth dynamics in the decision problem (18) with a com-
bined jump/diffusion process, the following Hamilton/Jacobi/Bellman equation is
obtained (see, e.g., Ahn and Thompson, 1988, p. 158):

0 = Max
C(t), w(t)

{
e−ρt C(t)γ

γ
+ Jt (A.1)

+JW (α − r) w(t)W (t) + JW (rW (t) − C(t))

+
1
2
JWW w2(t)σ2W 2(t) + λ E {J [(1 + w(t) ϕ(t)) W (t)] − J}

}
s.t. : C(t) ≥ Cmin = K

lim
t→∞ J [W (t), t] = 0

Following the line of argument developed by Black and Jones (1992) and Mer-
ton (1993, p. 186), a possible solution of (the constrained) problem (A.1) can be
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found by splitting the task of determining w(t) into two related, but unconstrained
problems: the determination of the optimum portfolio strategy for a critical and an
uncritical region.

To verify that this is indeed a solution to problem (A.1), three steps are needed:

1. Derivation of the optimum portfolio weight for the critical region.
2. Derivation of the optimum portfolio weight for the uncritical region.
3. Determination of a critical wealth level that separates the critical (c) from the

uncritical (u) region.

This third step serves in particular to verify that the two-step procedure delivers
an admissible solution, i.e., keeps the indirect utility function J [.] continuous and
twice differentiable (as required by problem (A.1)).

Step 1
The decision maker’s budget equation reads in every period

W (t−) = E(t−) + E0(t−) (A.2)

where E denotes the amount invested in the risky index and E0 that invested in the
riskless asset.

Jumps entail a sudden and large change of wealth. Therefore, immediately after
a jump, wealth changes to (after having used the budget constraint (A.2) to substitute
out E0)

W (t) = E(t−) · (1 + ϕ(t)) +
[
W (t−) − E(t−)

]
(A.3)

On the one hand, by definition, (Constant) Proportion Portfolio Insurance does not
require a zero investment in the risky asset; instead it invests a multiplier m of
W (t−)− K

r in the risky asset. On the other hand, the guaranteed income stream K,
the so-called floor, must be defended, which means that at the beginning of each
period wealth must be not less than K

r . To fulfill both requirements, the multiplier
m must be determined in a way that wealth remains above K

r in every period even in
the worst-case jump scenario. Denote the minimum jump amplitude (in any period)
with ϕextr, it must hold:

W (t) =
K

r
= m ·

(
W (t−) − K

r

)
︸ ︷︷ ︸

E(t−)

· (1 + ϕextr) (A.4)

+
[
W (t−) − m

(
W (t−) − K

r

)]
which yields

m = − 1
ϕextr

Step 2
I omit a detailed explanation of Step 2 as will become clear immediately.

Step 3
The third step involves checking whether J [.] is continuous and twice differen-
tiable. To that end, the following boundary conditions must be met by the candidate
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solution:

Jc

[
W+ − K

r

]
= Ju

[
W+]

(A.5a)

Jc
W

[
W+ − K

r

]
= Ju

W

[
W+]

(A.5b)

Jc
WW

[
W+ − K

r

]
= Ju

WW

[
W+]

(A.5c)

Without having to rely on an explicit calculation of J [.], such a (non-trivial) W+

cannot exist under combined jump/diffusion processes. To see this, define for any
period the critical wealth level based on the diffusion component, that is, an in-
finitesimal price movement. A jump, however, signifies a non-infinitesimal price
movement in that this W+ does not keep J [.] continuous in a jump environment.
Now consider the reverse case, i.e., base W+ in any period on the minimum jump
amplitude. In that case J [.] remains continuous in a jump environment, but will not
meet conditions (A.5a) to (A.5c) if the risky asset follows the diffusion component.

In other words, the only portfolio strategy that guarantees the floor under com-
bined jump/diffusion processes employs the portfolio weight for the critical region
and does not switch to a less “cautious” portfolio strategy. In particular, it does not
split the optimum portfolio weight into a critical and an uncritical region. There-
fore, the portfolio strategy depicted in eq. (20) is obtained, which implicitly sets
W+ equal to W (t).

