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Abstract

Secrecy graphs model the connectivity of wireless networks under se-
crecy constraints. Directed edges in the graph are present whenever a
node can talk to another node securely in the presence of eavesdroppers.
In the case of infinite networks, a critical parameter is the maximum den-
sity of eavesdroppers that can be accommodated while still guaranteeing
an infinite component in the network, i.e., the percolation threshold. We
focus on the case where the location of the nodes and the eavesdroppers
are given by Poisson point processes. We present bounds for different
types of percolation, including in-, out- and undirected percolation.

1 Introduction

To assess the impact of secrecy constraints in wireless networks, we have re-
cently introduced a random geometric graph, the so-called secrecy graph, that
represents the network or communication graph including only links over which
secure communication is possible [8].

We assume that a transmitter can choose the rate such that it can commu-
nicate to any receiver that is closer than any of the eavesdroppers. This way,
the secrecy constraint translates into a simple geometric constraint for secrecy.
Natural topics for investigation include the degree distributions and the thresh-
old at which infinite components cease to exist. Since the resulting graph is
directed, there are different types of components, including in-, out-, and undi-
rected components. In each case, the percolation threshold (in terms of the
density of eavesdroppers) is different.

In this paper, we give an overview of the progress made in the last three
years on the percolation thresholds for secrecy graphs, introduce new methods,
and present improved bounds for the case where nodes and eavesdroppers form
independent Poisson point processes.
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2 Model

Our model is as follows. Let P and P ′ be independent Poisson processes, of
intensities 1 and λ respectively, in R

d. The case d = 2 provides a good example.
We will call the points of P black points and the points of P ′ red points. Now
define a directed graph, the directed secrecy graph ~Gsec, on vertex set P , by
sending a directed edge from x ∈ P to y ∈ P if there is no point of P ′ in the
open ball D(x, ‖x − y‖) centered at x with radius ‖x− y‖. Note that it makes
no difference whether we consider open or closed balls since, with probability 1,
there are no two points of P ∪ P ′ at the same distance from any point of P .

The motivation for this construction is that x ∈ P can send a message to
y ∈ P without being overheard by an eavesdropper from P ′. For more details,
see [8], where the model was originally defined.

Our main aim in this paper is to study the critical value(s) of λ for various

types of percolation in ~Gsec in the plane (precise definitions will be given later).
We will also make some comments about the situation in higher dimensions.

Let us remark that the indegree and outdegree distributions in ~Gsec have
been obtained in [16] and [8] respectively. We summarize the results below.

Theorem 1. The outdegree distribution in ~Gsec is geometric with mean 1/λ,
and the indegree I has moment generating function

E(etI) = E(eVd(e
t−1)/λ),

where Vd is the random variable representing the volume of a randomly chosen
cell in a Voronoi tessellation associated with a unit intensity Poisson process in
R

d. Equivalently, if fd(t) is the probability density function of Vd, then

P(I = k) =
1

k!

∫ ∞

0

fd(t)e
−t/λ(t/λ)k dt.

Proof. Fix a vertex x ∈ P . Label the points of P ∪ P ′ \ {x} = {y1, y2, . . .} in
order of increasing distance from x. Now x has outdegree k if and only if the
k nearest points y1, . . . , yk to x belong to P and yk+1 ∈ P ′. The probability of

this is
(

1
1+λ

)k
λ

1+λ . Consequently, the outdegree distribution is geometric with

mean 1/λ.
For the indegree distribution, we again fix x ∈ P , and temporarily rescale

the model so that P and P ′ have intensities 1/λ and 1 respectively. This does
not affect either degree distribution. The vertex x has indegree k if and only
if there are exactly k points of P in the Voronoi cell C defined by P ′ ∪ {x}
containing x. If C has volume V , then

P(C ∩ P = k) = 1
k!e

−V/λ(V/λ)k.

The result follows.

Unfortunately, fd(t) is only known when d = 1, when f1(t) = 4te−2t. Conse-

quently, the indegree distribution in ~Gsec remains unknown for d ≥ 2. However,
its mean is of course 1/λ in all dimensions.
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3 Percolation

For a model of an infinite undirected random graph, percolation is said to occur if
an infinite component occurs with positive probability. (In fact, this probability

is almost always 1 by Kolmogorov’s 0-1 law – see Theorem 2.) Since ~Gsec

is a directed graph, there are several things we could mean by “component”,
which lead to several definitions of percolation. Following [2], we distinguish five

distinct events. First, write Gsec for the undirected graph obtained from ~Gsec

by removing the orientations of the edges and replacing any resulting double
edges by single edges, and G′

sec for the undirected graph obtained from ~Gsec by

including only those edges xy for which both ~xy ∈ ~Gsec and ~yx ∈ ~Gsec. We
write U for the event that Gsec has an infinite component, O for the event
that ~Gsec has an infinite out-component, I for the the event that ~Gsec has
an infinite in-component, S for the event that ~Gsec has an infinite strongly
connected subgraph, and B for the event that G′

sec has an infinite component.
Here, an out (resp. in)-component is a subgraph with a spanning subtree whose
edges are all directed away from (resp. towards) a root vertex, and a strongly
connected subgraph is one where there are directed paths from x to y for all x
and y in the subgraph. As noted in [2], we have the following implications:

B ⇒ S ⇒ (I and O), (I or O) ⇒ U. (1)

Let X denote any of U,O, I,S or B, and let pX(λ, d) = P(X).

Theorem 2. For all values of λ and d, and all choices of X, pX(λ, d) is either
0 or 1.

Proof. Let E be the event that ~Gsec has an infinite X-component. By Kol-
mogorov’s 0-1 law, it is enough to show that E is a tail event, meaning that,
for all K > 0, E depends only on vertices at distance greater than K from the
origin O. Fix K > 0. Then, for any ε > 0, there is a Kε > K such that the
probability that there exists a vertex at distance at least Kε from O that is not
prohibited by P ′ from sending a directed edge to some vertex within K of the
origin is less than ε. This is because one can calculate the expected number
of black vertices v at distance at least L from O whose nearest red point is at
distance more than ‖v‖ −K as

∫ ∞

L

e−λαd(r−K)dSdr
d−1 dr

where Sd = 2πd/2/Γ(d/2) and αd = πd/2/Γ(1 + d/2) are the surface area and
volume respectively of a unit d dimensional ball. The integrand above is a
polynomial times a (super-) exponentially decreasing function, so the integral
converges. Hence the integral can be made less than ε by suitable choice of L.
Note that this probability is taken over the restriction of P∪P ′ to R

d\D(O,K).
Now, for each choice of X, X-percolation is unaffected by the removal of a

finite number of vertices. Also, with probability 1, there are only finitely many
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vertices within distance Kε of the origin. Consequently, up to probability zero
events, E is also the event that there is an infinite component in ~G1, the directed
graph obtained from ~Gsec by removing all vertices of P inside B(O,Kε) and all
edges incident with them. But, with probability 1−ε, taken over the restriction
of P ∪ P ′ to R

d \ B(O,K), this does not depend on points within distance K
of the origin. Since this holds for all ε > 0, E is, up to a set of probability
zero, equal to an event that does not depend on points within distance K of the
origin. Consequently, E is a tail event.

