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NEAREST NEIGHBOR DISTANCES ON A CIRCLE: MULTIDIMENSIONAL C ASE

PAVEL M. BLEHER!, YOUKOW HOMMA!:2, LYNDON L. JI*2, ROLAND K. W. ROEDER,
AND JEFFREY D. SHEN*

ABSTRACT. We study the distances, callsgacings between pairs of neighboring energy levels
for the quantum harmonic oscillator. Specifically, we cdesiall energy levels falling betwedrn
andE + 1, and study how the spacings between these levels changarious choices ofZ,
particularly whenFE goes to infinity. Primarily, we study the case in which theirsprconstant

is abadly approximablerector. We first give the proof by Boshernitzan-Dyson thattlimber of
distinct spacings has a uniform bound independeftofhen, if the spring constant has components
forming a basis of amalgebraic number fieldwe show that, when normalized up to a unit, the
spacings are from a finite set. Moreover, in the specific cagethe field has one fundamental
unit, the probability distribution of these spacings bedsaguasiperiodically itbg £. We conclude
by studying the spacings in the case that the spring conistauatt badly approximableproviding
examples for which the number of distinct spacings is undedn

1. INTRODUCTION

1.1. Physical Motivation. The quantum harmonic oscillator is given by the Hamiltonian

d+1 d+1
2 02 k.

H=-S" 27 N2

; 2m8:c? + — 2 i

Applying Schrodinger’s equation, the quantum energyltegéthe system are determined dy- 1
non-negative integersy, . . . , my, and they are of the form

E:Eo—l-moOéo—'—...—'—meéd,

whereay, . . ., oy are positive real numbers depending on the spring conktand the mass:.
The problem is to study the distribution of energy level spgs (the difference between neighbor-
ing energy levels) for all energy levels occurring in a giwaterval £’ < F < E' + ¢, for some
fixed constant, asE’ — oo. Itis convenient to make = «,. Since

E = E() + Ozo(m() +miwy + ...+ deUd),
wherew; = «; /oy > 0, the problem becomes to find spacings between energy levels
5:m0+m1w1+...+mdwd

between a gived’ and€&’ + 1 as€’ — oo. For any integer vectom = (my, ..., my) such that
m-w < & + 1, there is exactly onen, > 0 that forces into the intervall£’,£" + 1). This
allows us to reduce the problem modulo 1, considering difiees between the fractional parts
of the numbersn,w; + ... + myw, determined by integer vectora € R(t). Here,R(t) is the
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homothetic expansion a@® = {v € R" | v; > 0, v1w; + ... + vawg < 1} by a factor oft = £’ + 1
about the origin.

1.2. Mathematical Problem. For any real numbef, we will use the following notation}{d| is
the floor,[#] is the ceiling{0} = 6— | 0] is the fractional part, anidd|| = dist(6, Z) is the distance
betweery and the nearest integer.

Letwy = 1,wy,...,wy, bed + 1 real numbers, linearly independent over the rationals:
(wo, w1, - - -, wq), andw = (w1, .. .,w,). Let R be some bounded convex regiorif, R(t) be the
homothetic expansion @t about the origin by a factor @f> 0, andM () = R(t) N Z-.

We order the numbergm - w}, wherem ranges oved/(¢), into the sequence

0< yl(t) < ... < y|M(t)|(t) < 1.
We then consider the differences between consecutive mgmbthis sequence, callesppacings

05(t) = y; (1) =y (), 5 =2, [M(1)].

Now, let D(t) be the number of distinct spacings andAgi(t) be the ordered sequence of distinct
spacings from thé;(¢), so that

0< Al(t) < ... < AD(t)(t) < 1.

We are interested in analyzing the set of distinct spacisgsel as the frequency of occurrence
of each distinct spacing from this settascreases for various choiceswfand .

Remark.The problem can also be considered on the cifgle- [0,1]/0 ~ 1. However, these two
formulations are equivalent up to one spacing.

1.3. Previous Works. In 1958, Steinhaus conjectured that in the case 1, for anyw; and any

t, there are at most three distinct spacings. This conjegtaseproved in the same year indepen-
dently by P. Erdos, G. Hajbs, V. S6s, J. Suranyi, N. Sukewski, and P. sziidkMoreover, there
are simple formulae for the sizes of the three spacings at ang the frequencies with which each
spacing occurs.

In [B1], Bleher studies the distribution of spacingsras— oo in the case that = 1 and
Wy = @ the golden ratio. If one fixes € (0, 1] and considers the distribution of spacings at
the timest,, = f,_1 + xf,_», the limit distribution exists and a concrete formula isagivfor the
distribution. Furthermore, in [B2], Bleher shows that o= 1 and fixedw;, no limit distribution
exists (without taking a subsequence of times, as in thesgalatio case), but for random some
limit distribution exists.