B. Derivation of (Constant) Proportion Portfolio Insurance strategies
under stochastic volatility

After having particularized the wealth dynamics in the decision problem (18) with
a diffusion process under stochastic volatility, the following Hamilton/Jacobi/Bell-
man equation is derived (see, e.g., Merton, 1973, p. 875):

0 = Max
C(t),w(t)

{
e−ρt C(t)γ

γ
+ Jt + JW (α − r) w(t)W (t)

+JW (rW (t) − C(t)) (B.1)

+
1
2
JWW w2(t)σ2(t)W 2(t) + Jσασ σ(t)

+
1
2
Jσσσ2

σσ2(t) + JWσw(t)σ(t)W (t)covσW (t)

}
s.t. : C(t) ≥ Cmin = K

lim
t→∞ J [W (t), t] = 0

To solve problem (B.1), the same procedure as in Section A, above, is utilized.

Step 1
Since the guaranteed income stream K must be defended, at the beginning of each
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period wealth must not be less than K
r . Hence, in the critical region, the decision

maker pursues (Constant) Proportion Portfolio Insurance, i.e., invests a multiplier
m of W (t) − K

r in the risky asset instead of a multiplier m of wealth W (t).

Step 2
According to Merton (1973), the optimum portfolio weight (for both parts of the
unconstrained problem (B.1)) reads:

wc/u(t) = − J
c/u
W

J
c/u
WW W (t)

· α − r

σ2(t)
− J

c/u
σW

J
c/u
WW W (t)

· covσW (t)
σ(t)

(B.2)

with Ju based on W = W (t) (uncritical region), and Jc based on W = W (t)− K
r

(critical region).

Step 3
To figure out whether J [.] resulting from the candidate solution is continuous and
twice differentiable, J [.] has to be determined explicitly. Substituting the portfolio
weight (eq. (B.2)) back into problem (B.1), yields the following partial differential
equation for J [.]:

0 = e−ρt C(t)γ

γ
+ Jt + JW (rW (t) − C(t)) (B.3)

−1
2

(
α − r

σ(t)

)2
J2

W

JWW
+ Jσασσ(t) +

1
2
Jσσσ2

σσ2(t)

−JW Jσ W

JWW

(
α − r

σ(t)

)
· covσ W (t) − 1

2
J2

σ W

JWW
· cov2

σ W (t)

s.t. : C(t) ≥ Cmin = K

lim
t→∞ J [W (t), t] = 0

According to Cox, Ingersoll, and Ross (1985, p. 389), the general solution of the
unconstrained partial differential eq. (B.4) for power utility functions reads

J [W (t), σ(t), t] = X(σ(t), t) · W γ(t)
γ

+ Y (σ(t), t) (B.4)

with X and Y arbitrary functions of σ(t) and t.
Transferring these findings to the constrained partial differential equation, de-

fine

• for the uncritical region

Ju [W (t), σ(t), t] = A(σ(t), t)
W γ(t)

γ
+ G(σ(t), t) (B.5)

with A and G arbitrary functions of σ(t).
• for the critical region

Jc [W (t), σ(t), t] = B(σ(t), t)

[
W (t) − K

r

]δ

δ
+ D(σ(t), t) (B.6)

with B and D arbitrary functions of σ(t) as well as t, and δ a risk aversion
parameter, which is determined model-endogenously.
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Moreover, from substituting eqs. (B.5) and (B.6) into boundary conditions (A.5b)
and (A.5c), a candidate for the critical wealth level is obtained:

W+ =
K

r

1 − γ

δ − γ
(B.7)

where the only remaining unknown, δ, is accessible with the help of boundary
condition (A.5a):

B(σ(t), t)

(
K
r

1−γ
δ−γ − K

r

)
δ

δ

+ D(σ(t), t) (B.8)

= A(σ(t), t)

(
K
r

1−γ
δ−γ

)
γ

γ

+ G(σ(t), t)

Equations (B.7) and (B.8) contain, however, an incompatibility. On the one hand,
W+ in eq. (B.7) has been calculated with the help of the Cox/Ingersoll/Ross so-
lution, a solution that assumes constant risk aversion parameters γ and δ. On the
other hand, δ must be a function of σ(t) according to eq. (B.8). Both statements
cannot be true at the same time in that there is no wealth level W+ that is part of
the Cox/Ingersoll/Ross solution for J [.] and fulfils eq. (B.8). In other words, split-
ting J [.] into Jc[.] and Ju[.] does not keep J [.] continuous and twice differentiable
and cannot be an admissible solution to (the constraint) eq. (B.4) for power utility
functions.

Putting all these arguments together, the optimum portfolio strategy under
stochastic volatility employs the portfolio weight for the critical area as the sole
optimum portfolio weight – hence implicitly sets W+ equal to W (t) – and does not
split the optimum portfolio weight into a critical and an uncritical region. Therefore,
the portfolio strategy depicted in eq. (21) is obtained.
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