An alternative proof of Theorem 2 proceeds by noting that the Poisson pro-
cess is ergodic and that percolation is translation invariant, so automatically has
probability either 0 or 1. We have given a complete proof from first principles,
since the proof of Theorem 23 makes use of a similar technique (among other
ingredients).

Since, for a fixed instance of P , adding points to P ′ can only remove edges
from ~Gsec, the probability pX(λ, d) is non-increasing in λ. Define the critical
intensity λX,d by the formula

λX,d = inf{λ : pX(λ, d) = 0} = sup{λ : pX(λ, d) = 1}

and write (just for this paper) λX = λX,2. We reiterate that increasing λ
decreases the probability of percolation, in our formulation of the model. From
(1), we have

λB ≤ λS ≤ min{λI, λO}, max{λI, λO} ≤ λU. (2)

Our first aim is to provide bounds on λX. While doing this, we survey
various methods that have been used for other continuum percolation models.
All of these are from [7], [11] and [15], on percolation in the Gilbert disc model,
and from [2] and [10], on percolation in the k-nearest neighbour model.

3.1 Branching processes ([7], [10], [11], [15])

For both the Gilbert disc model and the k-nearest neighbour model (the “tradi-
tional models”), the basic method is as follows. We start with a vertex x of P ,
grow the cluster containing x in “generations”, and compare the growing cluster
to a branching process. For the most natural way of doing this (details below),
the branching process has more points than the cluster, so, in all dimensions,
if the branching process dies out, so will the cluster. We can now use classical
results which tell us when certain branching processes die out. Consequently,
in all dimensions, branching processes give lower bounds for thresholds in the
traditional models, i.e., they show that for certain parameters, percolation does
not occur.

In the following, we will describe the method for the Gilbert disc model,
although it is almost the same as for the k-nearest neighbour model. Assume
that the origin O is a point of P . First pick the points of P within distance
r of O – these are the first generation. The second generation are the points
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of P which are each within distance r of some first generation point, but are
not in the first generation themselves (i.e., they are not within distance r of
O). The third generation are the points of P not belonging to the first two
generations, but which are each within distance r of some second generation
point, and so on. The associated branching process is obtained by setting each
offspring size distribution to be Po(πr2), so that we are essentially growing the
same cluster containing O, but ignoring the fact that the various discs we have
scanned for points actually overlap. In [7], Gilbert argues that if πr2 ≤ 1,
the branching process dies out with probability 1, so that the critical area for
percolation is at least 1. When πr2 > 1, it is possible to calculate (numerically)
the probability that the branching process dies out, so this gives an upper
bound on the probability that O belongs to an infinite component. Gilbert also
notes the following improvement. The discs surrounding a point of P and its

descendant in P always intersect in an area of at least α = (23π −
√
3
2 )r2, so we

can compare with a branching process whose offspring size distribution is just
Po((π − α)r2). This leads to the improved lower bound of π

π−α ≈ 1.642, which
was further improved to 2.184 by Hall [11] using multitype branching processes.
In Hall’s method, the type of a child is just the Euclidean distance to its parent:
children of higher types are likely to have more descendants. We include a brief
description of Hall’s modification later.

This method can be used to give an upper bound of λO ≤ 1 for the secrecy
graph model. In fact, for oriented out-percolation, we have the following result.

Proposition 3. The probability θO(λ) that O belongs to an infinite out-component
in the secrecy graph satisfies

θO(λ) ≤ max{0, 1− λ}.

Proof. As in the above proof sketch, we compare the growing cluster, starting
at a black point p ∈ P , with a branching process. The number of children in
the first generation has distribution given by a geometric random variable with
mean 1/λ. After the nth generation has been completed, we order the points
of the nth generation in order of distance from p, and begin growing a ball
around each point in turn (according to the order). For each black point x,
there are two possibilities. First, the ball corresponding to x might encounter
a red point which has already been encountered. If not, the ball will certainly
outgrow the region R already scanned (by points in previous generations, or
the current generation). In this case, the number of black points outside the
region R that we encounter before the first red point (which stops the ball) will
again have a geometric distribution with mean 1/λ. Consequently, the number
of children of a black point is always stochastically dominated by a geometric
random variable with mean 1/λ, and generating function f(x) = λ

1+λ−x . A
branching process whose offspring size distribution is given by this geometric
random variable has extinction probability 1 if λ ≥ 1, and extinction probability
λ if λ ≤ 1. (When λ < 1, the extinction probability is given by the smallest
root of x = f(x).) Consequently, the cluster stops growing with probability at
least λ, and so θO(λ) ≤ 1− λ.
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In higher dimensions, the cluster is approximated better and better by the
appropriate branching process, at least for the Gilbert and k-nearest neighbour
models. This is because the distances from a point p ∈ P to its two nearest
neighbours in P converge in distribution to a (common) deterministic limit, and
because the overlap between the balls centered at a parent and at its child gets
smaller and smaller, as d → ∞. There is a slight complication in that the error
(between the model and a branching process) is only asymptotically negligible
over finitely many generations. Therefore, in both [10] and [15], oriented lattice
percolation is brought in to establish asymptotic thresholds for percolation. The
results are that in sufficiently high dimension, k = 2 gives percolation for the
k-nearest neighbour model, and that the critical volume in the Gilbert model
tends to 1 as d → ∞.

For the secrecy graph, we have

Theorem 4. If λ ≥ 1, then, for all d, θO,d(λ) = 0. If λ < 1, then θO,d(λ) →
1− λ as d → ∞.

The first part of the theorem follows from the above proposition, so we assume
from now on that λ < 1.