Geelen and Simpsoh [GS] showed that i 2 andw; andw, are any frequencies, then using all
integer pointd) < v; < n; and0 < v, < ny generates at most + 3 distinct spacings. Moreover,
they conjectured that for generdbind integer points chosen such that v; < n;, for eachi, then
the number of spacings will be no more tkﬁi:‘f n; + Cy, whereC, only depends od. Progress
was made on this conjecture by Chevallier [Ch], who showedl tthe number of spacings is no
greater thaf [ n; + 31, n; + 1.

Concerning the distribution of spacings in the multidimenal case, there is a note of Dyson
[D] and the resulting letters between Boshernitzan and BYB®1,[BDZ], but no other works that
we are aware of. We use the results of Boshernitzan and Dysastarting point of our work, and
moreover, we will present many of the details of their workgs it was never published.

1our source for the history i5[S0].
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1.4. Main Results.

Definition 1.1. A vectorw € R? is calledDiophantinewith exponenty if there is some positive
numberK such that for all nonzero vectora € Z¢, we have

K
: ekl _ 2 2
||lm - wl|| > T where|m| = \/m1 +...+m;. (1.1)

It follows from the Minkowski’s Theorem that > d. We callw badly approximabléf v = d.

The following is a result outlined in a discussion betweers@yand Boshernitzah [BD2] in
response to a preprint of Dysadnl[D].

Theorem 1.2. (Boshernitzan-Dyson) If w is badly approximable, then the number of distinct
spacings has a bound independent.of

There is a very convenient way to produce badly approximadatorsw using algebraic number
fields. If ® is an algebraic number field aidw;, ..., w, are algebraic integers forming a basis
for ® overQ, then a theorem of Perron![P] gives that= (w,...,w,) is badly approximable.
Thus, the original theorem in Dyson’s preprint [D] is ob&inas the following direct corollary to
Theoreni 1P.

Corollary 1.3. (Dyson) If 1,wy,...,wy are algebraic integers forming a basis for an algebraic
number fieldd, then the number of distinct spacings has a bound indepé¢mdéen

Since the proof of Theorem 1.2 was never published, we walent it in Sectiohl2, together with
an explicit bound for the number of spacings. We will thenufon the case that is obtained
from an algebraic number field (as above), studying furtlhesstjons about the spacings, including
their algebraic properties, rigidity properties, and thieniting distributions.

Theorem 1.4. The field norm of any spaciny;(¢) has a bound independentténd ;.

Theorem 1.5. There exists some finite s€t= {s; < ... < s;} C @ such that every spacing
A;(t) has the formus; for some unit of the ring of integer<, (invertible element oZ4) and
somes; € S.

There is a theorem due to Dirichlet (see Theorem 38in [M])oklgives that the group of units
of the ring of integer& is isomorphic to& x Z™~!, whereG is a finite cyclic group consisting
of all the roots of unity fromp, r is the number of real embeddings®into C, ands is the number
of conjugate pairs of complex embeddingsiointo C. Thus, there is a set dfindamental units
uy, ..., u; With [ = r + s — 1 which generates the group of unitsa§, moduloGG. Note that since
we are concerned only with € R?, ¢ is real, and7 = {—1,1}.

We can say much more & has only one fundamental unit, i.e= 1. By Dirichlet’s Theorem,
this happens if and only ifr, s) = (2,0), (1,1), or (0,2). Again, since we deal wity € R,
(r,s) =(2,0) or(1,1).

Theorem 1.6. Suppose that the fiell has only one fundamental unit If [(t) = [—dlog, ()],
)

then there exists a finite sét= {s; < ... < s;} C Zg suchthat{ A;(t),..., Apy(t)} € /@5
for all ¢.

Corollary 1.7. If the field® has only one fundamental unit, then there is some finite set @

such that?! ¢ § for all 7 andt.
1(t)

We now consider the distribution of spacings in the speasédhatb has exactly one fundamental
unit.
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Theorem 1.8. Suppose is a real quadratic field having exactly one fundamental Onit v < 1
andw is formed by choosing a basis f@r(overQ) consisting of algebraic integers. Then, for any
n € [1,u™"], the proportion of normalized spacings equaktchas a limit along the subsequence
t, = n(=)", with rate of convergence equal @(u*").

Theorem 1.9. Supposed is a cubic field with exactly one fundamental udit< « < 1 and
w Is formed by choosing a basis far (over Q) consisting of algebraic integers. Then, for any
n € [1, u], wherey = u~'/2, there is a continuous function

g:T—P={(p,....ps) | Y _pj=1,p; > 0}

and some frequenay > 0 such that for anyn € N, the proportion of normalized spacings at
t, = nu™ equal tos; is g;(On) + O(u?).

That is, we show that the distribution of normalized spasiatpngt = 1" for somey either
has a limit or behaves quasiperiodically. Note that these ¢ases cover all number fields
with exactly one fundamental unit, sin¢e, s) = (2,0) occurs only whend is quadratic and
(r,s) = (1,1) occurs only wherp is a cubic field.

The proofs for the results above can be found in SecliidsfaHegaper. In the last section, we
consider the case whegeis not badly approximable. A major question is whether theveose of
the Theoreri 1]2 holds.

Question 1.10.1s D(t) unbounded itv is not badly approximable?

