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Abstract

We consider a class of Nemytskii superposition operators that covers the nonlin-

ear part of traveling wave models from laser dynamics, population dynamics, and

chemical kinetics. Our main result is the C1-continuity property of these operators

over Sobolev-type spaces of periodic functions.
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1 Motivation and main result

Development of a bifurcation theory for hyperbolic PDEs encounters significant difficulties
caused by the fact that hyperbolic operators have worse regularity properties in compar-
ison to ODEs and parabolic PDEs. Such a theory has to cover one- and multi-parameter
bifurcations (both local and global), stability of bifurcating solutions, and periodic syn-
chronizations. For hyperbolic problems all these topics currently remain challenging re-
search directions. In each of them, investigation of smoothness properties of Nemytskii
superposition operators plays an important role.

Not losing potential applicability to the aforementioned topics, here we consider Ne-
mytskii operators in the context of the traveling wave models from laser dynamics [14,
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17, 18]. The models describe the dynamics of multisection semiconductor lasers. They
include a semilinear first-order one-dimensional hyperbolic system.

As an additional source of motivation, note that some problems of population dynam-
ics [7, 8, 9, 15], chemical kinetics [2, 3, 19, 20, 21], and kinetic gas dynamics [6, 10, 16]
have the same hyperbolic operator. Thus, our analysis applies to those problems as well,
even when they have a different type of boundary conditions.

In the case of the traveling wave models, we deal with periodic-Dirichlet problems and
our overall goal is to provide a bifurcation analysis for them. The basic idea is to apply
techniques based on the Implicit Function Theorem in Banach spaces and the Lyapunov-
Schmidt reduction (see, e.g., [5, 11]). The first problem to solve on this way is to establish
the Fredholm solvability of the corresponding linearized problems, what is done in [12, 13].
To make the linearization procedure correct and to solve the so-called “range” equation
(obtained after a Lyapunov-Schmidt reduction) via Implicit Function Theorem, we would
need appropriate smoothness properties of the Nemytskii superposition operators with
respect to the function spaces used in [12, 13]. The results obtained in this paper are
sufficient to achieve this goal.

Due to the great importance of Nemytskii operators in the theory of nonlinear equa-
tions, their smoothness properties in different function spaces were extensively studied
(see, e.g., [4]). Here we involve into consideration new function spaces important for
solving nonlinear hyperbolic PDEs.

To state our main result, let us introduce the function spaces we are working with:
For γ ≥ 0 we denote by W γ the vector Banach space of all locally integrable functions
u : [0, 1] × R → Rn such that u(x, t) = u (x, t + 2π) for almost all x ∈ (0, 1) and t ∈ R

and that

‖u‖2W γ =
∑

s∈Z

(1 + s2)γ
1

∫

0

∥

∥

∥

∥

∥

∥

2π
∫

0

u(x, t)e−ist dt

∥

∥

∥

∥

∥

∥

2

dx <∞. (1)

Here and throughout ‖ · ‖ is the Hermitian norm in Cn. In other words, W γ is the
anisotropic Sobolev space of all measurable functions u : [0, 1] × R → Rn such that
u(x, t) = u (x, t+ 2π) for almost all x ∈ (0, 1) and t ∈ R and that the distributional
partial derivatives of u with respect to t up to the order γ are locally quadratically
integrable. Furthermore, given a ∈ L∞ ((0, 1);Rn) with ess inf |aj| > 0 for all j ≤ n, we
introduce the function spaces

V γ =
{

u ∈ W γ : ∂xu ∈ W γ−1, [ω∂tuj + aj∂xuj]
n
j=1 ∈ W γ

}

endowed with the norms

‖u‖2V γ = ‖u‖2W γ +
∥

∥

∥
[∂tuj + aj∂xuj]

n
j=1

∥

∥

∥

2

W γ
. (2)
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In the notation V γ we drop the dependence of this space on a. It should be stressed that
our results hold true for each a. Note that the space V γ is larger than the space of all
u ∈ W γ with ∂tu ∈ W γ and ∂xu ∈ W γ.

We will focus on the pair of function spaces (V 2,W 2), for which we prove our main
result given by Theorem 1. It is important that V 2 is embedded into the algebra of
(continuous) functions with pointwise multiplication (see Assertion (ii) of Lemma 2 and
the embedding (5) below). This will allow us to use pointwise nonlinearities for the
description of our Nemytskii operators.

