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The intersection of cyclic Kummer extensions with cyclotomic
extensions
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Abstract

We study to which extent cyclic Kummer extensions can be contained in a cy-
clotomic extension. Let K be a field, and consider an extension of K of the form
K ((m, V/a) where a € K, (, is a root of unity, n divides m, and m is not divisible by
the characteristic of K. In the case where m is a prime power, we present a formula
for the degree of this extension where only few parameters occur. No such formula
is possible in general if m is not a prime power. This work is based on a result by
Schinzel of 1977 describing abelian radical extensions.

1 Introduction

We study to which extent cyclic Kummer extensions can be contained in a cyclotomic
extension. Let K be a field, and consider an extension of K of the form L := K ((,, {/a)
where a € K, (,, is a root of unity, n divides m, and m is not divisible by the characteristic
of K. The field L contains the cyclotomic extension K,, := K((»), and the relative
extension L/K,, is the cyclic Kummer extension obtained by adjoining the n-th roots of a.
The problem that we address is calculating the degree of the finite Galois extension L/K.
We have to evaluate the degree of the cyclic Kummer extension L/K,,, which is a divisor
of n.

The general case can be easily recovered from the special case where we assume that a
has no ¢-th roots in K for every ¢ dividing n. Then often the degree of L/K is n but in
general it could be lower, and that happens when a acquires roots in K,,.

Suppose that m is the power of a prime number /. The main result of this paper is
showing that the phenomenon for a of acquiring ¢-th roots in K, is very limited.

Theorem. Let m be the power of a prime number £, and suppose that a is strongly f-
indivisible in K, by which we mean that ap has no £-th roots in K for every root of unity
w e K. If 0 is odd then a has no £-th roots in K,,, and if £ = 2 then a has no 4-th roots in
K.

An element a € K* is always the power of some strongly /-indivisible element times a
root of unity in K, unless in the following very special case: for some roots of unity p € K
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the element ap has ¢°-th roots in K for every e > 1. We neglect this case because our
Kummer extension would be a cyclotomic extension, and our problem is easily solved.

We then work out a very simple formula for the degree of L/K,, for every a € K*.
Precise statements are given in theorems [[1l and [I4] which cover respectively the case where
¢is odd or i ¢ K, and the remaining case.

If m is not necessarily a prime power then it is not possible to provide an analogous
formula, because a could acquire roots in K, and this strongly depends on a. Nevertheless,
if a is strongly ¢-indivisible for every prime ¢ dividing m then a can acquire ¢-th roots in K,
only if {; belongs to K. We study what can happen for a general m in theorems [I6] and [I7]
In particular, cyclic Kummer extensions are seldom contained in a cyclotomic extension.

This work is based on a result by Schinzel of 1977 describing which extensions of the
form K (g, %/a) have abelian Galois group (cf. [7]). The results were known for the case
K = Q (cf. [8]), and related works on radical extensions are [3],[9].

Applications

The results in this paper can be used to work out the densities arising from Artin’s con-
jecture for primitive roots over number fields, thus generalizing Hooley’s formulas which
concern the field Q. However one has to fix a number field, and the primes dividing the
exponent of the torsion of K* will require a correction factor: for QQ, the correction factor
was needed only for the prime 2 (cf. [1]).

In the appendix, we use the results in this paper for another application: Let K be
a number field, a an element of K* and ¢ a prime number. We compute the density of
the set of primes p of K such that the reduction of @ modulo p is well defined and has
multiplicative order coprime to £. The value of this density was known only for Q or under
the assumption that Ky ( ‘\/a)/K has degree ¢(£")¢" for all n > 1 (cf. [5], [2]). Once a
number field K is fixed, one can also write a formula for the density of p for which the
order of a modulo p is coprime to some fixed positive integer.
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2 Cyclotomic extensions

If K is a field, we fix some algebraic closure of K and work therein. For n > 1, we write
¢, for a primitive root of unity of order n, and we denote by K, the finite extension of K
obtained by adjoining to K the n-th roots of unity. If £ is a prime number, we write Ky«
for the union of the fields Ky for n > 0. In characteristic p, we write 2 for (2 mod p). A
reference for the results in this section is [10].



