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Average estimate for additive energy in prime

field.

Glibichuk Alexey∗

Abstract

Assume that A ⊆ Fp, B ⊆ F
∗
p,

1
4 6

|B|
|A| , |A| = pα, |B| = pβ. We will

prove that for p > p0(β) one has

∑

b∈B

E+(A, bA) 6 15p−
min{β,1−α}

308 |A|3|B|.

Here E+(A, bA) is an additive energy between subset A and it’s mul-
tiplicative shift bA. This improves previously known estimates of this
type.

1 Introduction.

Let X be a non-empty set endowed with a binary operation ∗ : X ×X → X .
Then one can define the operation * on pairs of subsets A,B ⊂ X by the
formula A∗B = {a∗b : a ∈ A, b ∈ B}. In particular, if A and B are subsets of
a ring, we have two such operations: addition A+B := {a+b : a ∈ A, b ∈ B}
and multiplication AB = A× B := {ab : a ∈ A, b ∈ B}. For given element b
we define operation b∗A = b×A. The sign ∗may be omitted when there is no
danger of confusion. We write |A| for the cardinality of A. We take the ring
to be the field Fp of p elements, where p is an arbitrary prime. All sets are
assumed to be subsets of Fp. Given any set Y ⊂ Fp, we write Y ∗ := Y \ {0}
for the set of invertible elements of Y . We shall always assume that p is a
prime. Given any real number y, we write [y] for its integer part (the largest
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integer not exceeding y), and denote the fractional part of y by {y}. We
also define the operation h+ A = {h} + A which adds an arbitrary element
h ∈ Fp to the set A.

Definition 1. For subsets A,B ⊂ Fp we denote

E+(A,B) = |{(a1, a2, b1, b2) ∈ A× A× B × B : a1 − a2 = b1 − b2}|,

E×(A,B) = |{(a1, a2, b1, b2) ∈ A× A× B × B : a1a2 = b1b2}|.
Numbers E+(A,B) and E×(A,B) are said to be an additive energy and a
multiplicative energy of sets A and B respectively.

In the paper [1] J. Bourgain proved the following result.

Theorem 1. Assume A ⊂ Fp, B ⊂ Fp and |A| = pα, |B| = pβ with α > β.
Then ∑

b∈B

E+(A, bA) < C1p
c2γ |A|3|B|

where γ = min(β, 1 − α) and C1, c2 are absolute constants (independent on
α, β).

In the same paper J. Bourgain deduces from Theorem 1 sum-product
estimate for two different subsets. Further, J. Bourgain and author [2] of
this paper extended Theorem 1 to the case of an arbitrary finite field. More
precisely, we proved the following result.

Theorem 2. Take arbitrary subsets A,B of a finite field Fq with q = pr

elements, such that |A| = qα, |B| = qβ, α > β and an arbitrary 0 < η 6 1.
Suppose further that for every nontrivial subfield S ⊂ Fq and every element
d ∈ Fq the set B satisfies the restriction

|B ∩ dS| 6 4|B|1−η.

Then ∑

b∈B

E+(A, bA) 6 13q−
γ

10430 |A|3|B|

where γ = min
(
β, 5215

4
βη, 1− α

)
.
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In this paper we also deduced from the Theorem 2 a new character sum
estimate over a small multiplicative subgroup. J. Bourgain, S. J. Dilworth,
K. Ford, S. Konyagin and D. Kutzarova [3] applied Theorem 2 to one of
the problems of sparse signal recovery and several others branches of coding
theory. Also, M. Rudnev and H. Helfgott [4] used method, proposed in the
proof of the Theorem 1 to obtain an new explicit point-line incidence result
in Fp. These examples demonstrate that estimates like Theorems 1 and 2
have wide range of applications.

In the current paper a slightly modified version of the method from paper
[4] will be used to obtain an improvement of the Theorem 2 in the case of
prime field Fp. We will establish the following theorem.

Theorem 3. Assume that A ⊆ Fp, B ⊆ F
∗
p,

1
4
6

|B|
|A|

, |A| = pα, |B| = pβ.

Then for p > p0(β)

∑

b∈B

E+(A, bA) 6 15p−
min{β,1−α}

308 |A|3|B|.

Ideas of M. Rudnev and H. Helfgott in context of this problem working
only when |B| > K|A| for some absolute constant K. Case when |A| is
small comparatively to |B| was analyzed by another method. This method
is elementary in some extent and gives the following estimate.