Given a function f(x, u) : (0, 1) × R
n → R defined for almost all x ∈ (0, 1) and all

y ∈ Rn, let
[F (u)] (x, t) = f(x, u(x, t)). (3)

We will show that F is a C1-smooth superposition operator from V 2 into W 2.
For the sake of technical simplicity and without loss of generality we will suppose that

n = 1.

Theorem 1 Suppose that f(·, ·) ∈ L∞
(

0, 1;C4[−M,M ]
)

for each M > 0. Then F (u) ∈
C1(V 2,W 2).

It should be emphasized here that, by physical reasons, the function f can have dis-
continuities with respect to the first argument, and the assumption of the theorem covers
such cases.

Note also that under additional regularity assumptions on f , we can extend Theorem 1
to any desired smoothness of the operator F and to the pair of spaces (V γ ,W γ) for any
integer γ ≥ 2.

2 Properties of the used function spaces

As usual, by H1 (0, 1) we denote the Sobolev space of all functions u ∈ L2 (0, 1) such that
the weak derivative u′ belongs to L2 (0, 1). The norm in H1(0, 1) is defined by

‖u‖2H1(0,1) =
1

∑

j=0

∫ 1

0

|u(j)(x)|2dx.

Similarly, byH1 ((0, 1)× (0, 2π)) we denote the Sobolev space of all functions u ∈ L2((0, 1)
× (0, 2π)) such that for every multiindex α = (α1, α2) ∈ N2

0 with |α| ≤ 1, the weak partial
derivative Dαu belongs to L2 ((0, 1)× (0, 2π)). The norm in H1 ((0, 1)× (0, 2π)) is given
by

‖u‖2H1((0,1)×(0,2π)) =
∑

|α|≤1

∫ 1

0

∫ 2π

0

|Dαu(x, t)|2 dxdt.
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Moreover, by H1 ((0, 2π);H1 (0, 1)) we denote the abstract Sobolev space of all locally
quadratically Bochner integrable maps u : (0, 2π) → H1 (0, 1) such that the distributional
derivative u′ is also locally quadratically Bochner integrable, with the norm

‖u‖2H1((0,2π);H1(0,1)) =

1
∑

j=0

∫ 2π

0

‖u(j)(t)‖2H1(0,1)dt.

Note that the space H1 ((0, 2π);H1(0, 1)) is smaller than the classical Sobolev space
H1 ((0, 1)× (0, 2π)), and we have the continuous embeddings

H1 ((0, 1)× (0, 2π)) →֒ Lp ((0, 1)× (0, 2π)) for all p ∈ [2,∞), (4)

H1
(

(0, 2π);H1(0, 1)
)

→֒ C ([0, 1]× [0, 2π]) , (5)

see [1].
We now establish some properties of the function spaces V 1 and V 2 introduced in

Section 1, which are needed for proving Theorem 1.

Lemma 2 We have the following continuous embeddings:
(i) V 1 →֒ H1 ((0, 1)× (0, 2π));
(ii) V 2 →֒ H1 ((0, 2π);H1 (0, 1)).

Proof. Notice the continuous embedding

V γ →֒ W γ →֒ W γ−1, γ ≥ 1, (6)

that is a straightforward consequence of the definitions of the spaces V γ and W γ.
(i) Take u ∈ V 1. Then u ∈ W 1 and, therefore, ∂tu ∈ W 0 with

‖∂tu‖
2
W 0 ≤ ‖u‖2W 0 + ‖∂tu‖

2
W 0 = ‖u‖2W 1 ≤ ‖u‖2V 1 . (7)

Moreover, by the definition of V 1, we have ∂tu + a∂xu ∈ W 1. On the account of the
embedding (6),

‖∂tu+ a∂xu‖
2
W 0 ≤ ‖∂tu+ a∂xu‖

2
W 1 + ‖u‖2W 1 = ‖u‖2V 1. (8)

By triangle inequality

‖a∂xu‖
2
W 0 − ‖∂tu‖

2
W 0 ≤ ‖∂tu+ a∂xu‖

2
W 0. (9)

Since a ∈ L∞(0, 1) with ess inf |a| > 0, it follows by (7)–(9), that

‖∂xu‖W 0 ≤ c‖u‖V 1 ,
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where the constant c does not depend on u. Therefore

‖u‖W 0 + ‖∂xu‖W 0 + ‖∂tu‖W 0 ≤ (2 + c)‖u‖V 1 .

