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NEAREST NEIGHBOR DISTANCES ON A CIRCLE: MULTIDIMENSIONAL C ASE

PAVEL M. BLEHER1, YOUKOW HOMMA1,2, LYNDON L. JI1,2, ROLAND K. W. ROEDER1,
AND JEFFREY D. SHEN1,3

ABSTRACT. We study the distances, calledspacings, between pairs of neighboring energy levels
for the quantum harmonic oscillator. Specifically, we consider all energy levels falling betweenE
andE + 1, and study how the spacings between these levels change for various choices ofE,
particularly whenE goes to infinity. Primarily, we study the case in which the spring constant
is abadly approximablevector. We first give the proof by Boshernitzan-Dyson that the number of
distinct spacings has a uniform bound independent ofE. Then, if the spring constant has components
forming a basis of analgebraic number field, we show that, when normalized up to a unit, the
spacings are from a finite set. Moreover, in the specific case that the field has one fundamental
unit, the probability distribution of these spacings behaves quasiperiodically inlogE. We conclude
by studying the spacings in the case that the spring constantis notbadly approximable, providing
examples for which the number of distinct spacings is unbounded.

1. INTRODUCTION

1.1. Physical Motivation. The quantum harmonic oscillator is given by the Hamiltonian

H = −
d+1∑

j=1

~2

2m

∂2

∂x2
j

+
d+1∑

j=1

kj
2
x2
j .

Applying Schrödinger’s equation, the quantum energy levels of the system are determined byd+1
non-negative integers,m0, . . . , md, and they are of the form

E = E0 +m0α0 + . . .+mdαd,

whereα0, . . . , αd are positive real numbers depending on the spring constantk and the massm.
The problem is to study the distribution of energy level spacings (the difference between neighbor-
ing energy levels) for all energy levels occurring in a givenintervalE ′ ≤ E < E ′ + c, for some
fixed constantc, asE ′ → ∞. It is convenient to makec = α0. Since

E = E0 + α0(m0 +m1ω1 + . . .+mdωd),

whereωi = αi/α0 > 0, the problem becomes to find spacings between energy levels

E = m0 +m1ω1 + . . .+mdωd

between a givenE ′ andE ′ + 1 asE ′ → ∞. For any integer vectorm = (m1, . . . , md) such that
m · ω < E ′ + 1, there is exactly onem0 ≥ 0 that forcesE into the interval[E ′, E ′ + 1). This
allows us to reduce the problem modulo 1, considering differences between the fractional parts
of the numbersm1ω1 + . . . + mdωd determined by integer vectorsm ∈ R(t). Here,R(t) is the
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homothetic expansion ofR = {v ∈ Rn | vi ≥ 0, v1ω1 + . . .+ vdωd < 1} by a factor oft = E ′ + 1
about the origin.

1.2. Mathematical Problem. For any real numberθ, we will use the following notation:⌊θ⌋ is
the floor,⌈θ⌉ is the ceiling,{θ} = θ−⌊θ⌋ is the fractional part, and||θ|| = dist(θ,Z) is the distance
betweenθ and the nearest integer.

Let ω0 = 1, ω1, . . . , ωd, bed + 1 real numbers, linearly independent over the rationals,ω̃ =
(ω0, ω1, . . . , ωd), andω = (ω1, . . . , ωd). LetR be some bounded convex region inRd, R(t) be the
homothetic expansion ofR about the origin by a factor oft > 0, andM(t) = R(t) ∩ Zd.

We order the numbers{m · ω}, wherem ranges overM(t), into the sequence

0 ≤ y1(t) < . . . < y|M(t)|(t) < 1.

We then consider the differences between consecutive numbers in this sequence, calledspacings,

δj(t) = yj(t)− yj−1(t), j = 2, . . . , |M(t)|.
Now, letD(t) be the number of distinct spacings and let∆j(t) be the ordered sequence of distinct
spacings from theδj(t), so that

0 < ∆1(t) < . . . < ∆D(t)(t) < 1.

We are interested in analyzing the set of distinct spacings as well as the frequency of occurrence
of each distinct spacing from this set ast increases for various choices ofω andR.

Remark.The problem can also be considered on the circleS1 = [0, 1]/0 ∼ 1. However, these two
formulations are equivalent up to one spacing.

1.3. Previous Works. In 1958, Steinhaus conjectured that in the cased = 1, for anyw1 and any
t, there are at most three distinct spacings. This conjecturewas proved in the same year indepen-
dently by P. Erdös, G. Hajós, V. Sós, J. Surányi, N. Swieczkowski, and P. Szüsz.1 Moreover, there
are simple formulae for the sizes of the three spacings at anyt and the frequencies with which each
spacing occurs.

In [B1], Bleher studies the distribution of spacings asn → ∞ in the case thatd = 1 and
ω1 =

√
5+1
2

, the golden ratio. If one fixesx ∈ (0, 1] and considers the distribution of spacings at
the timestn = fn−1 + xfn−2, the limit distribution exists and a concrete formula is given for the
distribution. Furthermore, in [B2], Bleher shows that ford = 1 and fixedω1, no limit distribution
exists (without taking a subsequence of times, as in the golden ratio case), but for randomω1 some
limit distribution exists.

Geelen and Simpson [GS] showed that ifd = 2 andω1 andω2 are any frequencies, then using all
integer points0 ≤ v1 < n1 and0 ≤ v2 < n2 generates at mostn1 + 3 distinct spacings. Moreover,
they conjectured that for generald and integer points chosen such that0 ≤ vi < ni, for eachi, then
the number of spacings will be no more than

∏d−1
i=1 ni+Cd, whereCd only depends ond. Progress

was made on this conjecture by Chevallier [Ch], who showed that the number of spacings is no
greater than

∏d−1
i=1 ni + 3

∏d−2
i=1 ni + 1.

Concerning the distribution of spacings in the multidimensional case, there is a note of Dyson
[D] and the resulting letters between Boshernitzan and Dyson [BD1, BD2], but no other works that
we are aware of. We use the results of Boshernitzan and Dyson as a starting point of our work, and
moreover, we will present many of the details of their work, since it was never published.

1Our source for the history is [So].
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1.4. Main Results.