We will prove this theorem in a series of steps, and we will utilize five different
branching random walks. The first is the process (Xd

n
). We define Xd

0
to be

the single point at the origin in R
d, which we will suppose belongs to P . Xd

1

is the set of points of P that are closer to Xd
0
than any point of P ′, ordered

according to modulus. Thus the points in Xd
1
are the out-neighbours of Xd

0

in ~Gsec. We generate the set Xd
2
by examining the points of Xd

1
in order, and

growing a ball around each one, capturing black points until the first red point
is encountered. We call this scanning around the points of Xd

1
. After we have

scanned around each point of Xd
1
, the newly-captured black points (i.e., those

not in Xd
0 ∪Xd

1) form Xd
2 . Thus X

d
2 is the set of out-neighbours of the points of

Xd
1
in ~Gsec that are not out-neighbours of Xd

0
. This time, we order the points

of Xd
2 according to the order in which they were captured, i.e., they inherit the

order of their parents in Xd
1
, and, within sibling groups, they are ordered by

distance to the parent. The set Xd
3
, of not-already encountered out-neighbours

of Xd
2 , is generated in the same way, and the same ordering is imposed upon its

members. Continuing in this manner we obtain (Xd
n
). Of course, it is entirely

possible that this process terminates after a finite number of steps.
As we have already remarked, as d → ∞, this process more and more re-

sembles the following one. We set Yd
0
to be the single point at the origin in

R
d, as before. The set Yd

1
is the set of out-neighbours of Yd

0
in ~Gsec, again

as before. However, to generate Yd
2
, we use a different procedure. Examining

the points of Yd
1 in order of modulus, for each point, we generate entirely fresh

copies of P and P ′, and for each point y ∈ Yd
1
, the children of y in Yd

2
are the

out-neighbours of y in this new copy of ~Gsec, once again ordered by distance
to the parent. We continue in this manner to obtain (Yd

n
): each time we scan

around a new point, we use a fresh copy of P and P ′, and the ordering on the
points within each generation is as before. This process might also terminate

6



after a finite number of steps.
This process can be coupled with the previous one: to get an instance of

a subtree of ~Gsec from an instance of (Yd
n
), we simply throw away some of

the black points, along with their descendants. There are two types of black
point which need to be discarded. Firstly, any black point among the process
(Yd

n
) which was born inside a previously scanned region must be excluded from

(Xd
n). Secondly, while scanning about a point y ∈ (Yd

n), we stop when we hit
the first red point of the new instance of P ′ we are using. However, we might
encounter an old red point, from the original instance of P ′, first. For the sake
of generating (Xd

n), this is where the scanning around y must stop. Hence we
must discard all black points captured after this old red point was encountered.
Owing to the existence of fresh red points in already-scanned regions, we might
actually never obtain some points of the original process (Xd

n), but the new set
of points will certainly be a subset (if not a subtree) of (Xd

n
).

One thing is clear, however: if, in, say, the first k generations of (Yd
n), no

point (either black or red) is born inside a previously scanned region, and if no
previously encountered red points are encountered during the scanning, then
the processes (Xd

n) and (Yd
n) will coincide for the first k generations. We will in

fact show that, for fixed k, the probability of this tends to 1 as d → ∞. First,
however, let us remark that the distribution of generation sizes in the process
(Yd

n) is known completely. For this, the spatial locations of the points of (Yd
n)

are irrelevant: all that matters is that the individuals in (Yd
n
) form a branching

process, whose offspring distribution is geometric with mean µ = 1/λ > 1.
Consequently (see, for instance [19]),

P(|Yd

n | = j) =







µn−1
µn+1−1 if j = 0

µn(µ−1)2

(µn+1−1)2

(

µn+1−µ
µn+1−1

)j−1

∼ µn(µ−1)2

(µn+1−1)2 exp
(

− j(1−λ)
µn

)

if j ≥ 1.

(3)
(Here, the asymptotics are as n → ∞, with µ and j fixed.) The expected size
of the nth generation is µn, and its mass function is geometric, except for the
first term. Moreover, the extinction probability is λ = 1/µ, corresponding to
the percolation probability 1 − λ. The idea of the rest of the argument is that
we can essentially let k → ∞ in the preceding discussion, even though, for any
fixed d, the processes (Xd

n) and (Yd
n) will eventually differ with probability 1.

To compare the processes (Xd
n
) and (Yd

n
) over the first k generations, we

will use the following well-known lemmas. To simplify their statements, we will,
following [10] and [15], scale the processes P and P ′ so that they have intensities
1/αd and λ/αd respectively, where αd = πd/2/Γ(1+d/2) is the volume of a unit

d dimensional ball. This doesn’t affect the graph ~Gsec.

Lemma 5. Let di, for 1 ≤ i ≤ t, be the distance of the ith nearest point of P
to the origin in R

d. Then, as d → ∞, di → 1 in probability.

Lemma 6. Let B1 and B2 be balls in R
d of radii r1, r2 ∈ (0.9, 1.1). Suppose

that the centers of the Bi are at least 0.9 units apart. Then, as d → ∞, the
proportion of the volume of B1 which lies inside B2 tends to zero.
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Let us see how these lemmas are applied. Fix y ∈ Yd
n
. Firstly, by Lemma 5,

all the children y1, . . . , yt of y lie at distance approximately 1 from y, as d → ∞.
Secondly, by Lemma 6, the yi are at distance more than 1 from each other,
and from the nearest red point z (which is also at distance about 1 from y).
Write B = B(y, ||z−y||), so that B is the ball generated about y while scanning
for children. Now, while scanning around the children yi of y, we generate
certain balls Bi of radius approximately 1, centered at the yi, which are stopped
by red points zi. The balls Bi will intersect each other, and naturally they
will all intersect B. However, again by Lemma 6, the volumes of all these
intersections will be negligible compared to the volumes of the balls themselves.
Consequently, the yi are very likely to have disjoint sets of children, all born
outside B, and each of the balls Bi will be stopped by a different point zi 6= z,
which will also lie outside B. This argument can clearly be carried out for a
fixed number k of generations. (Incidentally, the edge between a child and its
parent will be almost orthogonal to each of the edges joining the same child to
its own children, so the points of Yd

k
will all lie at about distance about

√
k

from Yd
0
, when d is large.)

The upshot of this is the following fact, which will be central to all that
follows.

Lemma 7. Fix ǫ > 0 and k ≥ 1. If d ≥ d0(ǫ, k), then the probability that (Xd
n)

and (Yd
n
) differ in the first k generations is less than ǫ.

The next step is to project the points of (Yd
n) onto R

2 using the map L :
R

d → R
2 defined by

L(x1, . . . , xd) =
√
d(x1, x2).