To finish the proof of this part, it remains to note that W 0 = L2 ((0, 1)× (0, 2π)).
(ii) We proceed similarly: Take u ∈ V 2. Then u ∈ W 2, and we have u as well as ∂tu

and ∂xu in W 1. Moreover, ‖u‖W 1 ≤ ‖u‖W 2 ≤ ‖u‖V 2 and ‖∂tu‖W 1 ≤ ‖u‖W 2 ≤ ‖u‖V 2.
This implies that ‖∂xu‖W 1 ≤ c‖u‖V 2 , where the constant c does not depend on u. Claim
(ii) readily follows from these estimates. �

The following fact is similar to the density result for the Sobolev spaces (see [1, Section
III]) and proved by the same method.

Lemma 3 The subspace C∞ ∩ V 2 is dense in V 2.

Proof. Set Π = (0, 1)× (0, 2π). By periodicity, speaking of a function in V 2, we can
assume its restriction to Π. We will use this convention in the course of the proof of the
lemma.

Let ϕ be a non-negative C∞(R2)-function that vanishes outside a unit disk and satisfies
the condition

∫

ϕ(x) dx = 1. Take u ∈ V 2 and consider its regularization defined by

uε(x, t) =
1

ε2

∫

Π

u(ξ, τ)ϕ

(

x− ξ

ε
,
t− τ

ε

)

dξdτ

for ε < dist ((x, t), ∂Π). Due to the properties of the convolutions, for any strict sub-
domain Π′ ⊂ Π it holds ∂αt uε → ∂αt u and ∂βt [∂xuε] → ∂βt [∂xu] in L2 (Π′) as ε → 0 for
α = 0, 1, 2 and β = 0, 1 (see [1, Section III] for details). This implies, in particular, that
vε → v in L2 (Π′) as ε → 0, where v = ∂tu + a(x)∂xu and vε = ∂tuε + a(x)∂xuε. Now we
intend to prove that uε → u in V 2 on Π′ as ε → 0. It suffices to show that ∂αt vε → ∂αt v
in L2 (Π′) as ε→ 0 for α = 1, 2. Fix ε0 < dist (Π′, ∂Π) and consider ε < ε0. Then for any
ψ ∈ C∞

0 (Π′) we have

∫

Π′

(∂tuε(x, t) + a(x)∂xuε(x, t)) ∂
α
t ψ(x, t) dxdt

=
1

ε2

∫

R2

∫

R2

[∂tu+ a∂xu] (x− ξ, t− τ)ϕ

(

ξ

ε
,
τ

ε

)

∂αt ψ(x, t) dξdτdxdt

=
(−1)α

ε2

∫

R2

∫

R2

∂αt [∂tu+ a∂xu] (x− ξ, t− τ)ϕ

(

ξ

ε
,
τ

ε

)

ψ(x, t) dξdτdxdt

= (−1)α
∫

Π′

∂αt (v)ε (x, t)ψ(x, t) dxdt.
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Therefore, ∂αt (vε) (x, t) = (∂αt v)ε (x, t) in the sense of distributions on Π′. Since ∂αt v ∈
L2(Π) for α = 1, 2,

lim
ε→0

‖∂αt vε − ∂αt v‖L2(Π′) = lim
ε→0

‖(∂αt v)ε − ∂αt v‖L2(Π′) = 0,

as desired.
Consider now the following locally finite open covering of Π:

Π1 =

{

(x, t) ∈ Π : dist ((x, t), ∂Π) >
1

2

}

,

Πj =

{

(x, t) ∈ Π :
1

j + 1
< dist ((x, t), ∂Π) <

1

j − 1

}

, j ≥ 2.

Let η1, η2, . . . be a partition of unity subordinate to the covering {Πj+1 \ Πj−1}. Then,
given j ≥ 1, the product ηju is in V 2 and has support contained in Πj . Consider now the
mollification (ηju)ε. Given ε0 > 0, we can choose a sequence εj such that

εj < dist (Πj+1, ∂Πj+3) and ‖(ηju)εj − ηju‖V 2 ≤
ε0
2j+1

.