Lemma 1. Let F be either Q or a prime field of odd characteristic. Let n > 3. We define
the following fields:

F(Gon)* = F(Gon + ) = F (Gt + Gl +2)

F(Gon)™ = F(Ga (Gon + 1) = F(y/ = (G + G2 +2)

The element (4 does not belong to F(Can )™ nor to F((an)™ for any n. The field F((an)™
(respectively, F((on)™ ) is contained in F((an) but not in F({om) for m < n.

F(Can—1) /F(Czn) /f(@nﬂ)
/EF(CTL)_ /IE(CTLH)_
F(Con-1)* F(Con)* F(Cont1)*t

The previous diagram shows all subfields of F((on+1) containing F((en—1)T. The se-
quences of arrows describe all fields inclusion. Fach arrow corresponds to an extension of
degree 2.

Note, the case of characteristic p in the previous lemma can be deduced from the case
of characteristic zero by reduction modulo p.

Lemma 2. Let £ be a prime number. Let K be a field of characteristic different from £.
The degree [Ky : K| is a divisor of £ — 1. Suppose that Ky~ # K and call t > 0 the greatest
integer such that Ky = K. Since [Kym : K| =1 if m <t, we suppose m > t.

(i) Let € be odd, or lett > 2 if { = 2 (equivalently, (4 € K ). Then we have:

LUK K] ift=0

gm—t otherwise

[Kgm K] = {

(ii) Consider the remaining case ¢ =2 and t = 1. Let s > 2 be the greatest integer such
that K4 = Koas, or set s = oo if no such number exists. Then we have:

2 ifs=o00orifm<s
[KQ'” . K] = gm—s+1 z'fm > 5



3 Cyclic Kummer extensions

A reference for the results in this section is [6l, §3 of Chapter IV]. Let K be a field, and choose
an algebraic closure K of K. We denote by K* the multiplicative group of K. Suppose
that o™ = a for some a € K* and for some n > 1 not divisible by the characteristic of
K, such that ¢, € K. We then write K(«) = K({/a). This extension of K is obtained by
adjoining one (equivalently, all) n-th roots of a. It is a Galois extension of K, being the
splitting field of X™ — a.

Definition 3 (cyclic Kummer extension). A cyclic Kummer extension of a field K is an
extension of K of the form K({/a) where a € K*, n > 1 is not divisible by the characteristic
of K, and (, € K.

Such an extension is Galois, and its Galois group is cyclic of order dividing n. Kummer
theory provides the following characterization:

Theorem. Let K be a field. Let n > 1 be not divisible by the characteristic of K, and
suppose that ¢, € K. A finite Galois extension of K whose Galois group is cyclic of order
dividing n is a cyclic Kummer extension.

If L is a cyclic Kummer extension of K of degree n, we can associate to L the subgroup
of K* consisting of the elements which have some (hence all) n-th roots in L. We are
associating to L a subgroup A of K* satisfying the following properties: it contains K*";
the quotient A/K*" is a cyclic group of order n. The map L — A which sends a cyclic
Kummer extension of K of degree n into a subgroup of K* with the above properties, is
bijective.

Let a € K*, and consider the field L = K ({/a) which is associated to A = (a, K*").

There is a canonical isomorphism
A/K*" ~ Hom(Gal(L/K), un)

such that the class of a is mapped to the character x, : 0 — a°~!, where a € K is such
that o™ = a. Notice that this character does not depend on the choice of a.

The degree of L/K divides n and it is, equivalently: the order of A/K*"™; the order of
the class of @ in K*/K*"; the smallest d such that a? € K*; the integer d for which n/d
is the greatest divisor of n such that a has some (n/d)-th roots in K.

The field K(Va"/4) = K({/a) is the unique subextension of K({/a) of degree d: it is
a cyclic Kummer extension of degree d. If t is coprime to n, we have K (Val) = K(/a).

If we consider the factorization n = [ p® then K ({/a) is the composite of the extensions
K(»/a), which have coprime degrees.

Lemma 4. Let K be a field. Let n > 1 be not divisible by the characteristic of K, and
suppose that ¢, € K. If a,b € K* are such that K({/a) = K(/b) then a = b'y™ for some
v € K* and for some t coprime to n.