Definition 1.1. A vectorω ∈ Rd is calledDiophantinewith exponentγ if there is some positive
numberK such that for all nonzero vectorsm ∈ Zd, we have

||m · ω|| ≥ K

|m|γ , where|m| =
√

m2
1 + . . .+m2

d. (1.1)

It follows from the Minkowski’s Theorem thatγ ≥ d. We callω badly approximableif γ = d.

The following is a result outlined in a discussion between Dyson and Boshernitzan [BD2] in
response to a preprint of Dyson [D].

Theorem 1.2. (Boshernitzan-Dyson) If ω is badly approximable, then the number of distinct
spacings has a bound independent oft.

There is a very convenient way to produce badly approximablevectorsω using algebraic number
fields. If Φ is an algebraic number field and1, ω1, . . . , ωd are algebraic integers forming a basis
for Φ overQ, then a theorem of Perron [P] gives thatω = (ω1, . . . , ωd) is badly approximable.
Thus, the original theorem in Dyson’s preprint [D] is obtained as the following direct corollary to
Theorem 1.2.

Corollary 1.3. (Dyson) If 1, ω1, . . . , ωd are algebraic integers forming a basis for an algebraic
number fieldΦ, then the number of distinct spacings has a bound independent of t.

Since the proof of Theorem 1.2 was never published, we will present it in Section 2, together with
an explicit bound for the number of spacings. We will then focus on the case thatω is obtained
from an algebraic number field (as above), studying further questions about the spacings, including
their algebraic properties, rigidity properties, and their limiting distributions.

Theorem 1.4.The field norm of any spacing∆j(t) has a bound independent oft andj.

Theorem 1.5. There exists some finite setS = {s1 < . . . < sJ} ⊂ Φ such that every spacing
∆i(t) has the formusj for some unitu of the ring of integersZΦ (invertible element ofZΦ) and
somesj ∈ S.

There is a theorem due to Dirichlet (see Theorem 38 in [M]) which gives that the group of units
of the ring of integersZΦ is isomorphic toG×Zr+s−1, whereG is a finite cyclic group consisting
of all the roots of unity fromΦ, r is the number of real embeddings ofΦ intoC, ands is the number
of conjugate pairs of complex embeddings ofΦ into C. Thus, there is a set offundamental units
u1, . . . , ul with l = r+ s− 1 which generates the group of units ofZΦ, moduloG. Note that since
we are concerned only withω ∈ Rd, Φ is real, andG = {−1, 1}.

We can say much more ifΦ has only one fundamental unit, i.e.l = 1. By Dirichlet’s Theorem,
this happens if and only if(r, s) = (2, 0), (1, 1), or (0, 2). Again, since we deal withω ∈ Rd,
(r, s) = (2, 0) or (1, 1).

Theorem 1.6. Suppose that the fieldΦ has only one fundamental unitu. If l(t) = ⌈−d logu(t)⌉,
then there exists a finite setS = {s1 < . . . < sJ} ⊂ ZΦ such that

{
∆1(t), . . . ,∆D(t)(t)

}
⊆ ul(t) ·S

for all t.

Corollary 1.7. If the fieldΦ has only one fundamental unit, then there is some finite setS̃ ⊂ Φ

such that∆i(t)
∆1(t)

∈ S̃ for all i andt.

We now consider the distribution of spacings in the special case thatΦ has exactly one fundamental
unit.
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Theorem 1.8.SupposeΦ is a real quadratic field having exactly one fundamental unit0 < u < 1
andω is formed by choosing a basis forΦ (overQ) consisting of algebraic integers. Then, for any
η ∈ [1, u−1], the proportion of normalized spacings equal tosj has a limit along the subsequence
tn = η( 1

u
)n, with rate of convergence equal toO(u2n).

Theorem 1.9. SupposeΦ is a cubic field with exactly one fundamental unit0 < u < 1 and
ω is formed by choosing a basis forΦ (overQ) consisting of algebraic integers. Then, for any
η ∈ [1, µ], whereµ = u−1/2, there is a continuous function

g : T → P = {(p1, . . . , pJ) |
∑

pj = 1, pj ≥ 0}
and some frequencyθ > 0 such that for anyn ∈ N, the proportion of normalized spacings at
tn = ηµn equal tosj is gj(θn) +O(u

n
2 ).

That is, we show that the distribution of normalized spacings alongt = µn for someµ either
has a limit or behaves quasiperiodically. Note that these two cases cover all number fieldsΦ
with exactly one fundamental unit, since(r, s) = (2, 0) occurs only whenΦ is quadratic and
(r, s) = (1, 1) occurs only whenΦ is a cubic field.

The proofs for the results above can be found in Sections 2-5 of the paper. In the last section, we
consider the case whereω is not badly approximable. A major question is whether the converse of
the Theorem 1.2 holds.

Question 1.10.IsD(t) unbounded ifω is not badly approximable?

Since answering this question may be difficult, we present various partial results. First, we find
some examples ofω that are not badly approximable for whichD(t) is unbounded by using a
technique outlined in a letter from Boshernitzan to Dyson [BD1]. In particular, for any0 < δ ≤ 1

we find vectorsω for which lim sup
t→∞

(
D(t)

t1−δ

)
= ∞. Moreover, we also find anω ∈ R3 that is

Diophantine with exponent5 for which lim sup
t→∞

(D(t)) = ∞. Lastly, we show that the ratio
∆D(t)(t)

∆1(t)

between the largest and the smallest spacing is unbounded.

2. THE BADLY APPROXIMABLE CASE

In this section, we will prove Theorem 1.2 using the “Transference Theorems” from Cassels [C].

Theorem 2.1.The vectorω is badly approximable, satisfying(1.1)with constantK, if and only if
for anyX1 and anyα ∈ [0, 1], there exists a nonzero integer vectorx such that|x|∞ ≤ X1 and

||x · ω − α|| ≤ L
Xd

1
,whereL =

(
[K−1]+1

2

)d+1

K.

Proof. From (1.1), we have that for anyX > 0 and nonzero vectorx such that|x|∞ < X,

||x · ω|| ≥ K

|x|d∞
≥ K

Xd
.