Let w =
∑∞

j=1(ηju)εj . It follows from the definition of the partition of unity that at each
x ∈ Π only finitely many terms in the sum are nonzero. Since each term is smooth, this
implies w ∈ C∞(Π). Moreover, using the triangle inequality, we have

‖w − u‖V 2
n
≤

n+2
∑

j=1

‖(ηju)εj − ηju‖V 2
n
≤

∞
∑

j=1

ε02
−j = ε0,

where ‖ · ‖V 2
n
is defined by (2) with the integral over

Π1/n =

{

(x, t) ∈ Π : dist ((x, t), ∂Π) >
1

n

}

in place of the integral over Π. This yields

‖w − u‖V 2 = sup
n≥1

‖w − u‖V 2
n
≤ ε0.

Since ε0 > 0 is arbitrary, the set
∑n

j=1(ηju)εj , n ≥ 3, is the desired dense set from C∞∩V 2.
�
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3 C1-smoothness of the Nemytskii operator from V 2

into W 2 (proof of Theorem 1)

We split the proof into two lemmas.

Lemma 4 The superposition operator F given by the formula (3) maps V 2 into W 2.

Proof. For any function u ∈ V 2, denote by F ′(u) and F ′′(u) the superposition
operators by putting, for almost all x ∈ (0, 1),

[F ′(u)] (x, t) = (∂uf) (x, u(x, t)),

[F ′′(u)] (x, t) =
(

∂2uf
)

(x, u(x, t)).

As V 2 →֒ C ([0, 1]× [0, 2π]) continuously (see Lemma 2 (ii) and the embedding (5)), we
can identify any u ∈ V 2 with a uniformly continuous and 2π-periodic in t function on
[0, 1]× R. Furthermore, we have the inequality

‖u‖C([0,1]×[0,2π]) ≤ C0‖u‖V 2 for all u ∈ V 2, (10)

the constant C0 being independent of u. Combining this with the smoothness assump-
tions on f , we conclude that, given u ∈ V 2, the functions [F (u)](x, t), [F ′(u)](x, t), and
[F ′′(u)](x, t) belong to L∞ ((0, 1)× (0, 2π)).

Claim 1. F (u) maps V 2 into W 1. Fix an arbitrary u ∈ V 2, set

K = ‖u‖C([0,1]×[0,2π]), (11)

and consider (um)m∈Z to be a sequence in C∞ ∩ V 2 converging to u in V 2. By (10), we
have this convergence also in C ([0, 1]× [0, 2π]). For almost all x ∈ (0, 1) and all t ∈ R

we have
[∂tF (u

m)](x, t) = [F ′(um)](x, t)∂tu
m(x, t). (12)

Let us show that

F ′(um)∂tu
m → F ′(u)∂tu in L2 ((0, 1)× (0, 2π)) as m→ ∞. (13)

Indeed,

1
∫

0

2π
∫

0

|F ′(um)∂tu
m − F ′(u)∂tu|

2
dx dt

≤ 2

1
∫

0

2π
∫

0

|F ′(um)− F ′(u)|
2
|∂tu

m|2 dx dt

7



+2

1
∫

0

2π
∫

0

|F ′(u)|
2
|∂tu

m − ∂tu|
2 dx dt (14)

≤ 2

1
∫

0

2π
∫

0

∣

∣

∣

∣

∣

∣

1
∫

0

(∂2uf)(x, σu
m + (1− σ)u) dσ

∣

∣

∣

∣

∣

∣

2

|um − u|2 |∂tu
m|2 dx dt

+2

1
∫

0

2π
∫

0

|(∂uf)(x, u)|
2 |∂tu

m − ∂tu|
2 dx dt

≤ 2 ‖um − u‖2C([0,1]×[0,2π])

∥

∥∂2uf
∥

∥

2

L∞((0,1)×(−3K;3K))
‖∂tu

m‖2W 0

+2 ‖∂uf‖
2
L∞((0,1)×(−K;K)) ‖∂tu

m − ∂tu‖
2
W 0 . (15)

The latter inequality is true for all sufficiently large m ∈ N. Since (um)m∈N converges to u
in V 2 and V 2 →֒ L2(0, 1; H1

2π(0, 2π)), the sequence (∂tu
m)m∈N is bounded in L2 ((0, 1)× (0, 2π))

and converges to ∂tu in L2 ((0, 1)× (0, 2π)). This shows the convergence (13). It follows
by Hölder’s inequality that for any ϕ ∈ D ((0, 1)× (0, 2π))

1
∫

0

2π
∫

0

(F (u)∂tϕ+ F ′(u)∂tuϕ) dxdt (16)

= lim
m→∞





1
∫

0

2π
∫

0

(F (um)∂tϕ+ F ′(um)∂tu
mϕ) dxdt



 .

