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The intersection of cyclic Kummer extensions with cyclotomic

extensions

Antonella Perucca

Abstract

We study to which extent cyclic Kummer extensions can be contained in a cy-
clotomic extension. Let K be a field, and consider an extension of K of the form
K(ζm, n

√
a) where a ∈ K, ζm is a root of unity, n divides m, and m is not divisible by

the characteristic of K. In the case where m is a prime power, we present a formula
for the degree of this extension where only few parameters occur. No such formula
is possible in general if m is not a prime power. This work is based on a result by
Schinzel of 1977 describing abelian radical extensions.

1 Introduction

We study to which extent cyclic Kummer extensions can be contained in a cyclotomic
extension. Let K be a field, and consider an extension of K of the form L := K(ζm, n

√
a)

where a ∈ K, ζm is a root of unity, n divides m, and m is not divisible by the characteristic
of K. The field L contains the cyclotomic extension Km := K(ζm), and the relative
extension L/Km is the cyclic Kummer extension obtained by adjoining the n-th roots of a.
The problem that we address is calculating the degree of the finite Galois extension L/K.
We have to evaluate the degree of the cyclic Kummer extension L/Km, which is a divisor
of n.

The general case can be easily recovered from the special case where we assume that a
has no ℓ-th roots in K for every ℓ dividing n. Then often the degree of L/K is n but in
general it could be lower, and that happens when a acquires roots in Km.

Suppose that m is the power of a prime number ℓ. The main result of this paper is
showing that the phenomenon for a of acquiring ℓ-th roots in Km is very limited.

Theorem. Let m be the power of a prime number ℓ, and suppose that a is strongly ℓ-
indivisible in K, by which we mean that aµ has no ℓ-th roots in K for every root of unity
µ ∈ K. If ℓ is odd then a has no ℓ-th roots in Km, and if ℓ = 2 then a has no 4-th roots in
Km.

An element a ∈ K× is always the power of some strongly ℓ-indivisible element times a
root of unity in K, unless in the following very special case: for some roots of unity µ ∈ K
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the element aµ has ℓe-th roots in K for every e ≥ 1. We neglect this case because our
Kummer extension would be a cyclotomic extension, and our problem is easily solved.

We then work out a very simple formula for the degree of L/Km for every a ∈ K×.
Precise statements are given in theorems 11 and 14, which cover respectively the case where
ℓ is odd or i /∈ K, and the remaining case.

If m is not necessarily a prime power then it is not possible to provide an analogous
formula, because a could acquire roots in Km and this strongly depends on a. Nevertheless,
if a is strongly ℓ-indivisible for every prime ℓ dividingm then a can acquire ℓ-th roots inKm

only if ζℓ belongs to K. We study what can happen for a general m in theorems 16 and 17.
In particular, cyclic Kummer extensions are seldom contained in a cyclotomic extension.

This work is based on a result by Schinzel of 1977 describing which extensions of the
form K(ζℓn , ℓn

√
a) have abelian Galois group (cf. [7]). The results were known for the case

K = Q (cf. [8]), and related works on radical extensions are [3],[9].

Applications

The results in this paper can be used to work out the densities arising from Artin’s con-
jecture for primitive roots over number fields, thus generalizing Hooley’s formulas which
concern the field Q. However one has to fix a number field, and the primes dividing the
exponent of the torsion of K× will require a correction factor: for Q, the correction factor
was needed only for the prime 2 (cf. [1]).

In the appendix, we use the results in this paper for another application: Let K be
a number field, a an element of K× and ℓ a prime number. We compute the density of
the set of primes p of K such that the reduction of a modulo p is well defined and has
multiplicative order coprime to ℓ. The value of this density was known only for Q or under
the assumption that Kℓn(

ℓn
√
a)/K has degree φ(ℓn)ℓn for all n ≥ 1 (cf. [5], [2]). Once a

number field K is fixed, one can also write a formula for the density of p for which the
order of a modulo p is coprime to some fixed positive integer.
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2 Cyclotomic extensions

If K is a field, we fix some algebraic closure of K and work therein. For n ≥ 1, we write
ζn for a primitive root of unity of order n, and we denote by Kn the finite extension of K
obtained by adjoining to K the n-th roots of unity. If ℓ is a prime number, we write Kℓ∞

for the union of the fields Kℓn for n ≥ 0. In characteristic p, we write 2 for (2 mod p). A
reference for the results in this section is [10].
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Lemma 1. Let F be either Q or a prime field of odd characteristic. Let n ≥ 3. We define
the following fields:

F(ζ2n)
+ = F

(

ζ2n + ζ−1
2n

)

= F

(
√

ζ2n−1 + ζ−1
2n−1 + 2

)

F(ζ2n)
− = F

(

ζ4 · (ζ2n + ζ−1
2n )

)

= F

(
√

−(ζ2n−1 + ζ−1
2n−1 + 2)

)

The element ζ4 does not belong to F(ζ2n)
+ nor to F(ζ2n)

− for any n. The field F(ζ2n)
+

(respectively, F(ζ2n)
−) is contained in F(ζ2n) but not in F(ζ2m) for m < n.