Thus, this is a direct application of Theorem VI from ChapterV of [C], whereC = KX−m/n,
m = d, n = 1, L1(x) = x · ω, andX = 2X1

⌊K−1⌋+1
. �

Let A andB be closed balls with radiirmin and rmax respectively, taken with respect to the
infinity norm |·|∞, such thatA ⊆ R ⊆ B. Then letA(t) = {xt | x ∈ A} andB(t) = {xt | x ∈ B}.
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Lemma 2.2. For all t > 0, the smallest spacing satisfies∆1(t) ≥ K
(2rmaxt)d

.

Proof. Note that∆1(t) = {n ·ω}−{m ·ω} = ||(n−m) ·ω|| for somem,n ∈ M(t) ⊂ R(t) ⊂
B(t). Then|n−m|∞ ≤ 2rmaxt, so by (1.1),||(n−m) · ω|| ≥ K

(2rmaxt)d
. �

If ω is badly approximable, satisfying (1.1) with constantK, we setL′ = (2L1/d+1/2)d, where

L = K

(
⌊K−1⌋+1

2

)d+1

.

Lemma 2.3. For all t > 0, the largest spacing satisfies∆D(t)(t) ≤ L′

(rmint)d
.

Proof. If t is small, i.e.t ≤ 2L1/d+1/2
rmin

, then it is clear that1 ≤ L′

(rmint)d
and∆D(t)(t) ≤ 1 ≤ L′

(rmint)d
.

Otherwise ift is large, i.e.t > 2L1/d+1/2
rmin

, we will show that∆D(t)(t) ≤ 2L
(rmint−1/2)d

, which is less

than L′

(rmint)d
for t > 2L1/d+1/2

rmin
.

Suppose for the sake of contradiction that∆D(t)(t) > 2L
(rmint−1/2)d

for somet > 2L1/d+1/2
rmin

. Let
∆D(t)(t) = δi(t) = yi(t)−yi−1(t) for somei. We show that there is am ∈ M(t) such that{m·ω}
is in the interval(yi−1(t), yi(t)). If we let p be the integer point closest to the center ofA(t), let
α = yi−1(t)+yi(t)

2
be the midpoint of the interval(yi−1(t), yi(t)), and letβ = α + {p · ω}, then by

Theorem 2.1, we can find an integerx, and thus an integerm = x+ p, so that

|m− p|∞ = |x|∞ ≤ rmint− 1/2 (2.1)

and||m · ω − α|| = ||x · ω − β|| ≤ L

(rmint− 1/2)d
. (2.2)

From (2.1), it can be seen thatm is in the ballA(t). Thus,m is in M(t). Also from (2.2), the
distance from{m ·ω} to the midpointα of the interval(yi−1(t), yi(t)) is no more than L

(rmint−1/2)d
,

giving that{m ·ω} is in the interval(yi−1(t), yi(t)). However, this is a contradiction sinceyi−1(t)
andyi(t) are consecutive numbers in the ordered sequence{m · ω}, wherem ranges over all of

M(t). Therefore, we have∆D(t)(t) ≤ 2L
(rmint−1/2)d

whent > 2L1/d+1/2
rmin

, completing the proof. �

Lemma 2.4. For anyi and all t > 0, we have∆i(t)−∆i−1(t) ≥ K
(4rmaxt)d

.

Proof. Note that any positive difference between spacings can be expressed as

|({n1 · ω} − {m1 · ω})− ({n2 · ω} − {m2 · ω})| = ||(n1 −m1 − n2 +m2) · ω||

for somem1,n1,m2,n2 ∈ M(t) ⊂ B(t). Since|n1 −m1 − n2 +m2|∞ ≤ 4rmaxt, (1.1) gives
that||(n1 −m1 − n2 +m2) · ω|| ≥ K

(4rmaxt)d
. �

Proof of Theorem 1.2.By Lemmas 2.2, 2.3, and 2.4, we have that

D(t) ≤ ∆D(t)(t)−∆1(t)

min(∆i(t)−∆i−1(t))
+ 1 ≤

L′

(rmint)d
− K

(2rmaxt)d

K
(4rmaxt)d

+ 1 =

(
4rmax

rmin

)d(
L′

K

)
− 2d + 1.

This gives an explicit bound for the number of distinct spacings. �



6 P. BLEHER, Y. HOMMA , L. JI , R. ROEDER, AND J. SHEN

3. THE GENERAL ALGEBRAIC CASE

Let 1 = ω0, ω1, . . . , ωd be algebraic integers forming a basis for some number fieldΦ.

Lemma 3.1. Let ω̃ = (ω0, . . . , ωd) withω0 = 1. Perron’s theorem gives a constantK ′ > 0 so that
|n · ω̃| > K ′

|n|d∞
. We can then find a constantK > 0 so that||m · ω|| > K

|m|d .

Proof. First, letn = (n0, m1, . . . , md), wheren0 is chosen so that|n · ω̃| = ||m ·ω||. It is easy to
see then that|n0| ≤ |⌊m · ω⌋| + 1. If |n|∞ = |m|∞ ≥ |m|, then we can simply chooseK = K ′.
Otherwise,|n|∞ = |n0| ≤ |⌊m · ω⌋| + 1. Note that|⌊m · ω⌋| ≤ |m · ω| + 1 ≤ |m| · |ω| + 1,
where the second half comes from the Cauchy-Schwarz inequality. From this, we have that

||m · ω|| = |n · ω̃| > K ′

(⌊m · ω⌋+ 1)d
≥ K ′

(|m||ω|+ 2)d
=

K ′

(|ω|+ 2
|m|

)d

|m|d .

Sincem is a non-zero integer vector,|m| ≥ 1, so choosingK = K ′(|ω|+ 2)−d works. �

Proof of Theorem 1.4.We can write the field normN of an elementx from the number fieldΦ as

N(x) =

d∏

i=0

xj = x

d∏

i=1

xj,

wherexj are the conjugate images ofx. In other words, ifx = n · ω = n0 + . . . + ndωd, then
xj = n0 + n1σj(ω1) + . . . + ndσj(ωd), whereσj : Φ → C are the conjugate embeddings. It can
thus be seen thatN(x) = xQ(n), whereQ(n) is a homogeneous polynomial of degreed in the
components ofn = (n0, . . . , nd). Then by Lemma 2.3,N(∆j(t)) = ∆j(t)Q(n) is bounded above
by L′

(at)d
|Q(n)|. Hence, it suffices to show thatQ(n)

td
is bounded. This follows immediately sinceQ

is a homogeneous polynomial of degreed, implying the existence of a constantC > 0 such that
|Q(n)| ≤ C|n|d∞ ≤ C(bt)d.