By (12), the expression under the limit sign is equal to zero. Hence (16) implies

1
∫

0

2π
∫

0

(F (u)∂tϕ+ F ′(u)∂tu)ϕdxdt = 0

for any ϕ ∈ D ((0, 1)× (0, 2π)). This means that F (u) has a weak partial derivative in t
given by the formula

∂tF (u) = F ′(u)∂tu.

Recall that [F ′(u)](x, t) ∈ L∞ ((0, 1)× (0, 2π)) and ∂tu ∈ L2 ((0, 1)× (0, 2π)). It is im-
mediate that [∂tF (u)](x, t) ∈ L2 ((0, 1)× (0, 2π)) and therefore [F (u)](x, t) ∈ W 1. Since
u ∈ V 2 is arbitrary, the desired assertion is therewith proved.

Claim 2. F (u) maps V 2 into W 2. As above, fix an arbitrary u ∈ V 2 and choose
(um)m∈Z as in Claim 1. Similarly to the proof of Claim 1, one can show the convergence

F ′′(um) (∂tu
m)2 + F ′(um)∂2t u

m → F ′′(u) (∂tu)
2 + F ′(u)∂2t u

in L2 ((0, 1)× (0, 2π)) as m→ ∞
(17)

8



and that
∂2t F (u) = F ′′(u) (∂tu)

2 + F ′(u)∂2t u. (18)

The only difference appearing here concerns the estimation of the following integral:

1
∫

0

2π
∫

0

∣

∣F ′′(um) (∂tu
m)2 − F ′′(u) (∂tu)

2
∣

∣

2
dx dt

≤ 2

1
∫

0

2π
∫

0

∣

∣(∂2uf)(x, u
m)− (∂2uf)(x, u)

∣

∣

2
|∂tu

m|4 dx dt

+2

1
∫

0

2π
∫

0

∣

∣(∂2uf)(x, u)
∣

∣

2 ∣
∣(∂tu

m)2 − (∂tu)
2
∣

∣

2
dx dt

≤ 2

1
∫

0

2π
∫

0

∣

∣

∣

∣

∣

∣

1
∫

0

(∂3uf) (x, σu
m + (1− σ)u) dσ

∣

∣

∣

∣

∣

∣

2

|um − u|2 |∂tu
m|4 dx dt

+2
∥

∥∂2uf
∥

∥

2

L∞((0,1)×(−K;K))

×

1
∫

0

‖∂tu
m(x, ·)− ∂tu(x, ·)‖

2
L∞(0,2π) dx

2π
∫

0

‖∂tu
m(·, t) + ∂tu(·, t)‖

2
L∞(0,1) dt

≤ 2
∥

∥∂3uf
∥

∥

2

L∞((0,1)×(−3K;3K))
‖um − u‖2C ‖∂tu

m‖4L4

+2
∥

∥∂2uf
∥

∥

2

L∞((0,1)×(−K;K))

1
∫

0

‖∂tu
m(x, ·)− ∂tu(x, ·)‖

2
L∞(0,2π) dx

×

2π
∫

0

‖∂tu
m(·, t) + ∂tu(·, t)‖

2
L∞(0,1) dt, (19)

where the constant K is defined by the formula (11). The right hand side tends to zero
by Lemma 2, the embedding (4), and the embedding

V 2 →֒ W 2 →֒ L2
(

0, 1;C1[0, 2π]
)

.

Turning back to (18), we obtain [∂2t F (u)](x, t) ∈ L2 ((0, 1)× (0, 2π)). Hence [F (u)](x, t) ∈
W 2 as desired. �

Lemma 5 The mapping u ∈ V 2 → F (u) ∈ W 2 is C1-smooth and for all u, v ∈ V 2 it
holds

[F ′(u)v] (x, t) = (∂uf)(x, u(x, t))v(x, t). (20)

9



Proof. We now prefer to work with the following norm in W 2:

‖w‖2W 2 = ‖∂2tw‖
2
W 0. (21)

Note that it is equivalent to the W 2-norm introduced by (1).
To prove the continuity of the mapping u ∈ V 2 → F (u) ∈ W 2, fix an arbitrary u ∈ V 2.

