On the metric dimension of line graphs

Min Feng Min Xu Kaishun Wang*
Sch. Math. Sci. \& Lab. Math. Com. Sys., Beijing Normal University, Beijing, 100875, China

Abstract

Let G be a (di)graph. A set W of vertices in G is a resolving set of G if every vertex u of G is uniquely determined by its vector of distances to all the vertices in W. The metric dimension $\mu(G)$ of G is the minimum cardinality of all the resolving sets of G. Cáceres et al. [3] computed the metric dimension of the line graphs of complete bipartite graphs. Recently, Bailey and Cameron [1] computed the metric dimension of the line graphs of complete graphs. In this paper we study the metric dimension of the line graph $L(G)$ of G. In particular, we show that $\mu(L(G))=|E(G)|-|V(G)|$ for a strongly connected digraph G except for directed cycles, where $V(G)$ is the vertex set and $E(G)$ is the edge set of G. As a corollary, the metric dimension of de Brujin digraphs and Kautz digraphs is given. Moreover, we prove that $\left\lceil\log _{2} \Delta(G)\right\rceil \leq \mu(L(G)) \leq|V(G)|-2$ for a simple connected graph G with at least five vertices, where $\Delta(G)$ is the maximum degree of G. Finally, we obtain the metric dimension of the line graph of a tree in terms of its parameters.

Key words: Metric dimension; resolving set; line graph; de Brujin digraph; Kautz digraph.

1 Introduction

Let G be a (di)graph. We often write $V(G)$ for the vertex set of G and $E(G)$ for the edge set of G. A (di) graph G is (strongly) connected if for any two distinct vertices u and v of G, there exists a path from u to v. In this paper we only consider finite strongly connected digraphs, or undirected simple connected graphs. For two vertices u and v of G, we denote the distance from u to v by $d_{G}(u, v)$. A resolving set of G is a set of vertices $W=\left\{w_{1}, \ldots, w_{m}\right\}$ such that for each $u \in V(G)$, the vector $D(u \mid W)=\left(d_{G}\left(u, w_{1}\right), \ldots, d_{G}\left(u, w_{m}\right)\right)$ uniquely determines u. The metric dimension of G, denoted by $\mu(G)$, is the minimum cardinality of all the resolving sets of G.

Metric dimension of graphs was introduced in the 1970s, independently by Harary and Melter [10] and by Slater [13]. Metric dimension of digraphs was first studied by Chartrand et al. in [5] and further in [6]. Fehr et al. [8] investigated the metric dimension of Cayley digraphs. In graph theory, metric dimension is a parameter that has appeared in various applications, as diverse as network discovery and verification [2], strategies for the Mastermind game [7], combinatorial optimization [12]

[^0]and so on. It was noted in [9, p. 204] and [11] that determining the metric dimension of a graph is an NP-complete problem.

Let $L(G)$ denote the line graph of a (di)graph G. For the complete bipartite graph $K_{m, n}$, Cáceres et al. 3] proved that

$$
\mu\left(L\left(K_{m, n}\right)\right)= \begin{cases}\left\lfloor\frac{2(m+n-1)}{3}\right\rfloor, & m \leq n \leq 2 m-1, n \geq 2, \\ n-1, & n \geq 2 m .\end{cases}
$$

For the complete graph K_{n} when $n \geq 6$, Bailey and Cameron [1] proved that $\mu\left(L\left(K_{n}\right)\right)=\left\lceil\frac{2 n}{3}\right\rceil$.

Motivated by these results, in this paper we study the metric dimension of the line graph of a (di)graph. In Section 2, we show that $\mu(L(G))=|E(G)|-|V(G)|$ for a strongly connected digraph G except for directed cycles. As a corollary, the metric dimension of de Brujin digraphs and Kautz digraphs, which are two families of famous networks, is given. In Section 3, we prove that $\left\lceil\log _{2} \Delta(G)\right\rceil \leq \mu(L(G)) \leq$ $|V(G)|-2$ for a connected graph G with at least five vertices, where $\Delta(G)$ is the maximum degree of G. Finally, we obtain the metric dimension of the line graph of a tree in terms of its parameters.