�

Definition 3.2. We let theequivalence classof an elementa ∈ ZΦ be

E(a) = {au | u is a unit fromZΦ}. (3.1)

Note that all elements of an equivalence class have the same normN(au) = N(a)N(u) = N(a).
Also note that for anyx ∈ Φ, we have thatx ∈ ZΦ if and only ifN(x) ∈ Z.

Proposition 3.3. For anyk ∈ Z, there exist elementsa1, . . . , am(k) ∈ ZΦ such thatN(x) = k if

and only ifx ∈
m(k)⊔

i=1

E(ai).

Proof. This follows directly from Theorem 4B of Chapter VII of [S]. �

Proof of Theorem 1.5.By Theorem 1.4, there existsN0 ∈ Z such that|N(∆i(t))| ≤ N0 for all
t andi. Note thatN(∆i(t)) is an integer since∆i(t) ∈ ZΦ. Thus, by Proposition 3.3, there are

equivalence classesE(ai,k), such that∆i(t) ∈
N0⊔

k=−N0




m(k)⊔

i=1

E(ai,k)



. We can thus choose the

finite set
S = {ai,k | 1 ≤ i ≤ m(k),−N0 ≤ k ≤ N0},

which satisfies the conditions. �
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4. THE ONE FUNDAMENTAL UNIT CASE

Let the fundamental unitu be chosen so that0 < u < 1. Note that every unit ofZΦ is of the
form ±un, wheren ∈ Z.

We first present a lemma necessary to the proof of Theorem 1.6.

Lemma 4.1. Letk be any integer and0 < x0 < x1 < ∞. Then the set given by

{x ∈ ZΦ | N(x) = k} ∩ [x0, x1] (4.1)

is finite.

Proof. First, if E(ai) = {aiun} denotes the equivalence class generated byai ∈ ZΦ, then the set
E(ai) ∩ [x0, x1] is finite. To see this, note that ifx0 ≤ aiu

n ≤ x1, then

log x0 − log ai
log u

≤ n ≤ log x1 − log ai
log u

.

Now, by Proposition 3.3, we have that

{x ∈ ZΦ | N(x) = k} ∩ [x0, x1] =

m(k)⊔

i=1

E(ai) ∩ [x0, x1] .

Since this is equal to
m(k)⊔

i=1

(E(ai) ∩ [x0, x1]), (4.1) is finite. �

Proof of Theorem 1.6.By Theorem 1.4, there is aN0 such that the norm|N(∆j(t))| ≤ N0 for all
j andt. Recall thatN(∆j(t)) is always an integer. Furthermore, by Lemmas 2.2 and 2.3 and by
the definition ofl(t),

x0u
l(t) ≤ K

(2bt)d
≤ ∆j(t) ≤

L′

(at)d
≤ x1u

l(t)

wherex0 =
K

(2b)d
andx1 =

L′

ad
u. Therefore, we have that

∆j(t) ∈ S(t) =

N0⊔

i=−N0

{x ∈ ZΦ | N(x) = i} ∩ [x0u
l(t), x1u

l(t)]

for all j andt. Note thatN(x) = N(u−l(t)x). Thus, each∆j(t) ∈ ul(t)S for the set

S =

N0⊔

i=−N0

{x ∈ ZΦ | N(x) = i} ∩ [x0, x1],

which is finite by Lemma 4.1. �

5. THE ASYMPTOTIC DISTRIBUTION OF SPACINGS

Let Φ be a number field with exactly one fundamental unit0 < u < 1. In this section, we will
prove Theorems 1.8 and 1.9. We will first prove Theorem 1.9, because Theorem 1.8 follows from
some simple modifications of its proof. Thus, we first assume thatΦ is a cubic field, in which case
Φ has one real embedding and two complex embeddings.

We first define two vector representations of a number inΦ.

Definition 5.1. Let n : Φ → Q3 be the vector expansion an element ofΦ in terms of the basis
ω̃ = (1, ω1, ω2) andm : Φ → Q2 be such that ifn(y) = (m0, m1, m2), thenm(y) = (m1, m2).



8 P. BLEHER, Y. HOMMA , L. JI , R. ROEDER, AND J. SHEN

5.1. Fundamental Circle. Let u1 andu2 = u1 be the Galois conjugates ofu.

Lemma 5.2. There is a two-dimensional linear subspaceEu ∈ R3 containing a circleT of radius

r ≡ r(η) and a constantC > 0 such that dist
(

n(un)
tn

,T
)
≤ Cun.

Proof. Sinceu is an irrational unit in the cubic fieldΦ, it is a zero of an irreducible monic integral
polynomial

P (x) = x3 + a2x
2 + a1x+ a0. (5.1)

Hence,
u3 = −a2u

2 − a1u− a0.

Let us choose our basis forΦ to be(1, u, u2). Then in this basis, multiplication byu is repre-
sented by the matrix

U =




0 0 −a0
1 0 −a1
0 1 −a2


 .

The characteristic polynomial ofU is precisely the minimal polynomial ofu, P (x). Thus,u, u1,
andu2 are the eigenvalues ofU . Let Es andEu be the stable and unstable eigenspaces ofU ,
respectively. We know thatN(u) = 1 = a0 = uu1u2 and0 < u < 1, sou1u2 > 1. Becauseu1

andu2 are complex conjugates,|u1| = |u2|. Hence,|u1|, |u2| > 1.
Setn(1) = vs + vu, wherevs is in Es corresponding to the eigenvalueu andvu is in Eu

corresponding to the eigenvaluesu1 andu2. Then the norms of the components ofn(un) in those
eigenspaces are|u|n|vs| and|u1|n|vu|, respectively. A calculation shows thatn(1) is not an eigen-
vector ofU and thus,vu is nonzero. Consequently,|n(un)

tn
| does not go to zero.

Using our previous definitions, we get
∥∥∥∥
n(un)

tn

∥∥∥∥ =

∥∥∥∥
Unn(1)

tn

∥∥∥∥ =

∥∥∥∥
Un(vu + vs)

tn

∥∥∥∥ .