On the account of the expression (18) for ∂2t F (u) and the estimates (14) and (19) with um

replaced by u + v, we derive the following inequality for all v ∈ V 2 with ‖v‖V 2 ≤ K/C0,
where the constant C0 is fixed to satisfy (10) and K is determined by (11):

1

2
‖∂2t F (u+ v)(x, t)− ∂2t F (u)(x, t)‖

2
W 0 ≤

‖∂3uf‖
2
L∞((0,1)×(−3K,3K))‖∂t(u+ v)‖2L2(0,1;L∞(0,2π))

×‖∂t(u+ v)‖2L2(0,2π;L∞(0,1))‖v‖
2
C([0,1]×[0,2π])

+‖∂2uf‖
2
L∞((0,1)×(−K,K))‖∂t(2u+ v)‖2L2(0,2π;L∞(0,1))‖∂tv‖

2
L2(0,1;L∞(0,2π))

+‖∂2uf‖
2
L∞((0,1)×(−3K,3K))‖∂

2
t (u+ v)‖2W 0‖v‖2C([0,1]×[0,2π])

+‖∂uf‖
2
L∞((0,1)×(−K,K))‖∂

2
t v‖

2
W 0 ≤ C‖v‖2V 2 ,

the constant C being dependent on f and u, but not on v. We conclude that

‖∂2t F (u+ v)(x, t)− ∂2t F (u)(x, t)‖
2
W 0 = O(‖v‖2V 2)

as ‖v‖V 2 → 0. The continuity of F is therefore proved.
Let us now show that the operator u→ F (u) is continuously differentiable. Fix u ∈ V 2

and introduce the bounded linear operator G : V 2 →W 2 defined by the formula

[G(u)v](x, t) = (∂uf)(x, u(x, t))v(x, t).

From the smoothness assumptions on f and the proof of Lemma 4 it follows that (∂uf)(x, u(x, t)) ∈
W 2. Since V 2 →֒ W 2 continuously, W 2 is an algebra of functions, and v ∈ V 2, the cor-
rectness of the definition of the operator G is straightforward.

Our next concern is to show that F is differentiable in u and that F ′(u) = G(u).
Similarly to the above, fix u ∈ V 2 and consider w ∈ V 2 with ‖w‖V 2 ≤ K/C0, where C0

is a certain constant satisfying (10) and K is specified by (11). It follows by (10) that
‖w‖C([0,1]×[0,2π]) ≤ K. The desired assertion now follows from the following estimate:

‖F (u+ w)(x, t)− F (u)(x, t)− [G(u)w](x, t)‖W 2

= ‖f(x, u+ w)− f(x, u)− (∂uf)(x, u)w‖W 2

10



=

∥

∥

∥

∥

∥

∥

w

1
∫

0

[(∂uf)(x, u+ σw)− (∂uf)(x, u)] dσ

∥

∥

∥

∥

∥

∥

W 2

=

∥

∥

∥

∥

∥

∥

w2

1
∫

0

1
∫

0

σ(∂2uf)(x, u+ σσ1w) dσdσ1

∥

∥

∥

∥

∥

∥

W 2

=

∥

∥

∥

∥

∥

∥

∂2t



w2

1
∫

0

1
∫

0

σ(∂2uf)(x, u+ σσ1w) dσdσ1





∥

∥

∥

∥

∥

∥

W 0

=
∥

∥

∥
2(w∂2tw + (∂tw)

2)

1
∫

0

1
∫

0

σ(∂2uf)(x, u+ σσ1w) dσdσ1

+w2

1
∫

0

1
∫

0

σ(∂4uf)(x, u+ σσ1w) [∂tu+ σσ1∂tw]
2 dσdσ1

+w2

1
∫

0

1
∫

0

σ(∂3uf)(x, u+ σσ1w)
[

∂2t u+ σσ1∂
2
tw

]

dσdσ1

+2w∂tw

1
∫

0

1
∫

0

σ(∂3uf)(x, u+ σσ1w) [∂tu+ σσ1∂tw] dσdσ1

∥

∥

∥

W 0

≤ 4
(

‖w‖2L4 + ‖∂tw‖
2
L4 + ‖w‖V 2‖w‖C

)

‖f(·, ·)‖L∞((0,1),C4(−3K,3K))

×
(

1 + ‖u‖W 2 + ‖∂tu‖
2
L4((0,1)×(0,2π)) + ‖w‖W 2 + ‖w‖2L4((0,1)×(0,2π))

)

.

In the last inequality we again used Lemma 2 and the embedding (4). The continuous
differentiability of F is proved, which completes the proof of the lemma. �
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