Since answering this question may be difficult, we preseribua partial results. First, we find
some examples ab that are not badly approximable for whidh(¢) is unbounded by using a
technique outlined in a letter from Boshernitzan to DysoBIR In particular, forany) < 6 < 1

, , t . ,
we find vectorsw for which lim sup (tl(—g) = oo. Moreover, we also find aw € R? that is
t—00

Diophantine with exponeritfor whichlim sup(D(t)) = co. Lastly, we show that the rati%ﬁ%
t—o0

between the largest and the smallest spacing is unbounded.

2. THE BADLY APPROXIMABLE CASE
In this section, we will prove Theorem 1.2 using the “Transfiee Theorems” from Casséls [C].

Theorem 2.1. The vectoww is badly approximable, satisfyin@.1) with constant’, if and only if
for any X; and anya € [0, 1], there exists a nonzero integer vectosuch thatjz|., < X; and

- d+1
|z w—all < % .whereL = <L ;Hl) K
1

Proof. From [1.1), we have that for any > 0 and nonzero vectar such thatx|,, < X,
K

€Tr-wl|| > — > —.
lo-wll > > <

Thus, this is a direct application of Theorem VI from Chapteof [C], whereC' = KX —™/",

m:d,ﬂ:l,Ll(w):m‘W,andX:%- O

Let A and B be closed balls with radir,,;, andr,.. respectively, taken with respect to the
infinity norm ||, suchthatd C R C B. ThenletA(t) = {xt | x € A} andB(t) = {«t | v € B}.
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K
(27"maxt)d '

Proof. Note thatA, () = {n-w}—{m -w} =||(n—m) - w|| forsomem,n € M(t) C R(t) C
B(t). Then|n — m|y < 2ryat, S0 by (L) ]|(n — m) - wl|| > O

Lemma 2.2. For all t > 0, the smallest spacing satisfiés (¢) >

(27'maxt)

If w is badly approximable, satisfying(1.1) with constantwe setl’ = (2L'/¢41/2)¢, where

L:K(M;HYi

Lemma 2.3. For all t > 0, the largest spacing satisfiés, ) (t) < (TL—t)d

Proof. If tis small, i.e.t < %:7“/2 then itis clear that <

min ( mi Il
2L'/44-1/2

Tmin

e andAp (t) <1< L’

- - (Tm nt)d ’

Otherwise ift is large, i.e.t > which is less

_fort > 2LU0412

( nint Tmin
Suppose for the sake of contradiction thgg ) (t) > (Tfﬁ for somet > w Let
Apw(t) = 0;(t) = yi(t) —yi—1(t) for somei. We show that there isim < M (t) such thal{m w}
is in the interval(y;_1(t), v:(t)). If we let p be the integer point closest to the centerAgt), let
a = % be the midpoint of the intervdly; _1(t),v:(t)), and letd = a + {p - w}, then by

Theoreni 211, we can find an integerand thus an integen = x + p, so that

, we will show thatA p (1) < ﬁ

than ——;

L
(Pt — 1/2)%
From (2.1), it can be seen that is in the ballA(¢). Thus,m is in M (t). Also from (2.2), the

distance from{'m - w} to the midpointx of the interval(y;_1 (%), v:(t)) is no more thaw,

giving that{m - w} is in the interval(y;_1 (), v:(t)). However, this is a contradiction singge ; (¢)
andy;(t) are consecutive numbers in the ordered sequénte w}, wherem ranges over all of

M(t). Therefore, we have p(;)(t) < 77 Whent > u , completing the proof. [

and|jm -w — af| = ||z - w — B < (2.2)

Lemma 2.4. For anyi and allt > 0, we have\,(t) — A;_i(t) > &

- (47"maxt)d '

Proof. Note that any positive difference between spacings can peessed as
|({n1-w} —{mi w}) — ({n2-w} —{mz-w})| = [|(n1 —m1 —nz + My) - ||

for somemy, ny, mo,ne € M(t) C B(t). Sinceln; — mq — ny + Malo < 4rnat, (1.1) gives
that||(n1—m1—n2+m2)-w||zm. O

Proof of Theorerh 112By Lemmag 2., 213, arid 2.4, we have that

L’ K

Apw(t) — Ai(t) aind? _ Crmad)? Arma \* (L d
D(t) < ] < (Tmin SEOLA - i LD
= mam Lo TS K * o )\ K *

(47'maxt)d

This gives an explicit bound for the number of distinct spgsi U
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3. THE GENERAL ALGEBRAIC CASE

Letl = wg,wr,...,wy be algebraic integers forming a basis for some number deld
Lemma 3.1. Letw = (wy, . .., wq) Withwy = 1. Perron’s theorem gives a constafit > 0 so that
n-@| > ﬁ We can then find a constaft > 0 so that||m - w|| > 7.

Proof. First, letn = (ng, m1, ..., mg), Wheren, is chosen so thak - w| = ||m - w||. Itis easy to
see then thatyy| < ||m - w]|+ 1. If |n|e = |Mm|e > |m|, then we can simply chood€ = K'.