Sinceuu1u2 = 1 and|u1| = |u2|, we must have that|u1| = µ. Therefore,
∥∥∥∥
Unvu

tn

∥∥∥∥ =
|un

1 | · ‖vu‖
µn

= ‖vu‖ =: r.

Moreover, ∥∥∥∥
Un(vu + vs)

tn
− Unvu

tn

∥∥∥∥ =

∥∥∥∥
Unvs

tn

∥∥∥∥ ≤ ‖Unvs‖ ≤ Cun.

Thus,n(un)
tn

converges toT with rateO(un). �

5.2. Partitions.

Definition 5.3. LetYk(t) be the set of numbersyj(t) such thatδj(t) = yj(t)−yj−1(t) = sku
l(t) and

Mk(t) to be the set of vectorsm ∈ M(t) such that{m ·ω} ∈ Yk(t). Note that
J⊔

k=1

Mk(t) = M(t)

up to the point corresponding toy1(t). Thus, we call{Mk(t)} a “partition” ofM(t) (see Figure 1).
Also note that|Mk(t)| is the number of spacings that are equal tosku

l(t). Therefore, |Mk(t)|
|M(t)|−1

is the

proportion of spacings that is equal toskul(t).
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M(t)

x

y

FIGURE 1. The partition{Mk(t)} of M(t) for ω = ( 3
√
2, 3
√
4) andt = 650.

Proposition 5.4. Letvk = m(sku
l(t)). Then, fork = 1, . . . , J , we have

Mk(t) = [M(t) ∩ (M(t) + vk)] \
k−1⋃

i=1

(M(t) + vi), (5.2)

whereΩ+ v is defined to be{u+ v | u ∈ Ω} for anyΩ ⊆ Rd andv ∈ Rd.

Proof. We first prove that

Mk(t) = [M(t) ∩ (M(t) + vk)] \
k−1⊔

i=1

Mi(t). (5.3)

Suppose we are given somem ∈ [M(t) ∩ (M(t) + vk)] \
⊔k−1

i=1 Mi(t). Sincem ∈ M(t), there
existsn such thatyn(t) = {m·ω}. We will show thatδn(t) = sku

l(t). For everyj < k,m /∈ Mj(t)
and thusδn(t) 6= sju

l(t). If δn(t) = sju
l(t) with j > k, a contradiction is reached since

δn(t) = sju
l(t) > sku

l(t) = yn(t)− {(m− vk) · ω},

where (m − vk) ∈ M(t) becausem ∈ (M(t) + vk). Thus, δn(t) = sku
l(t) and therefore

m ∈ Mk(t).
Suppose instead thatm ∈ Mk(t). Clearlym /∈ Mj(t) for j < k. Now let n be such that

yn(t) = {m · ω}. Thenyn−1(t) = yn(t) − sku
l(t) = {(m − vk) · ω} and thus(m − vk) ∈

M(t). Therefore,m ∈ M(t) + vk and sincem ∈ M(t) andm /∈
⊔k−1

i=1 Mi(t), we have that
m ∈ [M(t) ∩ (M(t) + vk)] \

⊔k−1
i=1 Mi(t).

Therefore (5.3) holds. Using induction, it can be shown that

k−1⊔

i=1

Mi(t) =

k−1⋃

i=1

(M(t) + vi) ∩M(t),

which proves (5.2). �
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Definition 5.5. Denote the power set ofR byP(R). Then letP : (R2)J → P(R)J map a vector
of vectorsv = (v1, . . . , vJ) to (P1(v), . . . , PJ(v)), where

Pk(v) = [R ∩ (R + vk)] \
k−1⋃

i=1

(R + vi). (5.4)

Proposition 5.6. If v =
(

m(s1ul(t))
t

, . . . , m(sJu
l(t))

t

)
, then

area(Pk(v))

area(R)
− |Mk(t)|

|M(t)| − 1
= O

(
1

t

)
. (5.5)

Proof. If we let x = tv = (m(s1u
l(t)), . . . ,m(sJu

l(t))), then Proposition 5.4, followed by the
inclusion-exclusion principle, gives that

|Mk(t)| =
∣∣∣∣∣[M(t) ∩ (M(t) + xk)] \

k−1⋃

i=1

(M(t) + xi)

∣∣∣∣∣

= |M(t) ∩ (M(t) + xk)| −
∣∣∣∣∣

k−1⋃

i=1

[(M(t) + xi) ∩M(t) ∩ (M(t) + xk)]

∣∣∣∣∣
= |M(t) ∩ (M(t) + xk)|

−
∑

I⊆{1,...,k−1}
(−1)|I|

∣∣∣∣∣
⋂

i∈I
(M(t) + xi) ∩M(t) ∩ (M(t) + xk)

∣∣∣∣∣ . (5.6)

Similarly,

area(tPk(v)) = area(tR ∩ (tR + tvk))

−
∑

I⊆{1,...,k−1}
(−1)|I|area

(
⋂

i∈I
(tR + tvi) ∩ tR ∩ (tR + tvk)

)
. (5.7)

Given any bounded convex regionΩ ∈ R2 and the corresponding setM = tΩ ∩ Z2, it is well-
known thatarea(tΩ)− |M | = O(t). Thus, by summing over all the parts of (5.7), and subtracting
all the corresponding parts in (5.6), we have that

area(tPk(v))− |Mk(t)| = O(t). (5.8)

Also, |M(t)| − area(R(t)) = O(t) implies

|Mk(t)|
area(R(t))

− |Mk(t)|
|M(t)| − 1

=
|Mk(t)|

|M(t)| − 1

( |M(t)| − 1− area(R(t))

area(R(t))

)
= O

(
1

t

)
. (5.9)

Dividing (5.8) byarea(R(t)) and adding (5.9) proves the statement. �

Proposition 5.7. The functionP is Lipschitz continuous with respect to the infinity norm on(R2)J

and the metricd(P (1), P (2)) =
∑J

i=1 area(P
(1)
i △P

(2)
i ), where△ denotes the symmetric difference

between two sets.

In order to prove Proposition 5.7, we first present a lemma.

Lemma 5.8. LetΩ be a bounded convex region inR2 with a nonempty interior. Then the function
F taking every vectorv ∈ R2 to the set of pointsΩ + v is Lipschitz.
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Proof. Suppose we have two vectorsv1, v2 such that|v1 − v2|∞ = x. If x > 1, then

area((Ω + v1)△(Ω + v2)) ≤ 2[area(Ω)] < 2[area(Ω)]x.