Proof. Since (a, K*") = (b, K*"), we have a = b'y™ for some integer ¢ and for some
~v € K*. Since the classes of a and b in K*/K*™ have the same order then ¢ is coprime to
n. O

Lemma 5. Let K be a field. Let n > 1 be not divisible by the characteristic of K, and
suppose that G, € K. If a,b € K* are such that the fields K(/a) and K(3/b) are either
linearly disjoint over K, or if for every £ | n the (-adic valuation of their degrees over K
are different, then we have

[K(Vab) : K| =1lem ([K({/a) : K], [K (VD) : K])
Proof. 1t suffices to compare the order of the characters x4, Xb, Xab- O

Lemma 6. Let K be a field. Let £ be a prime number not dividing the characteristic of
K. Letn >0, and suppose that (g € K. If a € K* then either K(“/a) = K or there is
some smallest h > 1 such that K( 4/a) # K and we have

(K (%/a) : K] = ¢

Proof. By assumption, X je(n—h=1) is the trivial character while X jo(n—h) is non-trivial. We
deduce that the second has order ¢ hence y, has order ¢*~"+1, O

The key ingredient for this paper is the following result of Schinzel:

Theorem 7 ([7, theorem 2]). Let K be a field, and let n > 1 be not divisible by the
characteristic of K. Let a € K*. The extension K,({/a)/K is abelian if and only if
a™ =~" for some v € K* and for some divisor m of n such that (,, € K.

Proof of Schinzel’s theorem by Stevenhagen and by Wojcik ([4)], [11]). First suppose that
a™ = ~"™ with v and m as in the statement. Then K,,({/a) is contained in the compositum
of the fields K'( x/v) and K,,. By definition of m the first field is a cyclic Kummer extension
of K, while the second field is a cyclotomic extension of K. They are both abelian exten-
sions of K therefore their compositum, and in particular K, ({/a), is an abelian extension
of K. For the other implication, let G = Gal(K,({/a)/K) and suppose that G is abelian.
Fix some n-th root « of a in K, (/a). For each o € G, one has {, := o(a)/a € ((,), and

o(¢n) = Cfl(a) for some ¢(o) € Z. For any o, 7 € G one has
7(a?)/a??) = (7 = o(7(a)/a) = To(a) /o (a)

hence a(?) /o(a) is fixed by all 7 so it belongs to K, and taking the n-th power one sees
that a®®)=1 € K*". Let m denote the ged of n and all numbers ¢(o) — 1 for ¢ varying in
G. Then a™ € K*™. Since m | n and m | ¢(o) — 1 for every o € G, we have 0((p)/Cm =1
for every o € G hence ¢, € K. O



We end this section by explaining a convenient way of writing the elements of K *:

Definition 8. Let K be a field, and let £ be a prime number different from the characteristic
of K. Let a € K*. We say that a is strongly ¢-indivisible in K if ap has no £-th roots in
K, for every root of unity p € K of order a power of .

Note, the roots of unity in K are not strongly ¢-indivisible. If a has £"-th roots of unity
in K for every n > 1 then we say that a is £°°-divisible in K. If au is £°°-divisible in K
for some root of unity p € K then we may replace a by p~! and our problem is easily
solved by lemma 2l In the remaining cases, we can express a as the power of a strongly
{-indivisible element times a root of unity in K:

Lemma 9. Let K be a field, and let ¢ be a prime number different from the characteristic
of K. Then one of the following holds:

(i) we have a = bt for some d > 0 and for some b € K* strongly {-indivisible

(ii) (supposing that Ko # K, let t > 0 be mazimal such that Ky = K ) we have a = v
for some d > 0, for some b € K* strongly {-indivisible and for some root of unity u
in K of order £" with r > max(0,t — d)

(iii) ap is £>°-divisible in K for some root of unity p € K

Proof. Suppose that there exists d > 0 is maximal such that we can write a = bzdu for
some d > 0, for some b € K* and for some root of unity g in K of order ¢ with r > 0.
Then b is strongly ¢-indivisible by maximality of d. If 0 # r <t — d, we may replace b so
to get up = 1. Now suppose that there is no such maximal d. If K = Ky~ this means that
a is £>°-divisible in K. If K # Ky, since the number of roots of unity in K of order a
power of £ is finite we have an infinite sequence of integers h such that a = bﬁh,u for some
by, € K* and for some fixed u € K* of order " with 7 > 0. Then au~! is £>°-divisible in
K. O

Note, in the lemma the integers d and r do not depend of the choice of b and i because
b is strongly ¢-indivisible. Moreover, we are in case (iii) if and only if Ky ( *V/a) = Kyeo,
so in particular when a is a root of unity.