2 Line graph of a digraph

Let G be a digraph. For a directed edge $a=(x, y)$ of G, we say that x is the head of a and y is the tail of a; we also say that a is the out-going edge of x and the in-coming edge of y. For $x \in V(G)$, we denote the set of all out-going edges of x by $E_{G}^{+}(x)$ and the set of all in-coming edges of x by $E_{G}^{-}(x)$. The line graph of G is the digraph $L(G)$ with the edges of G as its vertices, and where (a, b) is a directed edge in $L(G)$ if and only if the tail of a is the head of b in G. For two distinct vertices $a=\left(x_{1}, x_{2}\right), b=\left(y_{1}, y_{2}\right)$ of $L(G)$, we have

$$
\begin{equation*}
d_{L(G)}(a, b)=d_{G}\left(x_{2}, y_{1}\right)+1 . \tag{1}
\end{equation*}
$$

Note that $\mu(L(G))=1$ if G is a directed cycle.
Theorem 2.1 If G is a strongly connected digraph except for directed cycles, then

$$
\mu(L(G))=|E(G)|-|V(G)| .
$$

Proof. Let R be a resolving set of $L(G)$ with the minimum cardinality. For each vertex x of G, since G is strongly connected, $E_{G}^{-}(x) \neq \emptyset$. If $\left|E_{G}^{-}(x)\right| \geq 2$, pick two distinct edges $a, b \in E_{G}^{-}(x)$. For any $c \in V(L(G)) \backslash\{a, b\}$, since $d_{L(G)}(a, c)=$ $d_{L(G)}(b, c), a \in R$ or $b \in R$. It follows that $\left|E_{G}^{-}(x) \cap R\right| \geq\left|E_{G}^{-}(x)\right|-1$. If $\left|E_{G}^{-}(x)\right|=1$, the above inequality is directed. By $R=\dot{\cup}_{x \in V(G)}\left(E_{G}^{-}(x) \cap R\right)$, we obtain

$$
\begin{equation*}
\mu(L(G))=|R| \geq \sum_{x \in V(G)}\left(\left|E_{G}^{-}(x)\right|-1\right)=|E(G)|-|V(G)| . \tag{2}
\end{equation*}
$$

Let W be a set obtained from $E(G)$ by deleting one in-coming edge of each vertex of G. Since G is not a directed cycle, $W \neq \emptyset$. We shall prove that W is a resolving
set of $L(G)$. It suffices to show that, for any two distinct edges $a=\left(x_{1}, x_{2}\right)$ and $b=\left(y_{1}, y_{2}\right)$ in $E(G) \backslash W$, there exists an edge $c \in W$ such that

$$
\begin{equation*}
d_{L(G)}(a, c) \neq d_{L(G)}(b, c) . \tag{3}
\end{equation*}
$$

Let A denote the set of all the heads of each edge of W. Pick $z_{0} \in A$ satisfying $d_{G}\left(x_{2}, z_{0}\right) \leq d_{G}\left(x_{2}, z\right)$ for any $z \in A$.

Case 1. $d_{G}\left(x_{2}, z_{0}\right) \neq d_{G}\left(y_{2}, z_{0}\right)$. Pick $c \in E_{G}^{+}\left(z_{0}\right) \cap W$. By (11), (3) holds.
Case 2. $d_{G}\left(x_{2}, z_{0}\right)=d_{G}\left(y_{2}, z_{0}\right)$. Owing to $a, b \notin W, x_{2} \neq y_{2}$, which implies $z_{0} \neq x_{2}$. Let $P_{x_{2}, z_{0}}=\left(v_{0}=x_{2}, v_{1}, \ldots, v_{k}=z_{0}\right)$ be a shortest path from x_{2} to z_{0} and $P_{y_{2}, z_{0}}=\left(u_{0}=y_{2}, u_{1}, \ldots, u_{k}=z_{0}\right)$ be a shortest path from y_{2} to z_{0}. Suppose i denotes the minimum index such that $v_{i}=u_{i}$. Since $d_{G}\left(x_{2}, v_{i-1}\right)<d_{G}\left(x_{2}, v_{i}\right) \leq$ $d_{G}\left(x_{2}, z_{0}\right)$, we have $v_{i-1} \notin A$, which implies $\left(v_{i-1}, v_{i}\right) \notin W$. Hence $\left(u_{i-1}, u_{i}\right) \in W$ and $u_{i-1} \in A$. Pick $c=\left(u_{i-1}, u_{i}\right)$. By (1), we have

$$
\begin{aligned}
d_{L(G)}(a, c) & =d_{G}\left(x_{2}, u_{i-1}\right)+1 \\
& \geq d_{G}\left(x_{2}, z_{0}\right)+1 \\
& =d_{G}\left(y_{2}, z_{0}\right)+1 \\
& \geq d_{G}\left(y_{2}, u_{i}\right)+1 \\
& =d_{L(G)}(b, c)+1 \\
& >d_{L(G)}(b, c),
\end{aligned}
$$

so (3) holds.
Therefore, W is a resolving set of $L(G)$ with size $|E(G)|-|V(G)|$, which implies that $\mu(L(G)) \leq|E(G)|-|V(G)|$. By (2), the desired result follows.