Otherwise|n|. = |no] < ||m - w]|+ 1. Note that||m - w|| < |m - w|+1 < |m|- |w|+ 1,
where the second half comes from the Cauchy-Schwarz inggu&iom this, we have that
Kl
el =fn &> e T
m-w||=n w _
(fm-w]+ D7~ (Im[lw]+2)?  |m|?
Sincem is a non-zero integer vectdrp| > 1, so choosings = K'(|w| + 2)~% works. O

Proof of Theorerh 114We can write the field nornV of an element: from the number fieldd as

d d
N(z) = ij = xij,
i=0 i=1

wherex; are the conjugate images ©f In other words, ift = n - w = ng + ... + nqwy, then

x; = ng +no;(wr) + ...+ ngo;(wq), whereo; : & — C are the conjugate embeddings. It can
thus be seen that'(z) = zQ(n), whereQ(n) is a homogeneous polynomial of degrée the
components of = (ny, ..., nq). Then by Lemma2I3V(A;(t)) = A;(t)Q(n) is bounded above
by #|Q(n)|. Hence, it suffices to show th@fdi) is bounded. This follows immediately sin¢e

is a homogeneous polynomial of degrgemplying the existence of a constafit> 0 such that
|Q(n)| < Clnld, < C(bt)".

Definition 3.2. We let theequivalence classf an element € Z4 be
E(a) = {au | vis aunitfromZs}. (3.1)

Note that all elements of an equivalence class have the sameM(au) = N(a)N(u) = N(a).
Also note that for any: € ®, we have that € Zq if and only if N(z) € Z.
Proposition 3.3. For any k € Z, there exist elements, . . ., a,,(x) € Zg such thatN(z) = k if

m(k)
and only ifz € |_| E(a;).

=1
Proof. This follows directly from Theorem 4B of Chapter VII of][S]. O

Proof of Theorerh 115By TheorenLK, there exist¥, € Z such that N (A;(t))| < N, for all
t andi. Note thatV(A;(t)) is an integer sincé\;(t) € Zg. Thus, by Proposition 3.3, there are

No m(k)
equivalence classes(a; ), such thatA;(t) € U |_| E(a;r) |- We can thus choose the
k=—Np \ i=1

finite set
S = {a'i,k: | 1 S 7 S m(k:),—NO S k‘ S No},
which satisfies the conditions. O
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4. THE ONE FUNDAMENTAL UNIT CASE

Let the fundamental unit be chosen so that < u < 1. Note that every unit oZ¢ is of the
form +u", wheren € Z.
We first present a lemma necessary to the proof of Thebrem 1.6.

Lemma 4.1. Letk be any integer and < zy < x; < oco. Then the set given by

{z € Zo | N(x) = k} N[0, 21] (4.1)
is finite.
Proof. First, if E(a;) = {a;u"} denotes the equivalence class generated; by Z¢, then the set
E(a;) N [z, 2] is finite. To see this, note thatif, < a,u"™ < 24, then

log x¢ — log a; log 1 — loga;

<n<

logu logu

Now, by Proposition 3]3, we have that

{r € Zo | N(x) =k} N [xo,21] = |_| E(a;) N[z, z1] .

m(k)
Since this is equal th N [zo, z1]), @) is finite. O

=1

Proof of Theorerh 116By TheoreniL}4, there is &, such that the normV(A;(¢))| < N, for all
j andt. Recall thatV(A)(t)) is always an integer. Furthermore, by Lemras 2.2[and 2.3 gnd b
the definition ofl(t),

/

K L
10 < 2 < AL(l) < < pul®
o < gy S Alt) S g S mw

wherezx, = (%d andz; = du Therefore, we have that
No
At)eSt)= | | {x €Zo | N(x) =i} N [awou'®, zyu'®)]

i=—Np
for all j andt. Note thatV () = N (u~'®z). Thus, each\;(t) € u!®) S for the set

= |_| {x € Zgo | N(z) =i} N [x0, 11],

i=—DNp

which is finite by Lemm&a4l1. O

5. THE ASYMPTOTIC DISTRIBUTION OF SPACINGS

Let & be a number field with exactly one fundamental uni « < 1. In this section, we will
prove Theoremis 1.8 and 1.9. We will first prove Theokem 1.6abse Theorem 1.8 follows from
some simple modifications of its proof. Thus, we first assuméd is a cubic field, in which case
® has one real embedding and two complex embeddings.

We first define two vector representations of a numbad@r.in

Definition 5.1. Letn : ® — Q3 be the vector expansion an elementioin terms of the basis
w = (1,wy,wy) andm : & — Q? be such thatifx(y) = (mg, m1, ms), thenm(y) = (mq, my).
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5.1. Fundamental Circle. Letu; andu,; = u; be the Galois conjugates of

Lemma 5.2. There is a two-dimensional linear subspage ¢ R? containing a circleT of radius
r = r(n) and a constan€’ > 0 such that dis(%in), ’IF) < Cu™.