F(ζ2n−1) // F(ζ2n) // F(ζ2n+1)
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−
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s
s

s

F(ζ2n+1)−

88
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p

p
p

p
p

p
p

p
p

F(ζ2n−1)+

OO

88
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r
r

r
r

r
r

r
r

r

// F(ζ2n)
+

OO

//

88
r

r
r

r
r

r
r

r
r

r

F(ζ2n+1)+

OO

The previous diagram shows all subfields of F(ζ2n+1) containing F(ζ2n−1)+. The se-
quences of arrows describe all fields inclusion. Each arrow corresponds to an extension of
degree 2.

Note, the case of characteristic p in the previous lemma can be deduced from the case
of characteristic zero by reduction modulo p.

Lemma 2. Let ℓ be a prime number. Let K be a field of characteristic different from ℓ.
The degree [Kℓ : K] is a divisor of ℓ− 1. Suppose that Kℓ∞ 6= K and call t ≥ 0 the greatest
integer such that Kℓt = K. Since [Kℓm : K] = 1 if m ≤ t, we suppose m > t.

(i) Let ℓ be odd, or let t ≥ 2 if ℓ = 2 (equivalently, ζ4 ∈ K). Then we have:

[Kℓm : K] =

{

ℓm−1 · [Kℓ : K] if t = 0

ℓm−t otherwise

(ii) Consider the remaining case ℓ = 2 and t = 1. Let s ≥ 2 be the greatest integer such
that K4 = K2s , or set s = ∞ if no such number exists. Then we have:

[K2m : K] =

{

2 if s = ∞ or if m ≤ s

2m−s+1 if m > s
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3 Cyclic Kummer extensions

A reference for the results in this section is [6, §3 of Chapter IV]. LetK be a field, and choose
an algebraic closure K̄ of K. We denote by K× the multiplicative group of K. Suppose
that αn = a for some a ∈ K× and for some n ≥ 1 not divisible by the characteristic of
K, such that ζn ∈ K. We then write K(α) = K( n

√
a). This extension of K is obtained by

adjoining one (equivalently, all) n-th roots of a. It is a Galois extension of K, being the
splitting field of Xn − a.

Definition 3 (cyclic Kummer extension). A cyclic Kummer extension of a field K is an
extension of K of the form K( n

√
a) where a ∈ K×, n ≥ 1 is not divisible by the characteristic

of K, and ζn ∈ K.

Such an extension is Galois, and its Galois group is cyclic of order dividing n. Kummer
theory provides the following characterization:

Theorem. Let K be a field. Let n ≥ 1 be not divisible by the characteristic of K, and
suppose that ζn ∈ K. A finite Galois extension of K whose Galois group is cyclic of order
dividing n is a cyclic Kummer extension.

If L is a cyclic Kummer extension of K of degree n, we can associate to L the subgroup
of K× consisting of the elements which have some (hence all) n-th roots in L. We are
associating to L a subgroup ∆ of K× satisfying the following properties: it contains K×n;
the quotient ∆/K×n is a cyclic group of order n. The map L 7→ ∆ which sends a cyclic
Kummer extension of K of degree n into a subgroup of K× with the above properties, is
bijective.

Let a ∈ K×, and consider the field L = K( n
√
a) which is associated to ∆ = 〈a,K×n〉.

There is a canonical isomorphism

∆/K×n ≃ Hom(Gal(L/K), µn)

such that the class of a is mapped to the character χa : σ 7→ ασ−1, where α ∈ K̄ is such
that αn = a. Notice that this character does not depend on the choice of α.

The degree of L/K divides n and it is, equivalently: the order of ∆/K×n; the order of
the class of a in K×/K×n; the smallest d such that αd ∈ K×; the integer d for which n/d
is the greatest divisor of n such that a has some (n/d)-th roots in K.