Theorem 4. Assume that A ⊆ Fp, B ⊆ F
∗
p, |A| = pα, |B| = pβ. Then for

p > p0(α, β) we have

∑

b∈B

E+(A, bA) 6 Cp−
min{β,1−α}

2240 |A|3|B|,

where C > 0 is an absolute constant.

As we see, Theorem 4 gives worse estimate than Theorem 3, but it still
better than one delivered by the Theorem 2.

In section 2 we stating preliminary results which will be used in proofs
of Theorems 3 and 4. Theorem 3 is proved in the Section 3, Theorem 4 is
proved in the Section 4.

Acknowledgements. The author thank professor S. Konyagin and M.
Rudnev for useful discussions helped me to improve the final result.
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2 Preliminary results.

All the subsets in the Lemmas below are assumed to be non-empty. The first
two lemmas is due to Ruzsa [5, 6]. It holds for subsets of any abelian group,
but here we state them only for the subsets of Fp.

Lemma 1. For any subsets X, Y , Z of Fp we have

|X − Z| 6 |X − Y ||Y − Z|
|Y | .

Lemma 2. Let Y,X1, X2, . . . , Xk be sets of Fp. Then

|X1 +X2 + . . .+Xk| 6
∏k

i=1 |Y +Xi|
|Y |k−1

.

Definition 2. For any nonempty subsets A ⊂ Fp, B ⊂ Fp, G ⊂ A × B, we
define their partial sum

|A+
GB| = {a+ b : (a, b) ∈ G}.

Let us recall the modification of Balog-Szemeredi-Gowers result (see the
paper of J. Bourgain and M. Garaev [7], Lemma 2.3).

Proposition 1. Let A and B be subsets of Fp and G ⊂ A× B be such that

|G| > |A||B|
K

for some K > 0. Then there exist subsets A
′ ⊂ A,B

′ ⊂ B and a
number Q, with

|A′| > |A|
4
√
2K

,
|A|

8
√
2K2 ln(e|A|)

6 Q 6 2|A′|, |B′| > |A||B|
8
√
2QK2 ln(e|A|)

such that

|A+
GB|3 > |A′

+B
′ | Q|B|
256K3 ln(e|A|) .

We shall use the following result from the book of T. Tao and V. Vu [8]
(Lemma 2.30, p. 80).

Lemma 3. If E+(A,B) > 1
K
|A| 32 |B| 32 , K > 1, then there is G ⊂ A × B

satisfying

|G| > 1

2K
|A||B| and |A+

GB| < 2K|A| 12 |B| 12 .
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This lemma represents a known technical approach for estimating sum-
product sets, see, for example [9], [10].

Lemma 4. For any given subsets X, Y ⊆ Fp, G ⊂ F
∗
p there is an element

ξ ∈ G with

|X + ξY | > |X||Y ||G|
|X||Y |+ |G| .

Moreover, the following inequality holds

|X + ξY | > |X|2|Y |2
E+(X, ξY )

.

Proof. Let us take an arbitrary element ξ ∈ G and s ∈ Fp and denote

f+
ξ (s) := |{(x, y) ∈ X × Y : x+ yξ = s}|.

It is obvious that
∑

s∈Fp

(f+
ξ (s))

2 = |{(x1, y1, x2, y2) ∈ X ×X × Y × Y : x1 + y1ξ = x2 + y2ξ}|

= |X||Y |+ |{(x1, y1, x2, y2) ∈ X×X×Y ×Y : x1 6= x2, x1+ y1ξ = x2+ y2ξ}|
and ∑

s∈Fp

f+
ξ (s) = |X||Y |. (1)

Let us observe that for every x1, x2 ∈ X, y1, y2 ∈ Y such that x1 6= x2,
there is at most one η ∈ G satisfying the equality x1 + y1η = x2 + y2η.
Therefore, ∑

ξ∈G

∑

s∈Fp

(f+
ξ (s))

2
6 |X||Y ||G|+ |X|2|Y |2.