Let K_{d} be the complete digraph with d vertices. A flowered complete digraph of order d, denoted by K_{d}^{+}, is a digraph obtained from K_{d} by appending a self-loop at each vertex. Let

$$
\begin{gathered}
B(d, 1)=K_{d}^{+}, B(d, n)=L(B(d, n-1)) \\
K(d, 1)=K_{d+1}, K(d, n)=L(K(d, n-1))
\end{gathered}
$$

Then $B(d, n)$ is the de Brujin digraph and $K(d, n)$ is the Kautz digraph. By [14, Chapter 3], $B(d, n)$ and $K(d, n)$ are strongly connected and

$$
\begin{gathered}
|V(B(d, n))|=d^{n},|E(B(d, n))|=d^{n+1} ; \\
|V(K(d, n))|=d^{n}+d^{n-1},|E(K(d, n))|=d^{n+1}+d^{n} .
\end{gathered}
$$

As a corollary of Theorem [2.1, we get the metric dimension of de Brujin digraphs and Kautz digraphs, respectively.

Corollary 2.2 Let integers $d \geq 2$ and $n \geq 1$. Then
(i) $\mu(B(d, n))=d^{n-1}(d-1)$;
(ii) $\mu(K(d, n))= \begin{cases}d, & \text { if } n=1, \\ d^{n-2}\left(d^{2}-1\right), & \text { if } n \geq 2 .\end{cases}$

3 Line graph of a graph

Let G be a graph with at least two vertices. The line graph of G is the graph $L(G)$ with the edges of G as its vertices, and where two edges of G are adjacent in $L(G)$ if and only if they are adjacent in G.

If G has at most four vertices, it is routine to compute the metric dimension of $L(G)$. Next we shall consider the case $|V(G)| \geq 5$.

Theorem 3.1 If G is a connected graph with at least five vertices, then

$$
\left\lceil\log _{2} \Delta(G)\right\rceil \leq \mu(L(G)) \leq|V(G)|-2,
$$

where $\Delta(G)$ is the maximum degree of G.
Proof. Let v be a vertex of degree $\Delta(G)$, and let $\left\{f_{1}, \ldots, f_{\Delta(G)}\right\}$ be the set of all the edges incident to v. Suppose $W=\left\{e_{1}, \ldots, e_{\mu(L(G))}\right\}$ is a resolving set of $L(G)$ with the minimum cardinality. For each $j \in\left\{1, \ldots, \mu(L(G)\}\right.$, let $d_{j}=$ $\min \left\{d_{G}(v, w) \mid w\right.$ is incident to $\left.e_{j}\right\}$. Then $d_{L(G)}\left(f_{i}, e_{j}\right)$ is d_{j} or $d_{j}+1$. Therefore, the size of $\mathcal{D}=\left\{D\left(f_{i} \mid W\right) \mid i=1, \ldots, \Delta(G)\right\}$ is at most $2^{\mu(L(G))}$. Since $D\left(f_{i} \mid W\right) \neq$ $D\left(f_{k} \mid W\right)$ for $i \neq k, \Delta(G) \leq 2^{\mu(L(G))}$, which implies the lower bound.

Suppose $|V(G)|=5$. If G is isomorphic to the path P_{5} or the cycle C_{5}, since $\mu\left(L\left(P_{5}\right)\right)=1$ and $\mu\left(L\left(C_{5}\right)\right)=2$, the upper bound is directed. If G is not isomorphic to P_{5} or C_{5}, then G has a subgraph S isomorphic to $K_{1,3}$. Since $E(S)$ is a resolving set of $L(G), \mu(L(G)) \leq 3$, which implies the upper bound.

Now suppose $|V(G)| \geq 6$. Let T be a spanning tree of G, and let v be a vertex of degree 1 in T. Suppose T_{1} is the subgraph of T induced on $V(T) \backslash\{v\}$. We shall prove that $E\left(T_{1}\right)$ is a resolving set of $L(G)$. It suffices to show that, for any two distinct edges $a, b \in E(G) \backslash E\left(T_{1}\right)$, there exists an edge $e \in E\left(T_{1}\right)$ such that

$$
\begin{equation*}
d_{L(G)}(a, e) \neq d_{L(G)}(b, e) \tag{4}
\end{equation*}
$$

Case 1. a or b is not incident to v. Without loss of generality, suppose a is not incident to v. Let $a=u u^{\prime}$. Then there exists a unique path $P_{u, u^{\prime}}=\left(u_{0}=\right.$ $u, u_{1}, \ldots, u_{k}=u^{\prime}$) between u and u^{\prime} in T where $k \geq 2$. If b is not adjacent to $u_{0} u_{1}$, then (4) holds for $e=u_{0} u_{1} \in E\left(T_{1}\right)$; If b is not adjacent to $u_{k-1} u_{k}$, then (4) holds for $e=u_{k-1} u_{k} \in E\left(T_{1}\right)$. Now we assume that b is adjacent to both $u_{0} u_{1}$ and $u_{k-1} u_{k}$.