The field K(
n
√
an/d) = K( d

√
a) is the unique subextension of K( n

√
a) of degree d: it is

a cyclic Kummer extension of degree d. If t is coprime to n, we have K(
n
√
at) = K( n

√
a).

If we consider the factorization n =
∏

pe then K( n
√
a) is the composite of the extensions

K( pe
√
a), which have coprime degrees.

Lemma 4. Let K be a field. Let n ≥ 1 be not divisible by the characteristic of K, and
suppose that ζn ∈ K. If a, b ∈ K× are such that K( n

√
a) = K( n

√
b) then a = btγn for some

γ ∈ K× and for some t coprime to n.
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Proof. Since 〈a,K×n〉 = 〈b,K×n〉, we have a = btγn for some integer t and for some
γ ∈ K×. Since the classes of a and b in K×/K×n have the same order then t is coprime to
n.

Lemma 5. Let K be a field. Let n ≥ 1 be not divisible by the characteristic of K, and
suppose that ζn ∈ K. If a, b ∈ K× are such that the fields K( n

√
a) and K( n

√
b) are either

linearly disjoint over K, or if for every ℓ | n the ℓ-adic valuation of their degrees over K
are different, then we have

[

K(
n
√
ab) : K

]

= lcm
(

[K( n
√
a) : K], [K(

n
√
b) : K]

)

Proof. It suffices to compare the order of the characters χa, χb, χab.

Lemma 6. Let K be a field. Let ℓ be a prime number not dividing the characteristic of
K. Let n ≥ 0, and suppose that ζℓn ∈ K. If a ∈ K× then either K( ℓn

√
a) = K or there is

some smallest h ≥ 1 such that K( ℓh
√
a) 6= K and we have

[K( ℓn
√
a) : K] = ℓn−h+1

Proof. By assumption, χ
aℓ

(n−h−1) is the trivial character while χ
aℓ

(n−h) is non-trivial. We

deduce that the second has order ℓ hence χa has order ℓn−h+1.

The key ingredient for this paper is the following result of Schinzel:

Theorem 7 ([7, theorem 2]). Let K be a field, and let n ≥ 1 be not divisible by the
characteristic of K. Let a ∈ K×. The extension Kn( n

√
a)/K is abelian if and only if

am = γn for some γ ∈ K× and for some divisor m of n such that ζm ∈ K.

Proof of Schinzel’s theorem by Stevenhagen and by Wójcik ([4], [11]). First suppose that
am = γn with γ and m as in the statement. Then Kn( n

√
a) is contained in the compositum

of the fields K( m
√
γ) and Kn. By definition of m the first field is a cyclic Kummer extension

of K, while the second field is a cyclotomic extension of K. They are both abelian exten-
sions of K therefore their compositum, and in particular Kn( n

√
a), is an abelian extension

of K. For the other implication, let G = Gal(Kn( n
√
a)/K) and suppose that G is abelian.

Fix some n-th root α of a in Kn( n
√
a). For each σ ∈ G, one has ζσ := σ(α)/α ∈ 〈ζn〉, and

σ(ζn) = ζ
c(σ)
n for some c(σ) ∈ Z. For any σ, τ ∈ G one has

τ(αc(σ))/αc(σ) = ζc(σ)τ = σ
(

τ(α)/α
)

= τσ(α)/σ(α)

hence αc(σ)/σ(α) is fixed by all τ so it belongs to K, and taking the n-th power one sees
that ac(σ)−1 ∈ K×n. Let m denote the gcd of n and all numbers c(σ) − 1 for σ varying in
G. Then am ∈ K×n. Since m | n and m | c(σ)− 1 for every σ ∈ G, we have σ(ζm)/ζm = 1
for every σ ∈ G hence ζm ∈ K.
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We end this section by explaining a convenient way of writing the elements of K×:

Definition 8. Let K be a field, and let ℓ be a prime number different from the characteristic
of K. Let a ∈ K×. We say that a is strongly ℓ-indivisible in K if aµ has no ℓ-th roots in
K, for every root of unity µ ∈ K of order a power of ℓ.