Proof. Sinceu is an irrational unit in the cubic field, it is a zero of an irreducible monic integral
polynomial
P(z) = 2% + as2® + a1z + aq. (5.1)

Hence,

u3 = —a2u2 — a1u — aop.

Let us choose our basis fdr to be (1, u,u?). Then in this basis, multiplication by is repre-
sented by the matrix

0 0 —ayg
U = 1 0 —a
0 1 —Qa2

The characteristic polynomial éf is precisely the minimal polynomial of, P(x). Thus,u, u,
andu, are the eigenvalues @&f. Let £° and E* be the stable and unstable eigenspace§,of
respectively. We know thaV (u) = 1 = ay = uujus and0 < u < 1, soujuy > 1. Becauser,
andu, are complex conjugateBy;| = |us|. Hence|u|, |us| > 1.

Setn(l) = vs + v,, Wherewv, is in £E° corresponding to the eigenvalueandv,, is in £
corresponding to the eigenvaluesandu,. Then the norms of the componentsrafu™) in those
eigenspaces afe|"|v,| and|u;|"|v,|, respectively. A calculation shows that1) is not an eigen-
vector ofU and thusy, is nonzero. Consequentl\y’,‘(t“—”)| does not go to zero.

Using our previous definitions, we get "

n@®)||  [[UnQ)| _||[U"(vu + vs)
te |l ta | tn
Sinceuujus = 1 and|u;| = |uz|, we must have that,;| = u. Therefore,
Umv,, ull - (v,
; — ‘ 1‘ lJ H :H’UUH —
n It
Moreover,
Un u S Un u Un S
(vu tvs) U'v _ v < U™, < Cur
t?’L t?’L n
Thus, ™" converges t@ with rateO(u"). O

5.2. Partitions.
Definition 5.3. Let Y;,(¢) be the set of numbeig(¢) such that; () = v,(t) —y;_1(t) = sxu'® and

J
M;(t) to be the set of vectors: € M (t) such tha{m - w} € Y;(t). Note that| | Mj,(t) = M(t)
k=1
up to the point corresponding te(¢). Thus, we calk M, (t)} a “partition” of M (t) (see Figuréll).

Also note that M, (t)| is the number of spacings that are equadta/®. Therefore,U'V]y(’;)(‘tl‘1 is the
proportion of spacings that is equaldgu'®).
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FIGURE 1. The partition{ M, (t)} of M (t) for w = (v/2, v/4) andt = 650.

Proposition 5.4. Letv;, = m(s,u'®). Then, fork = 1,...,.J, we have
Mi,(t) = [M(t) N ) + )]\ U ) + i), (5.2)

where() + v is defined to bdu + v | u € Q} foranyQ C R? andv € R¢.

Proof. We first prove that
My(t) = [M(t) N (M(t) + vg)] \ |_| M;(t). (5.3)

Suppose we are given some € [M(t) N (M (t) + vg)] \ |II=, Mi(t). Sincem € M(t), there
existsn such thay, (t) = {m-w}. We wiII show that,, (t) = skul(t) Foreveryj < k,m ¢ M;(t)
and thusy, (t) # s;u!®. If §,(t) = s;u'® with j > k, a contradiction is reached since

6n(t) = s,u' > spu!® =y, (1) — {(m — vp) - W},

where (m — v,) € M(t) becausem € (M(t) + vg). Thus,d,(t) = s,u'® and therefore
m € A4k(t)

Suppose instead that € M;(t). Clearlym ¢ M,(t) for j < k. Now letn be such that
yn(t) = {m - w}. Theny,_1(t) = y.(t) — s;pu!® = {(m — v,) - w} and thus(m — vy) €
M(t). Thereforeym € M(t) + v, and sincem € M(t) andm ¢ | |/~ M;(t), we have that
m € [M(t) N (M(1) + o)) \ LIS, Mi(t).

Therefore[(5.8) holds. Using induction, it can be shown that

k-1 k-1

|| Mi(t) = (M (1) +vi) 0 M (1),

=1 =1

which proves[(5.2). O
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Definition 5.5. Denote the power set @t by P(R). ThenletP : (R?)’ — P(R)’ map a vector

of vectorsv = (vq,...,vy)to (P (v),..., P;(v)), where
k—1
Py(v) = [RN (R +vp)] \ |J (R + v2). (5.4)
i=1
p . m(s1ul®) m(s ul®)
roposition 5.6. If v = ( - ,...,f» then

(5.5)

area(Py(v)) M) _ C) .

area(R) IM(t)| -1 t

Proof. If we let z = tv = (m(s;u!®), ..., m(s;u'®)), then Proposition 514, followed by the
inclusion-exclusion principle, gives that

k—1
[My(8)] = |[M(£) N (M(t) + )] \ U(M(t) + ;)
= |M(t) N (M(t) + @w)| — L_J[(M(t) +ai) N M(t) O (M) + o))
= |M(t) 0 (M(t) + x)]
= D DY) + @) 0 M () N (M(E) + @) (5.6)
IC{1,.. k—1} i€l
Similarly,

area(tPy(v)) = area(tRN (tR + tvy))