Otherwise, assume thatx ≤ 1. If a is the radius, taken with respect to the infinity norm, of a closed
ball contained insideΩ+v1, then we constructΩ12 to be the homothetic expansion ofΩ+v1 about
the center of the ball by1 + x

a
. It can be shown thatΩ12 contains all vectors withinx of Ω + v1.

Thus,(Ω + v1) ∪ (Ω + v2) ⊆ Ω12. Therefore,

area((Ω + v1)△(Ω + v2)) = 2[area((Ω + v1) ∪ (Ω + v2))− area(Ω)]

≤ 2[area(Ω12)− area(Ω)]

= 2

[
area(Ω)

((
1 +

x

a

)2
− 1

)]
.

The result follows sinceQ(x) = (1 + x
a
)2 − 1 is Lipschitz on the interval[0, 1]. �

Proof of Proposition 5.7.From Lemma 5.8, the functionF1 taking every vectorv ∈ R2 to the set
of pointsR is Lipschitz. It is easy to see thatF2 takingv ∈ R2 toR∩ (R+ v) is also Lipschitz. It
can be readily proven that

(A \ C)△(B \D) ⊆ (A△B) ∪ (C△D), (5.10)

(A ∪B)△(C ∪D) ⊆ (A△C) ∪ (B△D) (5.11)

for any setsA,B,C,D. SubstitutingF1 andF2 into the formula forPi(v) in (5.4), we have that

area(Pi(v
(1))△Pi(v

(2))) = area

([
F2(v

(1)
i ) \

i−1⋃

j=1

F1(v
(1)
j )

]
△
[
F2(v

(2)
i ) \

i−1⋃

j=1

F1(v
(2)
j )

])

(5.10)
≤ area(F2(v

(1)
i )△F2(v

(2)
i )) + area

(
i−1⋃

j=1

F1(v
(1)
j )△

i−1⋃

j=1

F1(v
(2)
j )

)

(5.11)
≤ area(F2(v

(1)
i )△F2(v

(2)
i )) +

i−1∑

j=1

area(F1(v
(1)
j )△F1(v

(2)
j ))

≤ (C1 + (i− 1)C2)|v(1) − v(2)|∞
sinceF1 andF2 are Lipschitz. Therefore,P is also Lipschitz. �

5.3. Proof of Theorem 1.9.

Proof. Let T be the circle with radiusr = |vu| centered at the origin on the unstable eigenspace,
Eu, letL = {span(ω1, ω2)}, and letg : R3 7→ RJ such thatg = h ◦ P , where

h : w 7−→ 〈projL(S1w), . . . , projL(SJw)〉
and

P : v 7−→ (P1(v), . . . , PJ(v)).

Sinceh is a composition of two Lipschitz continous functions, projection and matrix multiplica-
tion, it is also Lipschitz continuous. Combined with Lemma 5.2, this gives

h

(
projEu

(
n(un)

tn

))
− h

(
n(un)

tn

)
< Cυn,
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where0 < υ = u
|u1| = u3/2 < u1/2 < 1. By Proposition 5.7,P is also Lipschitz, so

d

(
P ◦ h

(
projEu

n(un)

tn

)
, P ◦ h

(
n(un)

tn

))
< C ′υn (5.12)

for some constantC ′.
Let w1,w2 be an orthonormal basis onEu such thatprojEu(n(1)) = projEu(1, 0, 0) coincides

with w1. The vectorprojEu

(
n(un)
tn

)
will thus form an angleθn with w1, whereθ = arg(u1). By

Proposition 5.6, the area of thejth component ofP ◦h
(

n(un)
tn

)
differs from the true proportion by

at mostK
µn = Kun/2 for a constantK. Hence, the total error is given byKun/2 from Proposition

5.6 combined withC ′υn from (5.12). Therefore, the proportion of normalized spacings equal tosi
is given bygi(θn) +O(µ−n) = gi(θn) +O(un/2). �

5.4. Proof of Theorem 1.8.

Proof. Using the same arguments as in Lemma 5.2 gives thatu and 1
u

are the eigenvalues ofU . A

quick calculation shows thatn(Un(υu))
tn

= υu

η
andn(Un(υs))

tn
= u2n υv

η
. Thus,n(un)

tn
converges to the

point r = υu

η
at a rate ofO(u2n). Furthermore, Proposition 5.7 still holds ford = 1 so long as

there is one fundamental unit. Therefore, the same techniques in the proof of Theorem 1.9 give the
desired result. �

6. THE NON-BADLY APPROXIMABLE CASE

We first provide examples of non-badly approximable vectorsfor which the number of distinct
spacingsD(t) goes to infinity, following a construction that Boshernitzan outlined in a letter to
Dyson, [BD2]. The following Lemma will be central in both constructions:

y

1

s x

FIGURE 2. A closed triangle bounded by linesx = 0, y = 0 andx+ sy = s.

Lemma 6.1. LetR be the triangle shown in Figure 2 for somes > 0. Let p
q
∈ Q satisfyp

q
≤ s,

α be Diophantine with exponentγ, satisfying(1.1) with constantK, andω =
(
α, α(p

q
+ ǫ)

)
for

someǫ > 0. Then, for allt < t0 =
(

K
q1+γ(2s)γαǫ

) 1
1+γ

, the number of distinct spacings satisfies

D(t) ≥ ⌊t/q⌋. Here we consider points on the circleS1 = [0, 1]/0 ∼ 1.
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Proof. Note that all points of the form{(m,n) · ω} around the circle can be expressed as the

sum2 of two “components,”
{
m(α) + n(p

q
α)
}

and{nαǫ}. Consider all distinct points of the form
{
m(α) + n(p

q
α)
}

=
{

l
q
α
}

, with (m,n) ∈ M(t). Then, let the distinct spacings for this set of

points be ordered∆1(t) < ∆2(t) < . . . < ∆N (t). Note thatα/q is Diophantine with exponent
γ and constantK

q
since ||m(α/q)|| ≥ 1

q
||mα||. Thus, since0 ≤ l ≤ stq, we have∆j(t) =

||(l1 − l2)
α
q
|| ≥ K

(stq)γq
> nǫα. Note also that an integer point(m,n) ∈ M(t) has first component

l
q
α if and only if it is on the linemq + np = l (see Figure 3). Thus, the points{(m,n) · ω} with

the same first component lie consecutively on the circle asn increases (see Figure 4).