Remark 10. We will assume K (‘Y/a) # Ky in what follows because otherwise our
problem is easily solved by lemma[2

4 The degree of Kummer extensions: the case ¢ odd or (4 €
K

In this section, ¢ is a prime number and K is a field of characteristic different from £. If
¢ = 2, we suppose that (4 € K. Let t be the greatest positive integer such that K, = K,
or t = 0o if no such number exists (if £ = 2, we have by assumption ¢ > 2).



Theorem 11. Let a € K* satisfy Ky~ ( y/a) # Kyo. Let m > n > 0 and without loss of
generality suppose m > t. If a is strongly £-indivisible we have

(Ko (Va) : Ken] = 0"

and more generally if a = bt for some b € K* strongly £-indivisible and for some d > 0

we have
[Kym( Y/a) : Kpm] = max(1,0"%).

In the remaining case, we have t # oo and we can write a = bgd,u for some b € K*
strongly £-indivisible, for some d > 0, and for some root of unity u € K of order £" with
r > max(0,t — d). Then we have

[Kfm( Z{L/a) . Kgm] = max(17€n—d7€n+7-_m) '

Note, if ¢, ¢ K and Ky~ ( ‘V/a) # Ky then a is the power of a strongly /-indivisible

element.
Lemma 12. If a is strongly (-indivisible then the field Ky(\/a) is not contained in Koo .

Proof. Suppose that Ky(1/a) is contained in K, for some h > 0 so in particular that it
is an abelian extension of K. If Ky, # K then by theorem [7 we deduce a = ~* for some
v € K, contradicting the assumption on a. If Ky = K, since K # K({/a) C K, we must
have K({/a) = Kp+1. Thus K(Va) = K({/Cx) and so by lemma @ we have a = ~*(y.
Since (p+ € K, this contradicts the assumption on a. O

Proof of theorem [I1l. Case 1: Suppose that a = bt for some d > 0 and for some b € K*
strongly (-indivisible. We have shown in lemma [I2]that [Km (v/b) : Kym] = £ so by lemma 6]
we have [Kym( e%{l/g) : Kym] = 7% We conclude because Kym( 4/a) = Kym( e%%) if
d <n and Km(4/a) = Kym if d > n.

Case 2: Suppose that t # oo, a = bzd,u for some d > 0, for some b € K* strongly
L-indivisible and for some root of unity p in K of order £" such that r > max(0,t—d). Call
v = ap~t = b*'. We have just shown that the extensions Kom (%/7) and Kyn( 4/p) are
linearly disjoint over Kym. So by lemma [ the degree of Kym( “y/a) over Km is the least
common multiple of the degrees of Kym ( ¢/¥) and of Kym( ©/t). The degree of Kym( /7)
over Kym was evaluated above as max(1,¢"~%). The degree of Kym( 4/u) over Kym is
max (1, "t"~™) by lemma 2 O

5 The degree of Kummer extensions: the case ¢/ = 2 and
¢ K

In this section, K is a field of odd characteristic such that ¢4 ¢ K. Let s be the greatest
integer such that Ky = Kos, or s = 0o if no such number exists.



Lemma 13. Let a € K* be strongly 2-indivisible. Then K(/a) € Ko and we have
K(y/a) C Ky if and only if

K NFys = F(Cos + (33Y)

(1)

a=%((es + (5" +2) 7
where F is the prime field, n € K and s > 2 is an integer. In this case, we have K(\/a) C
Kom if and only if m > s+ 1.

Proof. Suppose that K (y/a) C K. Then K(y/a) would be an abelian extension of K so
by theorem [[ we find that a? = «* for some v € K. This implies a = ++2 so it contradicts
the assumption on a.