_ Z (—1)|I|area (ﬂ(tR+tvi) NtRN (tR+t'vk)> ) (5.7)
1}

IC{1,.. k— icl

Given any bounded convex regiéh € R? and the corresponding s&f = tQ N Z2, it is well-
known thatarea(t€2) — |M| = O(t). Thus, by summing over all the parts bf(5.7), and subtrgctin
all the corresponding parts in (5.6), we have that

area(tPy(v)) — [My(t)| = O(t). (5.8)
Also, | M (t)| — area(R(t)) = O(t) implies
| My (2)] |Mk(t)| M@ (IM(E)] -1 —area(R(¢)) _ (1
ety 1= () =0(G) @9
Dividing (5.8) byarea(R(¢ )) and adding[(519) proves the statement. O

Proposition 5.7. The function? is Lipschitz continuous with respect to the infinity norm(Br)’

and the metrial(P(), P@) = Y7 area(P" AP®), whereA denotes the symmetric difference
between two sets.

In order to prove Propositidn 5.7, we first present a lemma.

Lemma 5.8. Let Q2 be a bounded convex regionlitt with a nonempty interior. Then the function
F taking every vectov € R? to the set of point§ + v is Lipschitz.
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Proof. Suppose we have two vectasg, v, such thatv; — va|,, = z. If 2z > 1, then
area((Q2 + v1)A(Q + va)) < 2[area(N)] < 2[area()]z.

Otherwise, assume that< 1. If a is the radius, taken with respect to the infinity norm, of aeld
ball contained insid€ + v, then we construd®'? to be the homothetic expansion®@f- v, about
the center of the ball by + £. It can be shown tha®'* contains all vectors within of Q + v;.
Thus,(Q + v1) U (Q + vs) C Q2. Therefore,

area((Q + v1)A(Q + v2)) = 2[area((Q + v1) U (2 4 v3)) — area(2)]
< 2[area(Q"?) — area(12)]

—9 larea(gz) <<1 + 2)2 - 1)} .

The result follows sinc€)(z) = (1 + £)* — 1 is Lipschitz on the intervaD, 1]. O

Proof of Propositiof 5]7From Lemmd’5.8, the functiof; taking every vectop € R? to the set
of points R is Lipschitz. It is easy to see tha} takingv € R? to RN (R + v) is also Lipschitz. It
can be readily proven that

(A\CYA(B\ D) C (AAB)U (CAD), (5.10)
(AUB)A(CUD) C (AAC)U (BAD) (5.11)
for any setsA, B, C, D. SubstitutingF; and F» into the formula forP;(v) in (5.4), we have that

Fy(wi)\ U ﬂ(vi-”)] )

GI) i—1 i—1
< arca(Fy(v{") ARy (v?)) + area (U R)al Fl(v§2>)>

area(P;(vW) AP, (v®)) = area < A

1—1
R\ | A"
j=1

j=1 j=1
G&1) !
< area(Fy(v{V) AR (v{?)) + Y area(Fy(v§V) AR (vf?))
j=1
< (Cy + (i — 1)Cy) o™ —0®|
sincef; and F; are Lipschitz. Therefore? is also Lipschitz. U

5.3. Proof of Theorem[1.9.

Proof. Let T be the circle with radius = |v,| centered at the origin on the unstable eigenspace,
E* let L = {span(w,ws)}, and letg : R® — R’ such thayy = h o P, where
h: w +— (proj.(Siw), ..., proj.(S,w))
and
P:vr—— (P(v),...,P;(v)).
Sinceh is a composition of two Lipschitz continous functions, gaijon and matrix multiplica-

tion, it is also Lipschitz continuous. Combined with Lemm3, 3his gives

i (757) 1 (5)

< Cv",
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where0 < v = = u®/? < u'/? < 1. By Propositio 5J7P is also Lipschitz, so

d (P oh (projEu "i“n)) Poh (@)) < " (5.12)

for some constant’.
Let w;, wy be an orthonormal basis dit* such thaproj.(n(1)) = projg.(1,0,0) coincides

with w;. The vectomproj . ("( ) will thus form an anglén with wq, wheref) = arg(u;). By

Propositio 5.6, the area of thi#& component of o ( ) differs from the true proportion by

at mostK Ku™? for a constanty. Hence, the total error is given by«"/? from Proposition

comblned withC’v™ from (5.12). Therefore, the proportion of normalized spgsiequal ta;
is glven bygi(6n) + O(p™) = g;(6n) + O(u™/?). O

5.4. Proof of Theorem[1.8.

Proof. Using the same arguments as in Lenima 5.2 givesitlaaid 1 are the eigenvalues 6f. A
quick calculation shows tha= (=) — vu ang 2T Le)) — 20w Thys, %) converges to the
pointr = “» at a rate ofO(u? ) Furthermore, Proposmdﬂ 7 still holds for= 1 so long as

there is one fundamental unit. Therefore, the same techsiiqthe proof of Theorem 1.9 give the
desired result. O

6. THE NON-BADLY APPROXIMABLE CASE

We first provide examples of non-badly approximable vedirsvhich the number of distinct
spacingsD(t) goes to infinity, following a construction that Boshernitzautlined in a letter to
Dyson, [BD2]. The following Lemma will be central in both cstructions:

S T

FIGURE 2. A closed triangle bounded by lines= 0, y = 0 andz + sy = s.