Note, the roots of unity in K are not strongly ℓ-indivisible. If a has ℓn-th roots of unity
in K for every n ≥ 1 then we say that a is ℓ∞-divisible in K. If aµ is ℓ∞-divisible in K
for some root of unity µ ∈ K then we may replace a by µ−1 and our problem is easily
solved by lemma 2. In the remaining cases, we can express a as the power of a strongly
ℓ-indivisible element times a root of unity in K:

Lemma 9. Let K be a field, and let ℓ be a prime number different from the characteristic
of K. Then one of the following holds:

(i) we have a = bℓ
d

for some d ≥ 0 and for some b ∈ K× strongly ℓ-indivisible

(ii) (supposing that Kℓ∞ 6= K, let t ≥ 0 be maximal such that Kℓt = K) we have a = bℓ
d

µ
for some d > 0, for some b ∈ K× strongly ℓ-indivisible and for some root of unity µ
in K of order ℓr with r > max(0, t− d)

(iii) aµ is ℓ∞-divisible in K for some root of unity µ ∈ K

Proof. Suppose that there exists d ≥ 0 is maximal such that we can write a = bℓ
d

µ for
some d ≥ 0, for some b ∈ K× and for some root of unity µ in K of order ℓr with r ≥ 0.
Then b is strongly ℓ-indivisible by maximality of d. If 0 6= r ≤ t− d, we may replace b so
to get µ = 1. Now suppose that there is no such maximal d. If K = Kℓ∞ this means that
a is ℓ∞-divisible in K. If K 6= Kℓ∞ , since the number of roots of unity in K of order a
power of ℓ is finite we have an infinite sequence of integers h such that a = bℓ

h

h µ for some
bh ∈ K× and for some fixed µ ∈ K× of order ℓr with r ≥ 0. Then aµ−1 is ℓ∞-divisible in
K.

Note, in the lemma the integers d and r do not depend of the choice of b and µ because
b is strongly ℓ-indivisible. Moreover, we are in case (iii) if and only if Kℓ∞( ℓ∞

√
a) = Kℓ∞ ,

so in particular when a is a root of unity.

Remark 10. We will assume Kℓ∞( ℓ∞
√
a) 6= Kℓ∞ in what follows because otherwise our

problem is easily solved by lemma 2.

4 The degree of Kummer extensions: the case ℓ odd or ζ4 ∈
K

In this section, ℓ is a prime number and K is a field of characteristic different from ℓ. If
ℓ = 2, we suppose that ζ4 ∈ K. Let t be the greatest positive integer such that Kℓt = K,
or t = ∞ if no such number exists (if ℓ = 2, we have by assumption t ≥ 2).
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Theorem 11. Let a ∈ K× satisfy Kℓ∞( ℓ∞
√
a) 6= Kℓ∞. Let m ≥ n > 0 and without loss of

generality suppose m ≥ t. If a is strongly ℓ-indivisible we have

[Kℓm(
ℓn
√
a) : Kℓm] = ℓn

and more generally if a = bℓ
d

for some b ∈ K× strongly ℓ-indivisible and for some d ≥ 0
we have

[Kℓm(
ℓn
√
a) : Kℓm ] = max(1, ℓn−d) .

In the remaining case, we have t 6= ∞ and we can write a = bℓ
d

µ for some b ∈ K×

strongly ℓ-indivisible, for some d > 0, and for some root of unity µ ∈ K of order ℓr with
r > max(0, t− d). Then we have

[Kℓm(
ℓn
√
a) : Kℓm ] = max(1, ℓn−d, ℓn+r−m) .

Note, if ζℓ /∈ K and Kℓ∞( ℓ∞
√
a) 6= Kℓ∞ then a is the power of a strongly ℓ-indivisible

element.

Lemma 12. If a is strongly ℓ-indivisible then the field Kℓ(
ℓ
√
a) is not contained in Kℓ∞.

Proof. Suppose that Kℓ(
ℓ
√
a) is contained in Kℓh for some h ≥ 0 so in particular that it

is an abelian extension of K. If Kℓ 6= K then by theorem 7 we deduce a = γℓ for some
γ ∈ K, contradicting the assumption on a. If Kℓ = K, since K 6= K( ℓ

√
a) ⊆ Kℓh , we must

have K( ℓ
√
a) = Kℓt+1 . Thus K( ℓ

√
a) = K( ℓ

√
ζℓt) and so by lemma 4 we have a = γℓζℓt .

Since ζℓt ∈ K, this contradicts the assumption on a.

Proof of theorem 11. Case 1: Suppose that a = bℓ
d

for some d ≥ 0 and for some b ∈ K×

strongly ℓ-indivisible. We have shown in lemma 12 that [Kℓm(
ℓ
√
b) : Kℓm ] = ℓ so by lemma 6

we have [Kℓm(
ℓn−d√

b) : Kℓm ] = ℓn−d. We conclude because Kℓm(
ℓn
√
a) = Kℓm(

ℓn−d√
b) if

d ≤ n and Kℓm(
ℓn
√
a) = Kℓm if d ≥ n.