From the last inequality it directly follows that there is an element ξ ∈ G
such that ∑

s∈Fp

(f+
ξ (s))

2 6 |X||Y |+ |X|2|Y |2
|G| . (2)

According to Cauchy-Schwartz,




∑

s∈Fp

f+
ξ (s)




2

6 |X + ξY |
∑

s∈Fp

(f+
ξ (s))

2. (3)
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Observing that ∑

s∈F∗
p

(f+
ξ (s))

2 = E+(X, ξY )

one can yield the second assertion of Lemma 4.
Combining inequalities (1), (2) and (3) we see that

|X + ξY | > |X|2|Y |2

|X||Y |+ |X|2|Y |2

|G|

=
|X||Y ||G|

|X||Y |+ |G| .

Lemma 4 now follows. �

Definition 3. For any given subsets X, Y ⊂ Fp, |Y | > 1 we denote

Q[X, Y ] =
X −X

(Y − Y ) \ {0} :=

{
x1 − x2

y1 − y2
: x1, x2 ∈ X, y1, y2 ∈ Y, y1 6= y2

}
.

If X = Y then Q[X,X ] = Q[X ].

Lemma 5 is a simple extension of Lemma 2.50 from the book by T. Tao
and V. Vu [8].

Lemma 5. Consider two arbitrary subsets X, Y ⊂ Fp, |Y | > 1. The given
element ξ ∈ Fp is contained in Q[X, Y ] if and only if |X + ξ ∗ Y | < |X||Y |.

Proof. Let us consider a mapping F : X × Y to X + ξ ∗ Y defined
by the identity F (x, y) = x + ξy. F can be non-injective only when |X +
ξ ∗ Y | < |X||Y |. On the other side, the non-injectivity of F means that
there are elements x1, x2 ∈ X , y1, y2 ∈ Y such that (x1, y1) 6= (x2, y2) and
F (x1, y1) = F (x2, y2). It is obvious that y1 6= y2 since otherwise x1 = x2 and
we have achieved a contradiction with condition (x1, y1) 6= (x2, y2). Hence,
ξ = (x1 − x2)/(y2 − y1) ∈ Q[X, Y ]. Lemma 5 now follows. �

We need the following Lemma due to C.-Y. Shen [11].

Lemma 6. Let X1 and X2 be two sets. Then for any ε ∈ (0, 1) there exist at

most
ln 1

ε

|X2|
min {|X1 +X2|, |X1 −X2|} additive translates of X2 whose union

contains not less than (1− ε)|X1| elements of X1.
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Proof. For simplicity, we assume that |X1 +X2| 6 |X1 −X2|. The case
when |X1+X2| > |X1−X2| can be considered similarly. Using Lemma 4 we
deduce

|{(x, y, x1, y1) ∈ X1 ×X2 ×X1 ×X2 : x+ y = x1 + y1}| >
|X1|2|X2|2
|X1 +X2|

.

Now we can fix two elements x1
∗ ∈ X1, y

1
∗ ∈ X2 for which the equation

x1
∗ + y = x+ y1∗, x ∈ X1, y ∈ X2 has at least

|X1||X2|
|X1+X2|

solutions and, therefore,

|(x1
∗+X2)∩ (y1∗ +X1)| > |X1||X2|

|X1+X2|
. Denoting K = |X1+X2|

|X2|
we can observe that

|X1 ∩ (x1
∗ − y1∗ +X2)| >

|X1|
K

. (4)

Obviously, from (4) it is follows that

|X1
1 | := |X1 \ (x1

∗ − y1∗ +X2)| 6
(
1− 1

K

)
|X1|.

We can repeat previous arguments for sets X1
1 and X2 and find elements

x2
∗ ∈ X1

1 and y2∗ ∈ X2 such that

|X1
1 ∩ (x2

∗ − y2∗ +X2)| >
|X1

1 |
K

|X2
1 | := |X1

1 \ (x2
∗ − y2∗ +X2)| 6

(
1− 1

K

)
|X1

1 | 6
(
1− 1

K

)2

|X1|.

On i-th iteration we finding elements xi
∗ ∈ X i−1

1 and yi∗ ∈ X2 with

|X i−1
1 ∩ (xi

∗ − yi∗ +X2)| >
|X i−1

1 |
K

|X i
1| := |X i−1

1 \ (xi
∗ − yi∗ +X2)| 6

(
1− 1

K

)
|X i−1

1 | 6
(
1− 1

K

)i

|X1|.