Lemma 6.1. Let R be the triangle shown in Figuid 2 for some> 0. Let§ € Q satisfy§ <s
« be Diophantine with exponent satisfying(1.1) with constant’, andw = <a, ol + e)) for

somee > 0. Then, for allt < ¢, = (% o , the number of distinct spacings satisfies

D(t) > [t/q]. Here we consider points on the circtg = [0,1]/0 ~ 1.
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Proof. Note that all points of the forr{(m,n) - w} around the circle can be expressed as the
sunfl of two “components,"{m(a) + n(ga)} and{nae}. Consider all distinct points of the form

{m(a) +n(§a)} = {éa}, with (m,n) € M(t). Then, let the distinct spacings for this set of
points be ordered\; (t) < Ay(t) < ... < An(t). Note thata/q is Diophantine with exponent
v and constant since||m(a/q)|| > {||ma||. Thus, sinced < I < stq, we haveA(t) =
[ = L)gll = (stf;)wq > nea. Note also that an integer poifiz, n) € M(t) has first component
éoz if and only if it is on the linemq + np = [ (see Figur¢]3). Thus, the pointém,n) - w} with
the same first component lie consecutively on the circle m&reases (see Figuré 4).

(my,m) |

FIGURE 3. The pointgm;, n;) and(ms, ns) on linesmgq + np = l; andmgq + np = ls.

{70}

{{a}

FIGURE 4. Points with first componerx

We now consider two neighboring values of the first compqn%%t(a)} and {%(a)}. Sup-

pose(my,ni) € M(t) has the largest value af among all points on the linewg + np = [; and
(mg,ng) € M(t) has the smallest value afamong all points on the linewg + np = I,. Then,

2Sometimes, the sum of the two components is at [easd the sum may sometimes need to be taken madulo
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these two points form the spacing
lo — Iy
q

Notice, however, that the lineq +np = [, goes through the x-axis iR(¢). Thereforep, < ¢—1
or else(msy + p, ny — q) satisfiesng + np = I, with a smallem. We now considet; = kgp, for
alll <k < 5 Then,(my,n1) = (0, kq) andny, < ¢ — 1, so that each value ef = n; — ns is
unigue as we vary. Note also that < a < t.

We now show that ifts; # as thenAj (t) — ajear # Ay, (t) — agear. If j3 = jo, theniitis
clear. Otherwise, without loss of generality, suppose that j,, and for the sake of contradiction
that Aj, (1) — ajeac = A, (t) — azea. Then note thata, — az)ea = A; (t) — Ay, (¢). Itis
clear thatA,, (1) — A; (t) can be expressed gé()|| for some—2stq < l < 2stq. Therefore,
A () —Ay(t) > . Furthermoret > a; — ay > 0. Thus,tea > givingt > ty, a
contradiction.

Thus, each\;(t) — (n; — n2)ae is unique, and sinceé < k < é this gives at Ieas[tgj distinct
spacings. O

a— (ng —ng)ae = Aj(t) — (N — na)ae. (6.1)

q(2stq) (2stq )

We first use Lemm@ 6l.1 to construct vectors for whieft) grows fast:

Proposition 6.2. For any0 < ¢ < 1, let« be Diophantine with exponentand let

= - <1+ixk">
n=0

L)1+ and some integex > 1. Then, forw = (a, 3) and R as in Figure2

with s > 3/«, we have thatim sup <D(t)> = 00

t—o0 tl—(S

for some integek >

Proof. We first lete; = Z A% Note that

n=1+1
Eitl > )\_kHl
& <Ay (A = — (6.2)
n=0 A

_1

i . K I+
Then Ietp—%' = ﬁ — ¢ < s. It can be seen that = \*'. Finally, lett;, = <1+—) /2.
q; " (2s)ae;
[t / qu

. Therefore, it suffices to show that

Thus, we can apply Lemnia 6.1 to see tl%(t—

lim(¢;) = oo and thatim (E) = 0.
In order to show thalim(t;) = oo, it suffices to prove thdim(q, 7¢;) = 0. However, by[(6.2),

pitl

e < % which approaches sincek > 1) > 1 4
A
Similarly, we show thatim <Z—5> — 0o by proving thatiim(¢\" ™" ¢?) = 0. Again, by [6.2),

) ) 5
qi(l-i-’Y)(l"‘(S)e? < )\(1+’Y)(1+5)k2—(5)k2+1 <L1> , which goes ta®) sincek > w 0

A
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Corollary 6.3. There exist vectores = («, 3) that are Diophantine with exponeftfor which
limsup (D(t)) = oo is satisfied for the regio®® as shown in Figurél2 (with > 3/«).