Case 2: Suppose that t 6= ∞, a = bℓ
d

µ for some d ≥ 0, for some b ∈ K× strongly
ℓ-indivisible and for some root of unity µ in K of order ℓr such that r > max(0, t−d). Call

γ = aµ−1 = bℓ
d

. We have just shown that the extensions Kℓm( ℓn
√
γ) and Kℓm( ℓn

√
µ) are

linearly disjoint over Kℓm . So by lemma 5 the degree of Kℓm(
ℓn
√
a) over Kℓm is the least

common multiple of the degrees of Kℓm( ℓn
√
γ) and of Kℓm( ℓn

√
µ). The degree of Kℓm( ℓn

√
γ)

over Kℓm was evaluated above as max(1, ℓn−d). The degree of Kℓm( ℓn
√
µ) over Kℓm is

max(1, ℓn+r−m) by lemma 2.

5 The degree of Kummer extensions: the case ℓ = 2 and

ζ4 /∈ K

In this section, K is a field of odd characteristic such that ζ4 /∈ K. Let s be the greatest
integer such that K4 = K2s , or s = ∞ if no such number exists.
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Lemma 13. Let a ∈ K× be strongly 2-indivisible. Then K( 4
√
a) 6⊆ K2∞ and we have

K(
√
a) ⊆ K2∞ if and only if

K ∩ F2∞ = F(ζ2s + ζ−1
2s )

a = ±(ζ2s + ζ−1
2s + 2) · η2

(1)

where F is the prime field, η ∈ K and s ≥ 2 is an integer. In this case, we have K(
√
a) ⊆

K2m if and only if m ≥ s+ 1.

Proof. Suppose that K( 4
√
a) ⊆ K2∞ . Then K( 4

√
a) would be an abelian extension of K so

by theorem 7 we find that a2 = γ4 for some γ ∈ K. This implies a = ±γ2 so it contradicts
the assumption on a.

Note, K(
√
a) does not contain ζ4 because otherwise K(

√
a) = K(

√
−1) hence by

lemma 4 we would have a = −γ2 for some γ ∈ K, contradicting the assumption on a.
Also K(

√
a) 6= K, again because a is strongly 2-indivisible.

Suppose that K(
√
a) ⊆ K2∞ . Since [K(

√
a) : K] = 2 and ζ4 /∈ K(

√
a), by lemma 1

we must have K ∩ F2∞ = F(ζ2s + ζ−1
2s ) for some s ≥ 2 (we cannot have s = ∞). We then

deduce from lemma 1 that

K(
√
a) = K

(

√

±(ζ2s + ζ−1
2s + 2)

)

.

By lemma 4, it follows that a = ±(ζ2s + ζ−1
2s + 2) · η2 for some η ∈ K. It is clear that

if a satisfies condition (1) then K(
√
a) ⊆ K2∞ . By lemma 1, we conclude that in this case

K(
√
a) ⊆ K2s+1 and K(

√
a) 6⊆ K2s .

Theorem 14. Let a ∈ K× satisfy K2∞( 2∞
√
a) 6= K2∞ . Let n,m be such that m ≥ n > 0.

(i) If a = b2
d

for some d ≥ 0 and some b ∈ K× which is strongly 2-indivisible then we
have:

[K2m(
2n
√
a) : K2m ] =











1 if n ≤ d

2n−d−1 if n > d and K(
√
b) ⊆ K2∞ , m ≥ s+ 1

2n−d otherwise

(ii) If a = −b2
d

for some d > 0 and for some b ∈ K× which is strongly 2-indivisible, let
h ≥ 0 be such that 2h = [K2m( 2n

√
−a) : K2m ]. Then we have:

[K2m( 2n
√
a) : K2m ] =











2 if m = 1 or if h = 0, s 6= ∞ and m = n ≥ s

1 if h = 1, K(
√
b) ⊆ K2∞ and m = n = s = d+ 1

2h otherwise
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Recall from lemma 13 that K(
√
b) ⊆ K2∞ if and only if

K ∩ F2∞ = F(ζ2s + ζ−1
2s ) for some s ≥ 2

b = ±(ζ2s + ζ−1
2s + 2) · η2 for some η ∈ K

where F is the prime field.

Proof. By combining lemma 6 and lemma 13 we have

[K2m(
2n
√
b) : K2m ] =

{

2n−1 if K(
√
b) ⊆ K2∞ and m ≥ s+ 1

2n otherwise

The formulas for the case a = b2
d

follow at once because K2m( 2n
√
a) = K2m( 2n−d√

b) if n > d
and K2m( 2n

√
a) = K2m if n ≤ d.