Note, K(y/a) does not contain (4 because otherwise K(y/a) = K(y/—1) hence by
lemma @] we would have a = —v? for some v € K, contradicting the assumption on a.
Also K (y/a) # K, again because a is strongly 2-indivisible.

Suppose that K(y/a) C K. Since [K(y/a) : K] = 2 and (4 ¢ K(y/a), by lemma [I]
we must have K N Foso = F((as + (') for some s > 2 (we cannot have s = co). We then
deduce from lemma [I] that

K(va) = K (G + &' +2)

By lemma [ it follows that a = £((as + CQ_SI +2) - n? for some n € K. It is clear that
if a satisfies condition (1) then K (v/a) C Kae. By lemmal[ll we conclude that in this case
K(y/a) C Ky and K(v/a) € Kos. O

Theorem 14. Let a € K* satisfy Ko (23/a) # Ka~. Let n,m be such that m > n > 0.

(i) If a = b2’ for some d > 0 and some b € K* which is strongly 2-indivisible then we

have:
1 ifn<d
[Kom(2/a) : Kom] =4 277971 ifn>d and K(vVb) C Koo, m > s+1
on—d otherwise

(ii) If a = —p for some d > 0 and for some b € K* which is strongly 2-indivisible, let
h >0 be such that 2" = [Kom( 2\/—a) : Kon]. Then we have:
2 ifm=1orifh=0,s#c0candm=n>s
[Kom (/@) : Kgm] =4 1 ifh=1, K(Vb) C Ky~ andm=n=s=d+1
2" otherwise



Recall from lemma[I3 that K (V/b) C Kas if and only if

K NFayx = F(Cos + ') for some s > 2
b= +£(Cos + Cg_sl +2)-n% for somen € K

where F is the prime field.

Proof. By combining lemma [6] and lemma [I3] we have

n—1
[sz(2%):K2m]:{ 2 1fK(\/.5)§Kgoo and m > s+ 1
2" otherwise

The formulas for the case a = b2* follow at once because Kom (%/a) = Kom( 2n7\d/5) ifn>d
and Kom ( 2/a) = Kom if n < d.

Let us now consider the case a = —b2d, where d > 0. If m = 1 then n = 1 and so the
degree of Ka(y\/a) = K4 over Ky = K is 2.

From now on, let m > 2. Let 2" be the degree of Kom( %/—a) over Kym, which can be
evaluated by the previous case. Since m > n and m > 2, we have

n 2 ifs£occandn=m?>s
[K27n( 2\/ —1) . K2m] = {

1 otherwise

Thus, unless s # oo and n = m > s, we have Kom( 2/a) = Kom( 2/—a) and the requested
degree is 2".

Now we treat the remaining case: we have s # 0o, n = m > s, Kon( %/—1) = Kynt1 and
[Kont1 : Kon] = 2. If h = 0, the requested degree is 2 because Kon ( 2\/a) = Kon( 2/—1). If
h > 1, the requested degree is 2" by lemma [l

We are left with i = 1, and so the fields Ko ( %/—a) and Kon( %/—1) have both degree
2 over Kon. If the two fields are different then they are linearly disjoint and the requested
degree is 2 by lemma Bl If the two fields are equal then a is a 2"-th power in Kon by
lemma [ hence the requested degree is 1. We now prove that the two fields coincide if and
only if K(vb) C Ko~ and n = s = d + 1. These conditions are sufficient because (I4)
holds. We now prove that they are necessary. Since h = 1, we must have n > d and in
particular K (v/b) € K. We are supposing that Kon ( 2%%) = Kon+1 s0 by lemma [[3] we
have n —d < 2. Thus n = d + 1. We have Kan(v/b) = Koyni1 € Kon so from lemma [I3] we
deduce that n < s+ 1 hence n = s. O

6 The general case

Let K be a field. In this section, we are concerned with studying the degree of a cyclic
Kummer extension of the form K,,({/a)/K,,, where a € K* and where m,n > 1 are



such that n | m and m is coprime to the characteristic of K. Suppose that a is strongly
¢-indivisible for every ¢ dividing n. Then in the generic case we have [K,,({/a) : K] = n,
nevertheless this degree could also be any divisor d of n. We can reduce to the case where
n is a prime power:

Lemma 15. Suppose that for every prime divisor £ of n we can find ay € K™ which is
strongly (-indivisible and such that K, ( ©*"ag) : K] = °D. Then there is a € K*
which is strongly (-indivisible for every prime { dividing n, and such that [K,,(%“/a) :
K, =d.