The reason for the factor
√
d is the following lemma, taken from [10].

Lemma 8. Suppose Y is uniformly distributed on the surface of the ball of
radius 1 in R

d. Then, as d → ∞, the random variable Z = L(Y) converges
in distribution to the bivariate normal distribution N(0, I) with mean zero and
covariance matrix equal to the 2 × 2 identity matrix I. In other words, the
density function of Z converges pointwise to

f(z1, z2) =
1

2π
exp

(

−z21 + z22
2

)

as d → ∞.

Proof. The proof of an almost identical statement appears in [15], and the re-
sult is well-known, but we sketch the proof nonetheless. If X1, X2, . . . , Xd are
independent N(0, 1) random variables, then the d-dimensional random vector
X = (X1, X2, . . . , Xd) ∈ R

d has density function

fd(x1, x2, . . . , xd) =
1

(2π)d/2
exp

(

−x2
1 + x2

2 + · · ·+ x2
d

2

)

,

which is radially symmetric. Moreover, using Chebyshev’s inequality, we see
that 1

d |X|2 = 1
d (X

2
1 + · · · + X2

d) converges in probability to 1 as d → ∞, and
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so 1√
d
X converges in distribution to Y. Consequently, the distribution of the

first two coordinates of
√
dY converges (in distribution) to that of (X1, X2), as

stated in the lemma.

Write (Zn) for the result of projecting the process (Yd
n) from R

d to R
2 using

the map L, and write (Z∞
n
) for the process in which the offspring size distribution

agrees with that of (Zn) and (Yd
n) (i.e., is geometric with mean 1/λ), but

where the offsets of each child are independent N(0, I) random variables. The
preceding lemma shows that the processes (Zn) and (Z∞

n
) resemble each other

more and more as d → ∞. Consequently, we will study the process (Z∞
n ) first,

and draw conclusions about the other processes later.
Rather than consider the entire process (Z∞

n ), we will use a “truncated”
version, and compare with oriented site percolation on the lattice Λ = {(i, j) ∈
Z
2 : i ≥ 0, |j| ≤ i, i + j ∈ 2Z}, with oriented edges from (i, j) to (i + 1, j ± 1).

Each site (i, j) of Λ will correspond to a square

Si,j = [M(i− 1/2),M(i+ 1/2)]× [M(j − 1/2),M(j + 1/2)]

in R
2, where M is a large integer which we will choose later. Since the oriented

percolation probability is left-continuous at 1 (see [6], for instance), we may
choose δ > 0 such that, for oriented site percolation on Λ with parameter
p ≥ 1 − 3δ, the oriented percolation probability (of the event that there is an
infinite directed path starting from the origin) is greater than 1− ǫ/2.

A site (i, j) in the oriented percolation process will be deemed Z∞−open if
we can proceed to both (i+1, j−1) and (i+1, j+1) from it. However, “proceed”
will mean different things in the cases ij = 0 and ij 6= 0. Assume, as before,
that the point Z∞

0
lies at the origin. The site (0, 0) will be Z∞−open if and only

if Z∞
0 has at least m descendants in generation k1 within the square S1,−1, and

at least m descendants, also in generation k1, within the square S1,1. We will
only test a subsequent site (i, j) for Z∞−openness if at least one of (i− 1, j+1)
or (i − 1, j − 1) is Z∞−open. If at least one of these two sites is Z∞−open,
then we know that there are m points z1, . . . , zm of (Z∞

n
) in Si,j . (If there are

more than m such points, for definiteness let z1, . . . , zm be the closest ones to
the center of the square.) Site (i, j) will be Z∞−open if and only if z1, . . . , zm
have at least m descendants in generation k2 (counted from the zi, not from
Z∞
0 ) in Si+1,j−1, and at least m descendants in generation k2 in Si+1,j+1. We

require lower bounds on the probabilities of sites being Z∞−open, and these
are provided by the following lemmas.

Lemma 9. Fix λ < 1, δ > 0 and m ≥ 1. There exist positive integers k1(λ, δ,m)
and M(λ, δ,m) such that, with the above definitions, the probability that (0, 0)
is Z∞−open is at least 1− λ− δ.

Proof. Since the proof of an almost identical statement appears in [10] (only the
offspring size distribution is different), we will just sketch the argument. For
λ < 1, the branching process is supercritical, and by (3) we can find a generation
k3(λ, δ,m) so that the probability that there are, say, N = N(λ, δ,m) members
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in generation k3 is at least 1−λ−δ/4. These N individuals z1, . . . , zN will all be
at distance about

√
k3 from the origin, and we can ensure that, with probability

1−λ− δ/2, they all lie within distance M = ⌈2
√
k3⌉ of the origin. If we run the

process for another M2 generations, then about λN of the zi will not have any
descendants in generation k3+M2. However, if we pick a random descendant of
each remaining zj in generation k3 +M2, there is a constant probability that it
will land in S1,1 or S1,−1, since this descendant will lie about distance M from
zj, which in turn lies within distance M from the origin. Consequently, from
the independence, if N is large enough, we will have, with probability at least
1− λ− δ, at least m descendants of Z∞

0 in generation k1 = k3 +M2 in each of
S1,1 and S1,−1.

A similar argument establishes the following lemma.

Lemma 10. Fix λ < 1 and δ > 0. Then there exist positive integers

m(λ, δ), k1(λ, δ), k2(λ, δ) and M(λ, δ)

such that, with the above definitions, the probability that (0, 0) is Z∞−open is
at least 1− λ− δ, and the probability that a site (i, j) with ij 6= 0 is Z∞−open
is at least 1− δ.

Define Z−openness in the obvious manner, using the process (Zn) rather
than (Z∞

n ). The following lemma follows from Lemma 10 and Lemma 8.

Lemma 11. Fix λ < 1 and δ > 0. Then there exist positive integers

m(λ, δ), k1(λ, δ), k2(λ, δ),M(λ, δ) and d(λ, δ)

such that, with the above definitions, the probability that (0, 0) is Z−open is at
least 1− λ− δ, and the probability that a site (i, j) with ij 6= 0 is Z−open is at
least 1− δ.

If we could draw the same conclusion for the projection of the process (Xd
n
),

we would be done. However, the process (Xd
n) is harder to analyze, owing

to possible interference between steps. To be specific, denote by “step (i, j)”
the procedure whereby we determine, for the projection of the process (Xd

n
),

whether or not the site (i, j) is W−open. (Here, (Wn) will be the projection
of a suitably modified version of (Xd

n
).) It is possible that, during step (i, j),

a black point (or a red point) is born in a region that was scanned as part of
a previous step (i′, j′). It is also possible that a red point, discovered in some
previous step (i′, j′), is encountered in step (i, j). We need to show that both
of these possibilities can be neglected.