Let us now consider the case a = −b2
d

, where d > 0. If m = 1 then n = 1 and so the
degree of K2(

√
a) = K4 over K2 = K is 2.

From now on, let m ≥ 2. Let 2h be the degree of K2m(
2n
√
−a) over K2m , which can be

evaluated by the previous case. Since m ≥ n and m ≥ 2, we have

[K2m( 2n
√
−1) : K2m ] =

{

2 if s 6= ∞ and n = m ≥ s

1 otherwise

Thus, unless s 6= ∞ and n = m ≥ s, we have K2m( 2n
√
a) = K2m(

2n
√−a) and the requested

degree is 2h.
Now we treat the remaining case: we have s 6= ∞, n = m ≥ s, K2n(

2n
√
−1) = K2n+1 and

[K2n+1 : K2n ] = 2. If h = 0, the requested degree is 2 because K2n( 2n
√
a) = K2n(

2n
√
−1). If

h > 1, the requested degree is 2h by lemma 5.
We are left with h = 1, and so the fields K2n(

2n
√
−a) and K2n(

2n
√
−1) have both degree

2 over K2n . If the two fields are different then they are linearly disjoint and the requested
degree is 2 by lemma 5. If the two fields are equal then a is a 2n-th power in K2n by
lemma 4 hence the requested degree is 1. We now prove that the two fields coincide if and
only if K(

√
b) ⊆ K2∞ and n = s = d + 1. These conditions are sufficient because (14)

holds. We now prove that they are necessary. Since h = 1, we must have n > d and in

particular K(
√
b) ⊆ K2∞ . We are supposing that K2n(

2n−d√
b) = K2n+1 so by lemma 13 we

have n− d < 2. Thus n = d+ 1. We have K2n(
√
b) = K2n+1 6⊆ K2n so from lemma 13 we

deduce that n < s+ 1 hence n = s.

6 The general case

Let K be a field. In this section, we are concerned with studying the degree of a cyclic
Kummer extension of the form Km( n

√
a)/Km, where a ∈ K× and where m,n ≥ 1 are

9



such that n | m and m is coprime to the characteristic of K. Suppose that a is strongly
ℓ-indivisible for every ℓ dividing n. Then in the generic case we have [Km( n

√
a) : Km] = n,

nevertheless this degree could also be any divisor d of n. We can reduce to the case where
n is a prime power:

Lemma 15. Suppose that for every prime divisor ℓ of n we can find aℓ ∈ K× which is
strongly ℓ-indivisible and such that [Km( ℓ

vℓ(n)√aℓ) : Km] = ℓvℓ(d). Then there is a ∈ K×

which is strongly ℓ-indivisible for every prime ℓ dividing n, and such that [Km( ℓn
√
a) :

Km] = d.

Proof. Write a′ℓ := a
n/ℓvℓ(n)

ℓ and a :=
∏

a′ℓ. We have [Km( n
√

a′ℓ) : Km] = ℓvℓ(d) for every
ℓ. Note that a ∈ K× and is strongly ℓ-indivisible for any prime number ℓ dividing n, so it
suffices to apply lemma 5.

We may then restrict to studying cyclic Kummer extensions of prime power degree.

Theorem 16. Let K be a field. Let m ≥ 1 be not divisible by the characteristic of K. Let
ℓ be a prime divisor of m, and let n ≥ 1 satisfy ℓn | m. Suppose that for some a ∈ K×

which is strongly ℓ-indivisible we have

[Km( ℓn
√
a) : Km] = ℓn−d

for some 0 < d ≤ n. Then ζℓd ∈ K. Moreover there is some odd prime q 6= ℓ dividing m
such that ℓd | [Kq : K], unless ℓ = 2, d = 1 and K(

√
a) ⊆ K2v2(m) .

Note, Lemma 6 implies that [Km( ℓn
√
a) : Km] = ℓn−d is equivalent to Km( ℓd

√
a) = Km

and either d = n or Km( ℓd+1√
a) 6= Km.

Proof. We first show that ζℓd ∈ K. Since Km( ℓd
√
a) = Km, in particular Kℓd(

ℓd
√
a) is an

abelian extension of K. Theorem 7 implies that aℓ
e

= γℓ
d

for some γ ∈ K×, and for some
e ≥ 0 such that ζℓe ∈ K. Since a is strongly ℓ-indivisible, we have d ≤ e hence ζℓd ∈ K.