Proof. Write a := a?/zue(n) and a := [[a). We have [K,,(¥/a}) : K] = ¢°(D for every
£. Note that a € K* and is strongly ¢-indivisible for any prime number ¢ dividing n, so it
suffices to apply lemma O

We may then restrict to studying cyclic Kummer extensions of prime power degree.

Theorem 16. Let K be a field. Let m > 1 be not divisible by the characteristic of K. Let
¢ be a prime divisor of m, and let n > 1 satisfy £™ | m. Suppose that for some a € K*
which is strongly (-indivisible we have

[Kn( Va) : Kn] = e

for some 0 < d < n. Then (u € K. Moreover there is some odd prime q # ¢ dividing m
such that 1 | [K, : K], unless £ =2, d =1 and K(y/a) C Kyuym)-

Note, Lemma [B] implies that [K,,( /@) : Kp] = 7% is equivalent to Kn( 4/a) = K,
and either d = n or K, ( “"\/a) # K.

Proof. We first show that (¢ € K. Since K,,( 4/a) = K, in particular K,q( 4/a) is an
abelian extension of K. Theorem [7 implies that a*" = ygd for some v € K*, and for some
e > 0 such that (e € K. Since a is strongly ¢-indivisible, we have d < e hence (.« € K.

Let m/ := ¢ve(m) . [ g where the product is taken over the odd primes g # ¢ dividing
m such that ¢ = 1(mod ¢). Then K,,( 4/a) = K, if and only if K, ( 4/a) = K, because
K,/ K,y has degree coprime to ¢. Note, the Galois group of K, /K is the product of the
Galois groups of K. m) /K and of the extensions K,/K.

Suppose that K, m) ( “%)/Kzue(m) has degree ¢¢. Then Ky /K yuoyom) contains a cyclic
subextension of degree ¢? hence the Galois group of some extension K,/K has exponent
divisible by ¢?. Since a is strongly ¢-indivisible, theorems [[T] and [[4] imply that in the re-
maining case we have £ = 2, and d = 1 because (a € K. In particular K u,m) ( Z\d/a)/Kw(m)
has degree 1. O

We now argument that the degree of K,,(\/a)/K,, could take as value any possibile
divisor of £", even if we require a to be strongly ¢-indivisible:

10



Theorem 17. Let K be a field. Let ¢ be a prime different from the characteristic of K,
and suppose that K* /K>t is infinite. Let m > 1 be not divisible by the characteristic of
K. Ifn > 1 is such that " | m, and d > 0 is either zero or we have d < n, (u € K and
¢4 [K, : K] for some odd prime q # { dividing m, then there is some a € K* which is
strongly £-indivisible and such that

(Ko ( Va) : K] =01,

Proof. Let b € K* be such that vb is not contained in K,,: such an element exists
because K, contains only finitely many subextensions of degree £ while K* /K ** is infinite.
Suppose that d > 1. By assumption, there is a cyclic Kummer extension C of K of degree
¢4 contained in K,. Let a € K* be such that C = K( %/a). In particular, the degree
§ = [Km(4/a) : Ky divides (=4 If § # ("= it suffices to replace a by ab’’, so that
Kn(%/a) = C but K, (*“"\/a) € K,,. Then a is strongly -indivisible: if a = 4y for
some v € K* and p € K then {/a belongs to Ky~ but since it is not in K (cf. lemma [6])
then it cannot be in K, contradiction. Now let d = 0. We have [K,( W) : K] = 0" by
lemma [6l It is left to show that b is strongly f-indivisible. If K = Ky or if {; ¢ K this
is equivalent to the condition that b has no ¢-th roots in K, so it is true by the choice of
b. Otherwise, if ¢ > 1 is the greatest integer such that K = K+ then it suffices to choose b
such that v/b is not contained in K, st+1. O

Appendix: The density of sets of primes related to the reduc-
tions of an algebraic number