For the remainder of the proof, δ and λ will be fixed. Write k = max{k1, k2}.
The first step is to show that we may assume that, in the first k generations of
(Xd

n), the total number of descendants is bounded by an absolute constant N ,
the total volume scanned is bounded by an absolute constant V , and the distance
of the L−projection of any point from the origin (in R

2) is at most an absolute
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constant R. (Here, these “absolute constants” might depend on the (fixed) δ
and λ, but they don’t depend on d.) Indeed, the probabilities of the failures
of these conditions can each be made arbitrarily small by taking N, V and R
suitably large. If any of them fail, we modify the process (Xd

n) to terminate at
the first failure, and deem step (i, j) to be a failure. We denote by (Wn) the
L−projection of this modified process to R

2. The preceding discussion, together
with Lemma 7, proves the following.

Lemma 12. Fix δ > 0 and k ≥ 1. If d ≥ d1(δ, k), then the probability that
(Wn) and (Zn) differ in the first k generations is less than δ.

To summarize, we have dealt with two ways in which step (i, j) could fail:
the processes (Wn) and (Zn) might differ, or (Zn) might fail to proceed to both
Si+1,j−1 and Si+1,j+1 for some reason involving only the k1 or k2 generations
corresponding to step (i, j). To these we must add two more: the step might
fail because a black or red point might be born in a previously scanned region
(from a step (i′, j′)), or a previously discovered red point (from a step (i′, j′))
might be encountered. If we can show that the probability of each of these two
events can be bounded by δ, we will be done. The following lemma does just
this. We modified the process (Xd

n
) to facilitate the proof of this lemma.

Lemma 13. Let the process (Wn) be defined as above. Then, during the step
(i, j), the probability that either a black or a red point is born in a region scanned
in a previous step, or that a red point from a previous step is encountered, is at
most δ.

Proof. Consider a previous step (i′, j′), and suppose that (Mi′,Mj′) is at dis-
tance x ≫ 2R from (Mi,Mj). The total volume scanned in step (i′, j′) is at
most V , and, if x ≥ D is sufficiently large, at most δ′/x3 of this volume falls,
when projected, within distance M +R from the center (Mi,Mj) of Si,j . Sum-
ming over all square centers (Mi′,Mj′) at distance more thanD from (Mi,Mj),
the total previously scanned volume from these distant steps which falls, after
projection, within distance M +R from (Mi,Mj) is at most δ′. Since there are
at most N individuals in step (i, j), we can choose δ′ (and hence D), so that
the probability that a black or red point from step (i, j) is born in this region of
volume δ′ is at most δ/3. Similarly, the probability that, while scanning in step
(i, j), we hit a previously encountered red point from a distant step is at most
δ/3. For the steps at distance at most D, we can bound the probability of failure
of either type by δ/3, because only boundedly many steps are involved.

Together, the last three lemmas prove the following one.

Lemma 14. Fix λ < 1 and δ > 0. Then there exist constants

m(λ, δ), k1(λ, δ), k2(λ, δ),M(λ, δ), N(λ, δ), V (λ, δ), R(λ, δ) and d(λ, δ)

such that, with the above definitions, the probability that (0, 0) is W−open is at
least 1 − λ − 2δ, and the probability that a site (i, j) with ij 6= 0 is W−open is
at least 1− 3δ.
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It only remains to put the pieces together. Given ǫ > 0, we choose δ < ǫ/4
so that, for oriented site percolation on Λ with parameter p ≥ 1 − 3δ, the
oriented percolation probability (of the event that there is an infinite directed
path starting from the origin) is greater than 1−ǫ/2. From the previous lemma,
we find an infinite directedW−path from the origin, corresponding to an infinite
out-component in ~Gsec, with probability at least

(1 − λ− 2δ)(1− ǫ/2) > (1 − λ− ǫ/2)(1− ǫ/2) > 1− λ− ǫ,

as required. This completes the proof of Theorem 4.
The method seems to be tailored for oriented out-percolation, so we expect

it won’t give bounds for other types of percolation, except via equation (2).
In two dimensions, it should be possible to improve the bound in Proposition
3 using Hall’s modification, which, for the disc model, runs as follows. Each
offspring y is indexed by its distance t to its parent x, and its offspring size
distribution is bounded in terms of the area of the lune D(y, r) \ D(x, r). In
addition, the distribution of the types of these offspring is also bounded in terms
of the same lune. Consequently, one can compare the growing cluster with an
appropriate multitype branching process (the types are indexed by t). For
the secrecy graph, there are three parameters one might wish to keep track
of (instead of just one). These are: the radius r of the disc centered at x,
the distance t of x to its offspring y, and the location of the red point z on
the boundary ∂D(x, r) of D(x, r). Nonetheless, one could in principle compute
the appropriate conditional probability distribution and this should result in a
slightly improved upper bound.

To summarize, although branching processes are usually employed to show
that percolation does not occur in these models, they can also be used to show
that percolation does occur for certain fixed values of the parameters, as d → ∞.
For the secrecy graph model, it would be interesting to investigate the case
λ = 1, as d → ∞.

3.2 Lattice percolation ([7], [10], [11], [17], [18])

Two variants of the basic method, applied to the Gilbert model, are described
in Gilbert’s original paper [7]. For both variants, fix a connection radius r.
First, if we consider the square lattice with bonds of length r/2, and make the
state of a bond e open iff there is at least one point of P in the square whose
diagonal is e, then bond percolation in the lattice implies percolation in the
Gilbert model. Second, if we consider the hexagonal lattice where the hexagons
have side length r/