t—o00

Proof. Let 7 = (1 +) A~ | for some integei > 1. Note thatr is Diophantine with expo-

n=0
nent5. Thus, by Corollary AR, there exists a full measure/set [1,c0) such that anyr € A
makes(a, ar) Diophantine with exponerit. Since the sef2 € [1, c0) of numbers Diophantine
with exponenb /4 is also of full measure, the satn Q is full measure. Choosing from A N €2,
B = ar, andd = 1 allows us to apply Propositidn 6.2, sinke= 5 > W which finishes

the proof. O

Although we cannot answer Question 1.10 at the present tmecan easily use the Transfer-
ence Theorems of [C] to show:

Proposition 6.4. If w = (wl, ...,wy) Is not badly approximable, then there is a sequence> oo
for which the ratlo% goes to infinity.

The following combination of Theorems 2 and 7 of [C], in theseavhenn = d andn = 1,
will be used in the proof of Propositidn 6.4.

d—1

Theorem 6.5. For all y and X, let X = 2 X andy — +%.
If there existse = (x1,...,24) # 0 such that

lz| < X and ||z -w| < C =~+X"1,
then there existea, such that for alke
| < X = @ w—al >7.

Proof of Propositiof 6J41n this proof, we assume that the origin lies in the regi@nhowever,
methods similar to those in the proof of Lemmal2.3 can be usethdw the proposition is true
when the origin does not lie in the region.

Similar to the proof of Theorerh 2.1, let and B be closed balls with radii,,;,, and 7.
respectively, taken with respect to the infinity nofm|.,, such thatA € R C B. Then, let
A(t) ={zt |z € A} andB(t) = {«t | x € B}.

Let v, be a sequence going to 0. Sineas not badly approximable, for eaeh, there existe,,
such that|x,, - w|| < v, |,|%. Let X,, := |z,|... Then, by Theoref 6.5 above, there exis{s
such that for alke

¥ X Xy"?
oS Tym =l w -l = =

Let¢, be the smallestsuch thate,, C R(t,). This also implies;,t, < |z,| . Moreover, the
smallest spacing,

||

—d
Ar(tn) < II:vn W[ < |2l

.. 1/d
Thus, forn sufficiently large that"rM < 72d2 , we haver . t, < % X” . This implies that, the

largest spacing),(t.) satlsflesM < Ap(,(tn). Therefore

d—1

n n —1/d
S _ < Ao (tn)
’}/nng 4d - Al (tn)
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. - A (tn)
Sincey, — 0, this implies—3-

) — 00. ]

APPENDIX A. SELECTING DIOPHANTINE VECTORS

Proposition A.1. Let 7 be Diophantine with exponent There exists a full measure C [0, 1]
such that ifo € A, then(r, ) is Diophantine with exponent for any~y > max(3, x).

Proof. Notice that(r, «) is Diophantine with exponentif and only it 3K such that

Ko
|m + nt + pa| > ————
|(m, n, )|
for all nonzero integer vecto(sn, n, p).
If p =0, then|m+n7+pal = |m+nt| > mn”h > \(mnp IW,for all o, sincer is Diophantine

with exponents.
If p # 0, the plane ifR? orthogonal ta'm, n, p) at the origin intersects the line

L:{z=1y=r1}
at anglep, wheresin ¢ = | —

(m,n,p)|*

Denotel as the portion of_, where0 < z < 1.
We will now overestimate the length @f, that is hit by a given slab,

K
Stmm,p) = {(m,y,z) < 7|(m - p)|”f} )

Let P(mnp be the plane orthogonal {en, n, p) . SinceF,, ., andL, intersect at angle, with
sing = the distance it between the upper plane of the skgh, ,, ,y and the plané’,, ,,

is

K 1
|(m,n, )P+t [ sing|”

Aimn,p) =
See Figurélb.

Lo
upper plane of slab

// |(m, m, p) [+
d(m,n,p) g/
/Wer plane of slab

FIGURE 5. The intersection of the line segmdntand the slats,,, . ).

(m,n,p)

I (m,n,p)
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Thus, the total length of that intersects,,, ., ,,y is less than or equal to

2K I 2K |(m,n,p)| 2K 2K
[(m,n,p)*t |sing|  [(m,n, p)|+! | |(m,n, p)"lpl — [(m,n, p)|7
2K
Sincey > 3, ————— is aconverging series. Thus,
2 |(m,n, p)|[”

(m,n,p)€Z3\{0}

length U SwmwwnL) | <JK,
(m,n,p)€Z3\{0}
where.J is some constant. Therefore,

Q= m U S(m,nh»,,) N Lo

K>0 (m,n,p)eZ3\{0}

has measure zero. Sindds the complement t€, A is a full measure subset @f, 1]. O

Corollary A.2. If 7 is Diophantine with exponent, then there is a full measure s&tC [1, oo]
such that ifo € A, then(1, o, o) is Diophantine with exponent, for anyy > max 3, «.

Proof. This follows by dividing|m + nt + pa| > ‘(L by a. O

/rrL7/rL7I))|’Y
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