Let m′ := ℓvℓ(m) · ∏ q where the product is taken over the odd primes q 6= ℓ dividing
m such that q ≡ 1(mod ℓ). Then Km( ℓd

√
a) = Km if and only if Km′( ℓd

√
a) = Km′ because

Km/Km′ has degree coprime to ℓ. Note, the Galois group of Km′/K is the product of the
Galois groups of Kℓvℓ(m)/K and of the extensions Kq/K.

Suppose that Kℓvℓ(m)( ℓd
√
a)/Kℓvℓ(m) has degree ℓd. Then Km′/Kℓvℓ(m) contains a cyclic

subextension of degree ℓd hence the Galois group of some extension Kq/K has exponent
divisible by ℓd. Since a is strongly ℓ-indivisible, theorems 11 and 14 imply that in the re-
maining case we have ℓ = 2, and d = 1 because ζ2d ∈ K. In particular Kℓvℓ(m)( ℓd

√
a)/Kℓvℓ(m)

has degree 1.

We now argument that the degree of Km( ℓn
√
a)/Km could take as value any possibile

divisor of ℓn, even if we require a to be strongly ℓ-indivisible:

10



Theorem 17. Let K be a field. Let ℓ be a prime different from the characteristic of K,
and suppose that K×/K×ℓ is infinite. Let m ≥ 1 be not divisible by the characteristic of
K. If n ≥ 1 is such that ℓn | m, and d ≥ 0 is either zero or we have d ≤ n, ζℓd ∈ K and
ℓd | [Kq : K] for some odd prime q 6= ℓ dividing m, then there is some a ∈ K× which is
strongly ℓ-indivisible and such that

[Km( ℓn
√
a) : Km] = ℓn−d .

Proof. Let b ∈ K× be such that ℓ
√
b is not contained in Km: such an element exists

becauseKm contains only finitely many subextensions of degree ℓ whileK×/K×ℓ is infinite.
Suppose that d ≥ 1. By assumption, there is a cyclic Kummer extension C of K of degree
ℓd contained in Kq. Let a ∈ K× be such that C = K( ℓd

√
a). In particular, the degree

δ := [Km( ℓn
√
a) : Km] divides ℓn−d . If δ 6= ℓn−d it suffices to replace a by abℓ

d

, so that
Km( ℓd

√
a) = C but Km( ℓd+1√

a) 6⊆ Km. Then a is strongly ℓ-indivisible: if a = γℓµ for
some γ ∈ K× and µ ∈ K then ℓ

√
a belongs to Kℓ∞ but since it is not in K (cf. lemma 6)

then it cannot be in Kq, contradiction. Now let d = 0. We have [Km( ℓn
√
b) : Km] = ℓn by

lemma 6. It is left to show that b is strongly ℓ-indivisible. If K = Kℓ∞ or if ζℓ /∈ K this
is equivalent to the condition that b has no ℓ-th roots in K, so it is true by the choice of
b. Otherwise, if t ≥ 1 is the greatest integer such that K = Kℓt then it suffices to choose b
such that ℓ

√
b is not contained in Kmℓt+1 .

Appendix: The density of sets of primes related to the reduc-

tions of an algebraic number

Let K be a number field, and let a ∈ K×. Let ℓ be a prime number. In this section
we are concerned with computing the density of the set of primes p of K such that the
multiplicative order of the reduction of a modulo p has a prescribed ℓ-adic valuation,
namely

dens(a, n) = dens{p : ordℓ(a mod p) = n}
for some n ≥ 0. We tacitly assume that (a mod p) is well-defined, so we exclude the finitely
many primes p such that vp(a) < 0. These values are known if K = Q (cf. [5]) or under
the assumption that Kℓn( ℓn

√
a)/K has degree φ(ℓn)ℓn for all n ≥ 1 (cf. [2]): notice that

in this last case a is strongly ℓ-indivisible. Recall that the density exists, and that it is a
natural density (cf. [2]). Suppose that a is not a root of unity, because otherwise the the
density is trivially either 0 or 1.