√
13, and make the state of a hexagon open iff it contains a

point of P , then face percolation in the hexagonal lattice implies percolation in
the Gilbert model. Using the fact that the critical probabilities for both bond
percolation in the square lattice and face percolation in the hexagonal lattice
are equal to 1/2, one thus obtains upper bounds on the critical area πr2c of
about 17.4 and 10.9, respectively. The latter value was improved to 10.588 by
Hall [11] using “rounded hexagons”.
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Häggström and Meester [10] used this method to show that, for fixed d,
percolation occurs in the k-nearest neighbour model for sufficiently large k.
Pinto and Win [17] (see [18] for more details) applied it to show that percolation
occurs in all versions of the secrecy graph model when λ is sufficiently small.
For the latter application, one needs to use dependent percolation, which means
that the bounds are rather weak. In the same paper, Pinto and Win prove
an upper bound on λU, also using lattice percolation. Their method is to tile
the plane with regular hexagons, each of side length δ. Divide each hexagon
into 6 equilateral triangles in the obvious way. Set the state of a hexagon to
be closed if it contains no black points and at least one red point in each of
its 6 triangles, and open otherwise. If the probability g(λ, δ) of this is at least
1/2, the critical probability of face percolation on the hexagonal lattice, then
the origin will almost surely be surrounded by arbitrarily large closed circuits.
It is easy to check that an edge of Gsec cannot cross a closed circuit, and so
percolation will not occur in Gsec if g(λ, δ) ≥ 1/2. Now

g(λ, δ) =
(

1− e−λ
√
3δ2/4

)6

e−3
√
3δ2/2,

and, for fixed λ, we maximize g(λ, δ) by setting

e−λ
√
3δ2/4 =

1

1 + λ
,

so the smallest value of λ for which

(

λ

1 + λ

)6 (
1

1 + λ

)6/λ

≥ 1

2

will be an upper bound for λU. The last equation can be solved numerically to
yield the bound λU ≤ 40.9. The method can easily be modified to give bounds
for the other λX, but we expect that the results will be rather weak.

In summary, lattice percolation has generally been used to show that perco-
lation does occur in these models, although Pinto and Win also used it to show
that percolation does not occur in the secrecy graph if λ is sufficiently large.

3.3 The rolling ball method ([2])

This is a method designed to show that percolation does occur for certain pa-
rameter ranges in various models. It was applied in [2] to prove upper bounds
for critical values of k in the k-nearest neighbour model. Unfortunately, when
applied to the Gilbert disc model, it only yields an upper bound (on πr2c ) of
about 12, worse than the previously best known bound.

The method involves comparison with 1-independent percolation and carries
through almost entirely for the secrecy graph. We will only need to modify some
of the equations from [2]: however, for completeness, we include a full account
of the method here. First, we state precisely what we mean by a 1-independent
percolation model.
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Figure 1: The rolling ball method

Definition 15. A bond percolation model on Z
2 is said to be 1-independent if,

whenever E1 and E2 are sets of edges at graph distance at least 1 from each
other (i.e., if no edge of E1 is incident to any edge of E2), the state of the edges
in E1 is independent of the state of the edges in E2.

We will use the following theorem about such models, proved in [3].

Theorem 16. If every edge in a 1-independent bond percolation model on Z
2

is open with probability at least 0.8639, then, almost surely, there is an infinite
open component. Moreover, if B is a bounded region of the plane, there is,
almost surely, a cycle of open edges surrounding B.

We will use the first part of the theorem for our lower bounds, and the second
part for our upper bounds.

For simplicity, let us first consider the case of B-percolation. Later, we will
indicate the modifications necessary for the other types.

Consider the rectangular region consisting of two adjacent squares S, T
shown in Figure 1. Both S and T have side length 2r + 2s, where r and s
are to be chosen later. Also, T may be to the right, left, above or below S, in
which case Figure 1 should be rotated accordingly. We define the basic good
event EB,S,T to be the event that every black point u in the central disc K of S
is joined to at least one black point in the central disc M of T by a path in G′

sec,
regardless of the state of the Poisson processes outside S∪T , and moreover that
K contains at least one black point.

Now consider the following percolation model on Z
2. Each vertex (i, j) ∈ Z

2

corresponds to a square [Ri,R(i+1)]×[Rj,R(j+1)] in R
2, whereR = 2r+2s, and

an edge is open between adjacent vertices (corresponding to squares S and T )
if both the corresponding basic good events EB,S,T and EB,T,S hold. Note that
this is a 1-independent model on Z

2, and that percolation in this model implies
percolation in the original one. Since, by Theorem 16, the critical probability
for any 1-independent model is at most 0.8639, if we can show that, for some
r, s, λ,

P(EB,S,T ) ≥ 0.93195
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it will follow that
P(EB,S,T ∩ EB,T,S) ≥ 0.8639

by symmetry, and hence we will have shown that λB ≥ λ.
To bound the probability that a basic good event fails, we proceed as follows.

Let K,L and M be as in Figure 1. (L is the region between the two discs K and
M .) Define E′

B,S,T to be the event that for every black point v ∈ K ∪ L, there
is a black point u such that i) uv ∈ E(G′

sec) ii) ‖u − v‖ ≤ s and iii) u ∈ Dv,
where Dv is the disc of radius r inside K∪L∪M with v on its K-side boundary
(the middle disc in Figure 1). If we let FS be the event that there is at least
one black point in K, then we have (see [2] for background)

E′
B,S,T ∩ FS ⊂ EB,S,T

and so
EC

B,S,T ⊂ (E′
B,S,T )

C ∪ FC
S

so that, since P((E′
B,S,T )

C) is bounded by the expected number of points v such
that i), ii) or iii) fail,

P(EC
B,S,T ) ≤ e−πr2 + 2r(2r + 2s)pB,r,s

where pB,r,s is the probability that i), ii) or iii) fail for some fixed v.
To bound pB,r,s, we consider the probability that the vertex u closest to v

inside Dv fails one of i), ii) or iii) (or does not exist). Suppose some u ∈ Dv does
exist, and write t = ‖u − v‖, A = B(v, t), B = B(v, t) ∩ Dv and C = B(u, t).
Let pB(u) be the probability that u is the closest point to v inside Dv, but that
uv 6∈ G′

sec. Then
pB(u) = (1− e−λ|A∪C|)e−|B| (4)

and also

pB,r,s ≤ e−|Dv∩B(v,s)| +

∫

u∈Dv∩B(v,s)

pB(u) du

so that

P(EC
B,S,T ) ≤ e

−πr2 + 2r(2r + 2s)

(

e
−|Dv∩B(v,s)| +

∫

u∈Dv∩B(v,s)

(1− e
−λ|A∪C|)e−|B|

du

)

(5)

and the right hand side can be minimized over all r and s, with λ fixed. The
result is shown in Table 1, in row B.

The calculation for the cases U and O is exactly analogous, using the graphs
Gsec and ~Gsec respectively. The analogues of (4) are

pU(u) = (1− e−λ|A| − e−λ|C| + e−λ|A∪C|)e−|B| (6)

and
pO(u) = (1 − e−λ|A|)e−|B| (7)

respectively, and the natural analogue of (5) applies. The results of the opti-
mization are shown in Table 1.