Case 1.1. $k=2$. Then b is incident to u_{1}. Suppose $b=u_{1} x$, where $x \in$ $V(G) \backslash\left\{u_{0}, u_{1}, u_{2}\right\}$. Let $S=\left\{u_{0}, u_{1}, u_{2}, x\right\}$ and $\bar{S}=V\left(T_{1}\right) \backslash S$. Since $\left|V\left(T_{1}\right)\right|=$ $|V(G)|-1 \geq 5$, there exists an edge $e \in[S, \bar{S}]_{T_{1}}$, where $[S, \bar{S}]_{T_{1}}$ is the set of edges between S and \bar{S} in T_{1}. If e is incident to u_{0} or u_{2}, then $d_{L(G)}(a, e)=1$ and $d_{L(G)}(b, e)=2$; If e is incident to u_{1} or x, then $d_{L(G)}(a, e)=2$ and $d_{L(G)}(b, e)=1$. So (4) holds.

Case 1.2. $k \geq 3$. Note that b is incident to u_{1} or u_{k-1}. Without loss of generality, assume that b is incident to u_{1}. Let $e=u_{1} u_{2} \in E\left(T_{1}\right)$. Then $d_{L(G)}(a, e)=2 \neq 1=$ $d_{L(G)}(b, e)$, (4) holds.

Case 2. Both a and b are incident to v. Let $a=v x, b=v y, S=\{x, y\}$ and $\bar{S}=V\left(T_{1}\right) \backslash S$. Pick $e \in[S, \bar{S}]_{T_{1}}$. Note that e is not incident to v. Similar to Case 1.1, e satisfies (4).

Therefore, $E\left(T_{1}\right)$ is a resolving set of $L(G)$ with size $|V(G)|-2$, and the upper bound is valid.

The lower bound in Theorem 3.1 can be attained if G is a path. The fact that $\mu\left(L\left(K_{1, n}\right)\right)=n-1$ implies that the upper bound in Theorem 3.1 is tight. It seems to be difficult to improve the bound for general graphs. However, for a tree T, we can obtain the metric dimension of $L(T)$ in terms of some parameters of T.

Let T be a tree. A vertex of degree 1 in T is called an end-vertex. A vertex of degree at least 3 in T is called a major vertex. An end-vertex u of T is said to be a terminal vertex of a major vertex v of T if $d_{T}(u, v)<d_{T}(u, w)$ for every other major vertex w of T. A major vertex v of T is an exterior major vertex of T if there exists a terminal vertex of v in T. We denote the set of all the exterior major vertices in T by $\operatorname{EX}(T)$; For $v \in \operatorname{EX}(T)$, we denote the set of all the terminal vertices of v by $\operatorname{TER}(v)$. Let $\sigma(T)=\sum_{v \in \operatorname{EX}(T)}|\operatorname{TER}(v)|$ and $\operatorname{ex}(T)=|\operatorname{EX}(T)|$. Chartrand et al. [4] computed the metric dimension of a tree in terms of $\sigma(T)$ and $\operatorname{ex}(T)$.

Proposition 3.2 ([4) If T is a tree that is not a path, then $\mu(T)=\sigma(T)-\operatorname{ex}(T)$.
Finally, we shall compute the metric dimension of the line graph of a tree. If P is a path, then $\mu(L(P))=1$.

Proposition 3.3 If T is a tree that is not a path, then $\mu(L(T))=\sigma(T)-\operatorname{ex}(T)$.
Proof. Let R be a resolving set of $L(T)$ with the minimum cardinality. For a given vertex $v \in \operatorname{EX}(T)$, we claim that

$$
\begin{equation*}
\sum_{u \in \operatorname{TER}(v)}\left|R \cap E\left(P_{u, v}\right)\right| \geq|\operatorname{TER}(v)|-1, \tag{5}
\end{equation*}
$$