(m2, n2)

x

y

mq + np = l1

mq + np = l2
(m1, n1)

FIGURE 3. The points(m1, n1) and(m2, n2) on linesmq + np = l1 andmq + np = l2.

{ l′

q
α}

{ l
q
α}

FIGURE 4. Points with first componentl
q
α

We now consider two neighboring values of the first component,
{

l1
q
(α)
}

and
{

l2
q
(α)
}

. Sup-

pose(m1, n1) ∈ M(t) has the largest value ofn among all points on the linemq + np = l1 and
(m2, n2) ∈ M(t) has the smallest value ofn among all points on the linemq + np = l2. Then,

2Sometimes, the sum of the two components is at least1, so the sum may sometimes need to be taken modulo1.
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these two points form the spacing

l2 − l1
q

α− (n1 − n2)αǫ = ∆j(t)− (n1 − n2)αǫ. (6.1)

Notice, however, that the linemq+np = l2 goes through the x-axis inR(t). Therefore,n2 ≤ q−1
or else(m2 + p, n2 − q) satisfiesmq + np = l2 with a smallern. We now considerl1 = kqp, for
all 1 ≤ k ≤ t

q
. Then,(m1, n1) = (0, kq) andn2 ≤ q − 1, so that each value ofa = n1 − n2 is

unique as we varyk. Note also that0 ≤ a ≤ t.
We now show that ifa1 6= a2 then∆j1(t) − a1ǫα 6= ∆j2(t) − a2ǫα. If j1 = j2, then it is

clear. Otherwise, without loss of generality, suppose thatj1 > j2, and for the sake of contradiction
that ∆j1(t) − a1ǫα = ∆j2(t) − a2ǫα. Then note that(a1 − a2)ǫα = ∆j1(t) − ∆j2(t). It is
clear that∆j1(t) − ∆j2(t) can be expressed as||l(α

q
)|| for some−2stq ≤ l ≤ 2stq. Therefore,

∆j1(t) −∆j2(t) ≥ K
q(2stq)γ

. Furthermore,t ≥ a1 − a2 > 0. Thus,tǫα ≥ K
q(2stq)γ

, giving t ≥ t0, a
contradiction.

Thus, each∆j(t)− (n1 − n2)αǫ is unique, and since1 ≤ k ≤ t
q
, this gives at least⌊ t

q
⌋ distinct

spacings. �

We first use Lemma 6.1 to construct vectors for whichD(t) grows fast:

Proposition 6.2. For any0 < δ ≤ 1, letα be Diophantine with exponentγ and let

β = α ·
(
1 +

∞∑

n=0

λ−kn

)

for some integerk > (1+γ)(1+δ)
δ

and some integerλ > 1. Then, forω = (α, β) andR as in Figure 2

with s ≥ β/α, we have thatlim sup
t→∞

(
D(t)

t1−δ

)
= ∞.

Proof. We first letǫi =
∞∑

n=i+1

λ−kn. Note that

ǫi ≤ λ−ki+1
∞∑

n=0

(λ−n) =
λ−ki+1

1− 1
λ

. (6.2)

Then letpi
qi

= β
α
− ǫi ≤ s. It can be seen thatqi = λki. Finally, let ti =

(
K

q1+γ
i (2s)γαǫi

) 1
1+γ

/2.

Thus, we can apply Lemma 6.1 to see that
D(ti)

t1−δ
i

≥ ⌊ti/qi⌋
t1−δ
i

. Therefore, it suffices to show that

lim(ti) = ∞ and thatlim
(

tδi
qi

)
= ∞.

In order to show thatlim(ti) = ∞, it suffices to prove thatlim(q1+γ
i ǫi) = 0. However, by (6.2),

q1+γ
i ǫi ≤ λ(1+γ)ki−ki+1

1− 1
λ

, which approaches0 sincek > (1+γ)(1+δ)
δ

≥ 1 + γ.

Similarly, we show thatlim
(

tδi
qi

)
= ∞ by proving thatlim(q

(1+γ)(1+δ)
i ǫδi ) = 0. Again, by (6.2),

q
(1+γ)(1+δ)
i ǫδi ≤ λ(1+γ)(1+δ)ki−(δ)ki+1

(
1

1− 1
λ

)δ
, which goes to0 sincek > (1+γ)(1+δ)

δ
. �
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Corollary 6.3. There exist vectorsω = (α, β) that are Diophantine with exponent5 for which
lim sup
t→∞

(D(t)) = ∞ is satisfied for the regionR as shown in Figure 2 (withs ≥ β/α).

Proof. Let τ =

(
1 +

∞∑

n=0

λ−5n

)
for some integerλ > 1. Note thatτ is Diophantine with expo-

nent5. Thus, by Corollary A.2, there exists a full measure setΛ ⊆ [1,∞) such that anyα ∈ Λ
makes(α, ατ) Diophantine with exponent5. Since the setΩ ∈ [1,∞) of numbers Diophantine
with exponent5/4 is also of full measure, the setΛ ∩ Ω is full measure. Choosingα from Λ ∩ Ω,
β = ατ , andδ = 1 allows us to apply Proposition 6.2, sincek = 5 > (1+γ)(1+δ)

δ
, which finishes

the proof. �

Although we cannot answer Question 1.10 at the present time,one can easily use the Transfer-
ence Theorems of [C] to show:

Proposition 6.4. If ω = (ω1, . . . , ωd) is not badly approximable, then there is a sequencetn → ∞
for which the ratio

∆D(tn)(tn)

∆1(tn)
goes to infinity.

The following combination of Theorems 2 and 7 of [C], in the case whenm = d andn = 1,
will be used in the proof of Proposition 6.4.

Theorem 6.5.For all γ andX, let X̃ = γ−1/dX
4d2

andγ̃ = X−dγ
d−1
d

4d
.

If there existsx = (x1, . . . , xd) 6= 0 such that

|x| ≤ X and ‖x · ω‖ ≤ C = γX−d,

then there existsα, such that for allx

|x| ≤ X̃ ⇒ ‖x · ω − α‖ ≥ γ̃.