Let K be a number field, and let a € K*. Let £ be a prime number. In this section
we are concerned with computing the density of the set of primes p of K such that the
multiplicative order of the reduction of @ modulo p has a prescribed ¢-adic valuation,
namely
dens(a,n) = dens{p : ordg(a mod p) =n}

for some n > 0. We tacitly assume that (a mod p) is well-defined, so we exclude the finitely
many primes p such that vy(a) < 0. These values are known if K = Q (cf. [5]) or under
the assumption that Ky ( 4/a)/K has degree ¢(£")¢" for all n > 1 (cf. [2]): notice that
in this last case a is strongly f-indivisible. Recall that the density exists, and that it is a
natural density (cf. [2]). Suppose that a is not a root of unity, because otherwise the the
density is trivially either 0 or 1.

The results in this paper suffice to calculate the density, because of the following well-
known formula:

Lemma 18.

dens(a,0) = > [Ku(Va) : K|7' = [Kpsi (Va) : K7

i>0
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Proof. Recall that only finitely many primes of K ramify in K ( %) for some i > 0 (it
is a consequence of the fact that, for a number field, for almost all primes the reduction
is injective on the roots of unity of order a power of ¢ contained in the field). Let p be a
prime of K which does not ramify in any of these extensions, and suppose that (a mod p)
has order coprime to ¢, or equivalently that it has some ¢"-th root in the residue field k,
for every n > 1. Let i > 0 be the greatest integer such that the residue field k, contains
the £*-th roots of unity. Then p belongs to the following set of primes of K: the primes
which split completely in K,:( 4/a) but not in Kyi+1( §/a). Note, for different ¢ we obtain
disjoint sets. Conversely, for such a prime p and if ¢ is defined as above, (e mod p) has
order coprime to £ because there are no elements in ky of order (1. We conclude by
applying the Chebotarev Density Theorem: the sum converges because the density of the
i-th set goes to zero for i going to infinity. O

The following remark can be used to reduce the calculation of dens(a,n) to the case
where n = 0.

Remark 19. For every n > 1 we have
dens(a,n) = dens(a*",0) — dens(aznil,O) .
For ¢ = 2, we have dens(a,0) = dens(—a, 1) and dens(a,n) = dens(—a,n) if n > 2.

Proof. The first assertion is immediate from the definition. For the others, notice that
(—1 mod p) is the only element of order 2 in (Z/Zp)*, for every odd prime number p. O

The density if / is odd or : € K
Let £ be a prime number. Let K be a number field. Let a € K* be not a root of unity.

1. Suppose that K; # K (hence ¢ is odd). Write a = b for some d > 0 and for some
b € K which is strongly ¢-indivisible. Then we have:

£y

dens(a,0) =1 — [K,: K]7!- T

2. Suppose that Ky, = K and, if £ = 2, suppose that i € K. Let t > 0 be the greatest
positive integer such that K, = K.

(i) Let a = b for some d > 0 and for some b € K which is strongly -indivisible.
Then we have:

e A if d<t
dens(a,0) = 2 gd
1= gy - ifd>t
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(ii) Let a = bt w1 for some d > 0, for some b € K which is strongly /-indivisible, for
some root of unity u € K of order ¢" such that r > max(0,¢—d). Then we have:

1
dens(a,0) =" — = g 2r—dt

The density if /=2 and i ¢ K
Let K be a number field such that ¢ ¢ K. Let a € K* be not a root of unity.

1. Let a = b for some d > 0 and for some b € K which is strongly 2-indivisible. Then

we have:
1-2.274 if K(vb) € Koo
dens(a,0) = { 1- 2.27d—2.27%%d if K(Vb) C Koo and d < s
1—%- —d ifK(\/l;)gKgooanddZS
2. Let a = —b%" for some d > 0 and for some b € K which is strongly 2-indivisible.
Then we have:
(.27 if K(vb) Z Koo
2-274 - 2.27%Fd if K(Vb) C Ky and d < s — 1
dens(a, 0) = 3.27° if K(vb) C Koo and d =5 — 1
1.27d if K(vb) C Ky and d > s

Recall from lemma [[3 that K (v/b) C Ko if and only if
K N Qo= = Q(Cos + (') for some s > 2
b=+(Cos + (b +2)-n?  for somen € K
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