As proved in [2], the bound for λO in fact applies to λS and λI as well (see
[2] for a proof). In conclusion, we have proved the following theorem.
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X λ r s p
U 0.002 1.659 3.15 0.0669
O 0.0008 1.658 3.15 0.0677
B 0.0005 1.657 3.15 0.0680

Table 1: Upper bounds on p = minr,s P(E
C
X,S,T ). (All values of p rounded up.)

Theorem 17. λU ≥ 0.002, λO ≥ 0.0008, λI ≥ 0.0008, λS ≥ 0.0008 and λB ≥ 0.0005.

3.4 High confidence results ([2])

This method gives both upper and lower bounds for percolation thresholds in
the k-nearest neighbour model. It involves computing a certain high dimensional
integral using Monte Carlo methods, and so is not fully rigorous. The approach
carries over essentially completely for the secrecy graph.

The lower bound method (corresponding to the upper bound method for the
k-nearest neighbour model) may be summarized as follows. Given a trial value
of λ, which we wish to show is a lower bound on one of the percolation thresholds
λU, λO or λB, we choose trial values of r and s. Then we generate a random
instance of P ∪P ′ inside S ∪T and test for the following conditions: i) for more

than half of the black points v ∈ K, there are paths (in Gsec, ~Gsec or G′
sec for

the cases X = U,O,B) to more than half the black points in M , regardless
of the state of P ∪ P ′ outside S ∪ T ; ii) for more than half of the black points
v ∈ M , there are paths to more than half the black points in K, regardless of the
state of P ∪P ′ outside S ∪ T . As before, it is clear that this is a 1-independent
model on the bonds joining adjacent squares, and that percolation in this model
implies percolation in the original one. Consequently, if these conditions hold
with probability at least 0.8639, then percolation occurs. The condition that
the path should be independent of the process outside S ∪ T is simply obtained
by ignoring any edges of uv ∈ E(~Gsec(S∪T )) where ‖u−v‖ > dist(u, ∂(S∪T )),
since only edges uv with ‖u− v‖ ≤ dist(u, ∂(S ∪ T )) are guaranteed to exist in
~Gsec.

The probability that conditions i) and ii) are satisfied can be expressed as
a complicated multiple integral, whose value we would like to be greater than
0.8639, for some r and s. This is the integral we estimate using Monte Carlo
methods. Using a computer program we generated many instances, and counted
the proportion of times these conditions held. From these we calculated the
confidence level, i.e., the probability p that these results (or better) could be
obtained, if the true value of the integral was less than 0.8639. In all cases p
was less than 10−25: the detailed results appear in Table 2. It turns out that
the method for the X = O case actually applies to the cases X = S and X = I

as well, and the results obtained are as follows.

Theorem 18. With high confidence, λB ≥ 0.09, λO ≥ 0.11, λI ≥ 0.11, λS ≥
0.11 and λU ≥ 0.20.
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Figure 2: Forbidden path for upper bound method

The upper bound method (corresponding to the lower bound method for
the k-nearest neighbour model) is as follows. For suitable r and s, we generate
instances of P and P ′ in S ∪ T , and check whether, regardless of the state
of the processes outside S ∪ T , there is no path (in Gsec, ~Gsec or G′

sec for the
cases X = U,O,B) from outside S ∪ T that crosses the line segment joining
the center of S to the center of T (see Figure 2). We define a 1-independent
percolation model on Z

2 by declaring an edge open if this condition holds for the
corresponding rectangle S∪T . If an edge is open with probability at least 0.8639,
then, from Theorem 16, there are open cycles surrounding any bounded region of
the plane. Consequently, if there was an infinite X-component starting in some
such bounded region, it would have to cross an open cycle, and in particular
cross the central line segment in one of the rectangles S ∪ T corresponding to
an open edge in this cycle. This contradicts the condition for that edge to be
open, and so percolation cannot occur if the edges are open with probability at
least 0.8639.

It remains to specify how we tested whether an edge of a path (in Gsec, ~Gsec

or G′
sec for the cases X = U,O,B) could come from outside S ∪ T to some

v ∈ S ∪ T . In these cases, we must find possible neighbours within S ∪ T of
every possible point outside S ∪T . To do this, we used the following algorithm.
We mark all the black points falling in a certain region R′, determined by the
red points, as possibly having edges from outside S ∪ T . First we define the
subset R ⊂ R′ to be the union of various half-discs Ri, described as follows.
A point x moving along the boundary of S ∪ T has, at almost every position,
exactly one nearest neighbour in P ′ ∩ (S ∪ T ). At some places, there will be a
tie for the nearest neighbour of x, so that ‖x − a‖ = ‖x − b‖ for some points
a, b ∈ P ′. Draw the disc through a and b and centered at x, and let Ri be the
intersection of this disc with S ∪ T . R is just the union of all such regions Ri,
and R′ is the union of R together with the regions at the corners of S ∪T which
lie outside the Ri (see Figure 3).

To check that this method works, suppose that there is an edge ~xy ∈ E(~Gsec),
where x 6∈ S ∪ T and y ∈ (S ∪ T ) \ R. Let u be the point on ∂(S ∪ T ) on the
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Figure 3: Some discs used in the construction of R

line joining x and y. Then, if B(u, ‖u − y‖) contains a red point a, so does
B(x, ‖x− y‖), since

‖x− a‖ ≤ ‖x− u‖+ ‖u− a‖ < ‖x− u‖+ ‖u− y‖ = ‖x− y‖

so that it is enough to assume that x = u. Moreover, let v be the point on ∂R
on the line joining u and y. If B(u, ‖u − v‖) contains a red point b, so does
B(u, ‖u − y‖), since B(u, ‖u − y‖) contains B(u, ‖u − v‖). Hence we may also
assume that y = v. Now, with u fixed, we may assume that v is the closest point
of ∂R to u, which we may also assume does not coincide with the location of a
red point. Draw the disc B(u, ‖u− v‖). By construction, this disc is tangent to
one of the half-discs Ri, centered at z, say, and has a strictly smaller radius than
that of Ri, with probability 1. Therefore, its center, u, lies in the interior of the
line segment joining z to v. Consequently, u ∈ S ∪ T , which is a contradiction.
Figure 3 shows that the three conditions i) v is the closest point of ∂R to u
ii) ‖u − v‖ < min(‖u − a‖, ‖u− b‖) and iii) u ∈ ∂(S ∪ T ) are incompatible, by
illustrating a typical situation where i) and ii) are satisfied.