Proof of Proposition 6.4.In this proof, we assume that the origin lies in the region,R, however,
methods similar to those in the proof of Lemma 2.3 can be used to show the proposition is true
when the origin does not lie in the region.

Similar to the proof of Theorem 2.1, letA andB be closed balls with radiirmin and rmax

respectively, taken with respect to the infinity norm| · |∞, such thatA ⊆ R ⊆ B. Then, let
A(t) = {xt | x ∈ A} andB(t) = {xt | x ∈ B}.

Let γn be a sequence going to 0. Sinceω is not badly approximable, for eachγn, there existxn

such that‖xn · ω‖ ≤ γn |xn|−d
∞ . Let Xn := |xn|∞. Then, by Theorem 6.5 above, there existsαn

such that for allx

|x|∞ ≤ γ
−1/d
n Xn

4d2
⇒ ‖x · ω − αn‖ ≥ X−d

n γ
d−1
d

n

4d
.

Let tn be the smallestt such thatxn ⊆ R(tn). This also impliesrmintn ≤ |xn|∞. Moreover, the
smallest spacing,

∆1(tn) ≤ ‖xn ·ω‖ ≤ γn |xn|−d
∞ .

Thus, forn sufficiently large thatrmax

rmin
≤ γ

−1/d
n

4d2
, we havermaxtn ≤ γ

−1/d
n Xn

4d2
. This implies that, the

largest spacing,∆(tn)(tn) satisfiesX
−d
n γ

d−1
d

n

4d
≤ ∆D(tn)(tn). Therefore

X−d
n γ

d−1
d

n

4d

γnX−d
n

=
γ
−1/d
n

4d
≤ ∆D(tn)(tn)

∆1(tn)
.
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Sinceγn → 0, this implies
∆D(tn)(tn)

∆1(tn)
→ ∞. �

APPENDIX A. SELECTING DIOPHANTINE VECTORS

Proposition A.1. Let τ be Diophantine with exponentκ. There exists a full measureΛ ⊆ [0, 1]
such that ifα ∈ Λ, then(τ, α) is Diophantine with exponentγ, for anyγ > max(3, κ).

Proof. Notice that(τ, α) is Diophantine with exponentγ if and only it∃K such that

|m+ nτ + pα| ≥ K0

|(m,n, p)|γ

for all nonzero integer vectors(m,n, p).
If p = 0, then|m+nτ +pα| = |m+nτ | ≥ K0

|(m,n)|κ ≥ K0

|(m,n,p)|γ , for all α, sinceτ is Diophantine
with exponentκ.

If p 6= 0, the plane inR3 orthogonal to(m,n, p) at the origin intersects the line

L : {x = 1, y = τ}
at angleφ, wheresin φ = p

|(m,n,p)| .
DenoteL0 as the portion ofL, where0 ≤ z ≤ 1.
We will now overestimate the length ofL0 that is hit by a given slab,

S(m,n,p) :=

{
(x, y, z) |mx+ ny + pz| ≤ K

|(m,n, p)|γ
}
.

Let P(m,n,p) be the plane orthogonal to(m,n, p) . SinceP(m,n,p) andL0 intersect at angleφ, with
sinφ = p

|(m,n,p)| , the distance inL between the upper plane of the slabS(m,n,p) and the planeP(m,n,p)

is

d(m,n,p) :=
K

|(m,n, p)|γ+1
· 1

| sinφ| ;

See Figure 5.

lower plane of slab

upper plane of slab
L0

φ

(m,n, p)

P(m,n,p)

K

|(m,n, p)|γ+1

d(m,n,p)

FIGURE 5. The intersection of the line segmentL0 and the slabS(m,n,p).
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Thus, the total length ofL that intersectsS(m,n,p) is less than or equal to

2K

|(m,n, p)|γ+1
· 1

| sinφ| =
2K

|(m,n, p)|γ+1
· |(m,n, p)|

|p| =
2K

|(m,n, p)|γ|p| ≤
2K

|(m,n, p)|γ .

Sinceγ > 3,
∑

(m,n,p)∈Z3\{0}

2K

|(m,n, p)|γ is a converging series. Thus,

length




⋃

(m,n,p)∈Z3\{0}
(S(m,n,p) ∩ L)


 ≤ JK,

whereJ is some constant. Therefore,

Ω =
⋂

K>0

⋃

(m,n,p)∈Z3\{0}
S(m,n,p) ∩ L0

has measure zero. SinceΛ is the complement toΩ, Λ is a full measure subset of[0, 1]. �

Corollary A.2. If τ is Diophantine with exponentκ, then there is a full measure setΛ ⊆ [1,∞]
such that ifα ∈ Λ, then(1, α, ατ) is Diophantine with exponentγ, for anyγ ≥ max 3, κ.

Proof. This follows by dividing|m+ nτ + pα| ≥ K
|(m,n,p)|γ by α. �
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also thank Rodrigo Pérez for his helpful comments. The workof Bleher is supported in part by
the NSF grants DMS-0652005 and DMS-0969254. The work of Roeder was partially supported
by startup funds from the Department of Mathematics at IUPUI.

REFERENCES

[B1] P. M. Bleher. “The Energy Level Spacing for Two HarmonicOscillators with Golden Mean Ratio of Frequen-
cies.”Journal of Statistical PhysicsBelgium, 61 (3-4): 869-876, November 1990.

[B2] P. M. Bleher. “The Energy Level Spacing for Two HarmonicOscillators with Generic Ratio of Frequencies.”
Journal of Statistical PhysicsBelgium, 63 (1-2): 261-283, April 1991.

[BD1] M. D. Boshernitzan. Letter to F. J. Dyson. December 9, 1991.
[BD2] M. D. Boshernitzan. Letter to F. J. Dyson. May 20, 1992.
[C] J. W. S. Cassels.An Introduction to Diophantine Approximation. Cambridge at the University Press, 1965.
[Ch] N. Chevallier. “Three distance theorem and grid graph.” Discrete Mathematics 223: 355-362, January 2000.
[D] F. J. Dyson. “Nearest Neighbor Distances on a Circle.” Preprint.
[GS] J.F. Geelen, R.J. Simpson. “A two dimensional Steinhaus theorem.” Australas, J. Combin, 1993, 169-197.
[M] D. A. Marcus.Number Fields. Springer-Verlag, New York, 1977.
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