where $P_{u, v}$ is the unique path between u and v in T. To the contrary, suppose that there exist two different terminate vertices u_{1}, u_{2} of v such that $R \cap E\left(P_{u_{1}, v}\right)=$ $R \cap E\left(P_{u_{2}, v}\right)=\emptyset$. Let e_{1} and e_{2} be the edges incident to v in $P_{u_{1}, v}$ and $P_{u_{2}, v}$, respectively. For each $e \in R$, we have $d_{L(T)}\left(e_{1}, e\right)=d_{L(T)}\left(e_{2}, e\right)$, contradicting the fact that R is a resolving set of $L(T)$. Hence our claim is valid. Since $|R| \geq$ $\sum_{v \in \operatorname{EX}(T)} \sum_{u \in \operatorname{TER}(v)}\left|R \cap E\left(P_{u, v}\right)\right|$, by (5) we have

$$
\begin{equation*}
\mu(L(T))=|R| \geq \sum_{v \in \operatorname{EX}(T)}(|\operatorname{TER}(v)|-1)=\sigma(T)-\operatorname{ex}(T) . \tag{6}
\end{equation*}
$$

Let W be a set obtained from the end-vertex set of T by deleting one terminal vertex of each exterior major vertex of T. In [4, Theorem 5], Chartrand et al. proved that W is a resolving set of T with size $\sigma(T)-\operatorname{ex}(T)$. Let W_{L} be the set of all the edges each of which is incident to one vertex of W. Then $\left|W_{L}\right|=|W|$. We will show that W_{L} is a resolving set of $L(T)$.

For any two distinct edges a and b of T, there exists a unique path

$$
\left(w_{0}, w_{1}, \ldots, w_{k-1}, w_{k}\right)
$$

such that $a=w_{0} w_{1}$ and $b=w_{k-1} w_{k}$. Since $w_{0} \neq w_{k}$, there exists a vertex $w \in W$ such that $d_{T}\left(w_{0}, w\right) \neq d_{T}\left(w_{k}, w\right)$. Without loss of generality, assume that $d_{T}\left(w_{0}, w\right)<d_{T}\left(w_{k}, w\right)$. Let e be the edge incident to w. Then $e \in W_{L}$.

Case 1. $w_{1} \in V\left(P_{w_{0}, w}\right)$. Then

$$
d_{L(T)}(a, e)=d_{T}\left(w_{0}, w\right)-1<d_{T}\left(w_{k}, w\right)-1 \leq d_{L(T)}(b, e) .
$$

Case 2. $w_{1} \notin V\left(P_{w_{0}, w}\right)$. Then $\left(w_{k}, w_{k-1}, \ldots, w_{1}, P_{w_{0}, w}\right)$ is the unique path between w_{k} and w. It follows that

$$
d_{L(T)}(a, e)=d_{T}\left(w_{0}, w\right)<d_{T}\left(w_{k-1}, w\right)=d_{L(T)}(b, e) .
$$

Therefore, W_{L} is a resolving set of $L(T)$, which implies that $\mu(L(T)) \leq \sigma(T)-$ $\operatorname{ex}(T)$. By (6), the desired result follows.

Combing Proposition 3.2 and Proposition 3.3, $\mu(T)=\mu(L(T))$ for a tree T. It seems to be interesting to characterize a graph G satisfying $\mu(G)=\mu(L(G))$.

Acknowledgement

This research is supported by NSF of China (10871027), NCET-08-0052, and the Fundamental Research Funds for the Central Universities of China.

References

[1] R.F. Bailey and P.J. Cameron, Base size, metric dimension and other invariants of groups and graphs, Bull. London Math. Soc. 43 (2011), 209-242.
[2] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal'ák, and L.S. Ram, Network discovery and verification, IEEE J. on Selected Areas in Communications 24 (2006), 2168-2181.
[3] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara and D.R. Wood, On the metric dimension of Cartesian products of graphs, SIAM J. Discrete Math. 21 (2007), 423-441.
[4] G. Chartrand, L. Eroh, M. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000), 99-113.
[5] G. Chartrand, M. Rains and P. Zhang, The directed distance dimension of oriented graphs, Math. Bohemica 125 (2000), 155-168.
[6] G. Chartrand, M. Rains and P. Zhang, On the dimension of oriented graphs, Utilitas Math. 60 (2001), 139-151.
[7] V. Chvátal, Mastermind, Combinatorica 3 (1983), 325-329.
[8] M. Fehr, S. Gosselin and O.R. Oellermann, The metric dimension of Cayley digraphs, Discrete Math. 306 (2006), 31-41.
[9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.
[10] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976), 191-195.
[11] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996), 217-229.
[12] A. Sebő and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2004), 383-393.
[13] P.J. Slater, Leaves of trees, Conger. Numer. 14 (1975), 549-559.
[14] J.M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.

[^0]: * Corresponding author. E-mail address: wangks@bnu.edu.cn