The results of these simulations are also shown in Table 2, and so we have
the following result.

Theorem 19. With high confidence, λB ≤ 0.13, λO ≤ 0.17, λI ≤ 0.17, λS ≥
0.17 and λU ≤ 0.27.
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X bound value r s successes trials confidence
U lower 0.20 90 10 1480 1500 10−66

O lower 0.11 60 0 963 1000 10−25

B lower 0.09 80 0 2159 2250 10−51

U upper 0.27 110 0 4296 4600 10−51

O upper 0.17 110 0 3689 4000 10−25

B upper 0.13 125 0 6226 6750 10−45

Table 2: Results of Monte-Carlo simulations. (All confidences rounded up.)

4 Uniqueness of the infinite cluster

Uniqueness of the infinite cluster above the percolation threshold was proved by
Harris [12] for bond percolation in Z

2, by Aizenman, Kesten and Newman [1]
for connected, transitive and amenable graphs, by Meester and Roy [13] for the
Gilbert model, and by Häggström and Meester [10] for the k-nearest neighbour
model. The last two results were obtained by modifying a very short and elegant
argument of Burton and Keane [5], which was originally applied to give a second
proof of the Aizenman–Kesten–Newman theorem. The Burton–Keane argument
goes through for the secrecy graph, with a considerably simpler proof than
in [10]. Before presenting it, we make a few preliminary remarks.

There are three main ingredients in proving the uniqueness of the infinite
cluster. One is ergodicity, which allows us to show that the number of infinite
components is almost surely constant (this constant might be ∞). The second is
the local modifier, which works as follows. Suppose we know that some event E
occurs with positive probability. Suppose also that, by removing a finite number
of points from any instance of P ∪P ′ in which E occurs, we get a configuration
in which some other event F always occurs. Then also P(F ) > 0. This is
proved using coupling. The third ingredient is the trifurcation argument, which,
roughly speaking, shows that the probability of having some infinite component
with three distinct “branches” going off to infinity is zero. Since the ergodicity
and trifurcation arguments are fairly standard (see [4, 9, 14] for instance), we
will simply state their implications, without proof, and concentrate on the local
modifier.

To keep things simple, we will focus on the case X = B. In other words, we
will work with the graph G′

sec of bidirectional edges. From now on, we will call
this graph G. Versions of the result, with almost identical proofs, exist for the
cases X = U and X = S; when X = I or X = O, things are more complicated,
since two maximal infinite components might intersect.

First then, we describe precisely the respective end results of the ergodicity
and trifurcation arguments.

Lemma 20. For each value of d, and for each λ > 0, the number of infinite
components in the graph G = G′

sec is almost surely constant. (This constant
might be ∞.)
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Lemma 21. Pick r > 0 and x ∈ Rd. Let T (x, r) be the event that the ball
B(x, r) is intersected by an infinite component C of G = G′

sec in such a way that,
if all edges of C intersecting B(x, r) are removed, C falls apart into a number
of infinite components, of which at least three are infinite. Then P(T (x, r)) = 0.

We next describe a useful coupling. Let P1 and P2 be two independent
Poisson processes of intensity 1 in R

d, and let P ′
1 and P ′

2 be two independent
Poisson processes of intensity λ, also in R

d. Given R > 0, construct two more
processes P3 and P ′

3 as follows. Outside B(O, 3R), let P3 and P ′
3 coincide with

P1 and P ′
1 respectively. Inside B(O, 3R), for P3, include each point of P1 ∪ P2

with probability 1
2 , and for P ′

3, include each point of P ′
1 ∪ P ′

2 with probability
1
2 . Then P3 and P ′

3 are both Poisson processes in R
d, of intensities 1 and λ,

respectively. This coupling will be referred to, following [10], as the special
coupling. It shows that, if an event E occurs for an instance (P1,P ′

1), and if
an event F can be made to occur by removing some points of (P1,P ′

1) inside
B(O, 3R), then P(E) > 0 ⇒ P(F ) > 0, since the modified instance occurs with
positive probability for (P1,P2,P ′

1,P ′
2). Its first application will be in the proof

of the following lemma.

Lemma 22. For each value of d, and for each λ > 0, the number of infinite
components in the graph G = G′

sec is either almost surely 0, almost surely 1, or
almost surely ∞.

Proof. By Lemma 20, we only have to show that, for each fixed k ≥ 2, it is
not the case that G has, almost surely, exactly k infinite components. Suppose
then, that, for some k ≥ 2, G has, almost surely, exactly k infinite components.
For some r > 0, the probability that each of these components C1, . . . , Ck

intersects B(0, r) is strictly positive. Given some configuration in which all k
infinite components C1, . . . , Ck intersect B(0, r), remove all the red points in
B(0, 3r). The effect of this is that the k components C1, . . . , Ck merge to form
a single infinite component. However, using the special coupling, this shows
that the probability of having a single infinite component is strictly positive,
contradicting Lemma 20.

We are now ready for our final theorem.

Theorem 23. For each value of d, and for each λ > 0, the number of infinite
components in the graph G = G′

sec is either almost surely 0, or almost surely 1.

Proof. In this proof we may assume that λ > λc, so that there is at least one
infinite component, almost surely.

Suppose that, almost surely, G has infinitely many infinite components.
Then there exists an r > 0 such that, with probability at least 0.99, at least three
infinite components intersect B(O, r). If r is large enough, one can also show,
by the argument in the proof of Theorem 2, that, based on P ′∩B(0, 3r)C , with
probability at least 0.9, there can be no edge from P ∩B(0, 4r)C to P ∩B(0, 3r)
in G. In other words, the red points outside B(O, 3r) by themselves prevent
an edge of G from crossing the annulus B(O, 4r) \ B(O, 3r). This also implies
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that G ∩ B(O, 4r)C is unaffected by the red points inside B(O, 3r). Now let
C1, C2 and C3 be three of the infinite components intersecting B(0, r). First,
remove all black points not in these components from inside B(O, 4r). Second,
remove all the red points from B(O, 3r). The effect of this is that C1, C2 and
C3 merge into a single infinite component C, while none of the other infinite
components merge with C. But, in the new configuration, which has positive
probability of occurring (by the special coupling), T (x, 4r) occurs. This contra-
dicts Lemma 21.

5 Concluding Remarks

We have presented several methods to calculate bounds on five percolation
thresholds in the Poisson secrecy graph. While the rigorous bounds are still
rather loose, the high-confidence lower bounds derived here are much tighter.
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