The results in this paper suffice to calculate the density, because of the following well-
known formula:

Lemma 18.

dens(a, 0) =
∑

i≥0

[Kℓi(
ℓi
√
a) : K]−1 − [Kℓi+1( ℓi

√
a) : K]−1

11



Proof. Recall that only finitely many primes of K ramify in Kℓi(
ℓi
√
a) for some i ≥ 0 (it

is a consequence of the fact that, for a number field, for almost all primes the reduction
is injective on the roots of unity of order a power of ℓ contained in the field). Let p be a
prime of K which does not ramify in any of these extensions, and suppose that (a mod p)
has order coprime to ℓ, or equivalently that it has some ℓn-th root in the residue field kp
for every n ≥ 1. Let i ≥ 0 be the greatest integer such that the residue field kp contains
the ℓi-th roots of unity. Then p belongs to the following set of primes of K: the primes
which split completely in Kℓi(

ℓi
√
a) but not in Kℓi+1( ℓi

√
a). Note, for different i we obtain

disjoint sets. Conversely, for such a prime p and if i is defined as above, (a mod p) has
order coprime to ℓ because there are no elements in k∗p of order ℓi+1. We conclude by
applying the Chebotarev Density Theorem: the sum converges because the density of the
i-th set goes to zero for i going to infinity.

The following remark can be used to reduce the calculation of dens(a, n) to the case
where n = 0.

Remark 19. For every n ≥ 1 we have

dens(a, n) = dens(aℓ
n

, 0)− dens(aℓ
n−1

, 0) .

For ℓ = 2, we have dens(a, 0) = dens(−a, 1) and dens(a, n) = dens(−a, n) if n ≥ 2.

Proof. The first assertion is immediate from the definition. For the others, notice that
(−1 mod p) is the only element of order 2 in (Z/Zp)∗, for every odd prime number p.

The density if ℓ is odd or i ∈ K

Let ℓ be a prime number. Let K be a number field. Let a ∈ K× be not a root of unity.

1. Suppose that Kℓ 6= K (hence ℓ is odd). Write a = bℓ
d

for some d ≥ 0 and for some
b ∈ K which is strongly ℓ-indivisible. Then we have:

dens(a, 0) = 1− [Kℓ : K]−1 · ℓ

ℓ+ 1
· ℓ−d

2. Suppose that Kℓ = K and, if ℓ = 2, suppose that i ∈ K. Let t > 0 be the greatest
positive integer such that Kℓt = K.

(i) Let a = bℓ
d

for some d ≥ 0 and for some b ∈ K which is strongly ℓ-indivisible.
Then we have:

dens(a, 0) =

{ ℓ
ℓ+1 · ℓ−t · ℓd if d < t

1− ℓ+2
ℓ(ℓ+1) · ℓt · ℓ−d if d ≥ t

12



(ii) Let a = bℓ
d

µ for some d ≥ 0, for some b ∈ K which is strongly ℓ-indivisible, for
some root of unity µ ∈ K of order ℓr such that r > max(0, t−d). Then we have:

dens(a, 0) = ℓ−r − 1

ℓ+ 1
· ℓ−2r−d+t

The density if ℓ = 2 and i /∈ K

Let K be a number field such that i /∈ K. Let a ∈ K× be not a root of unity.

1. Let a = b2
d

for some d ≥ 0 and for some b ∈ K which is strongly 2-indivisible. Then
we have:

dens(a, 0) =



















1− 2
3 · 2−d if K(

√
b) 6⊆ K2∞

1− 2
3 · 2−d − 2

3 · 2−2s+d if K(
√
b) ⊆ K2∞ and d < s

1− 1
3 · 2−d if K(

√
b) ⊆ K2∞ and d ≥ s

2. Let a = −b2
d

for some d ≥ 0 and for some b ∈ K which is strongly 2-indivisible.
Then we have:

dens(a, 0) =































1
3 · 2−d if K(

√
b) 6⊆ K2∞

1
3 · 2−d − 2

3 · 2−2s+d if K(
√
b) ⊆ K2∞ and d < s− 1

4
3 · 2−s if K(

√
b) ⊆ K2∞ and d = s− 1

1
6 · 2−d if K(

√
b) ⊆ K2∞ and d ≥ s

Recall from lemma 13 that K(
√
b) ⊆ K2∞ if and only if

K ∩Q2∞ = Q(ζ2s + ζ−1
2s ) for some s ≥ 2

b = ±(ζ2s + ζ−1
2s + 2) · η2 for some η ∈ K
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[11] J. Wójcik, Criterion for a field to be abelian, Colloq. Math. 68 (1995), no. 2, 187–191.

14


	1 Introduction
	2 Cyclotomic extensions
	3 Cyclic Kummer extensions
	4 The degree of Kummer extensions: the case  odd or 4 K
	5 The degree of Kummer extensions: the case =2 and 4-.25ex-.25ex-.25ex-.25exK
	6 The general case