We stop when |Xn
1 | < ε|X1| for some n. It is easy to see that we will make

not more than ln
(
1
ε

)
K steps. The last observation finishes the proof of the

Lemma 6. �
We also need the following sum-product estimate of M. Z. Garaev [12,

Theorem 3.1].
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Theorem 5. Let A,B ⊂ Fp be an arbitrary subsets. Then

|A−A|2 · |A|2|B|2
E×(A,B)

> C|A|3L 1
9 (log2 L)

−1,

where L = min
{
|B|, p

|A|

}
and C > 0 is an absolute constant.

3 Proof of the Theorem 3.

Let A,B ⊆ Fp be as in Theorem 3 and δ > 0, C > 1 (to be specified).
Assume ∑

b∈B

E+(A, bA) > C|B|1−δ|A|3.

Hence there is a subset B1 ⊆ B such that

|B1| >
C

2
|B|1−δ

and

E+(A, bA) >
C

2
|B|−δ|A|3 for b ∈ B1. (5)

Fix b ∈ B1. By the application of Lemma 3 to (5), one can deduce that
there is G(b) ⊂ A× bA, |G(b)| > C

4
|B|−δ|A|2 such that

|A +
G(b)bA| <

4

C
|B|δ|A|.

Now, by Proposition 1, there are Q(b), A
(b)
1 , A

(b)
2 ⊂ A such that

|A(b)
1 | > C

24
√
2
|B|−δ|A|, (6)

C2

27
√
2 ln(e|A|)

|A||B|−2δ 6 Q(b) 6 2|A(b)
1 |, (7)

|A(b)
2 | > C2

27
√
2Q(b) ln(e|A|)

|B|−2δ|A|2, (8)

|A(b)
1 + bA

(b)
2 | < 220

C6Q(b)

ln(e|A|)|B|6δ|A|2. (9)
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Write

C3

212 ln(e|A|) |B1||B|−3δ|A|2 <
∑

b∈B1

|A(b)
1 × A

(b)
2 |

6 |A|




∑

b,b
′
∈B1

∣∣∣
(
A

(b)
1 ∩A

(b
′
)

1

)
×

(
A

(b)
2 ∩A

(b
′
)

2

)∣∣∣




1
2

by Cauchy-Schwartz. Hence

C6

224 ln2(e|A|)
|B1|2|B|−6δ|A|2 <

∑

b,b
′∈B1

∣∣∣
(
A

(b)
1 ∩ A

(b
′
)

1

)
×

(
A

(b)
2 ∩A

(b
′
)

2

)∣∣∣

and there is some b0 ∈ B1, B2 ⊂ B1 such that

|B2| >
C7

226 ln2(e|A|)
|B|1−7δ (10)

|A(b)
1 ∩A

(b0)
1 |, |A(b)

2 ∩A
(b0)
2 | > C6

225 ln2(e|A|)
|B|−6δ|A| for b ∈ B2. (11)

Let us estimate from (6), (8), (9), (11) and Lemma 1

|b0A(b0)
1 + bA

(b0)
1 | 6 |A(b0)

1 + bA
(b0)
2 ||A(b0)

1 + b0A
(b0)
2 |

|A(b0)
2 |

6

6
227

√
2 ln2(e|A|)
C8

|B|8δ|A(b0)
1 + bA

(b0)
2 | (12)

|A(b0)
1 + bA

(b0)
2 | 6 |A(b0)

1 + bA
(b)
2 ||A(b0)

2 + A
(b0)
2 |

|A(b)
2 ∩A

(b0)
2 |

6

6
|A(b0)

1 + bA
(b)
2 ||A(b0)

1 + b0A
(b0)
2 |2

|A(b)
2 ∩A

(b0)
2 ||A(b0)

1 |
6

6
269

√
2 ln4(e|A|)

C19Q2
(b0)

|A|2|B|19δ|A(b0)
1 + bA

(b)
2 | (13)
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|A(b0)
1 + bA

(b)
2 | 6 |A(b)

1 + bA
(b)
2 ||A(b0)

1 + A
(b0)
1 |

|A(b0)
1 ∩A

(b)
1 |

6

6
|A(b)

1 + bA
(b)
2 ||A(b0)

1 + b0A
(b0)
2 |2

|A(b0)
1 ∩ A

(b)
1 ||A(b0)

2 |
6

6
292

√
2 ln6(e|A|)

C26Q(b)Q(b0)

|B|26δ|A|3. (14)

Hence, by (12), (13) and (14)

|b0A(b0)
1 + bA

(b0)
1 | 6 2189

√
2 ln12(e|A|)

C53Q3
(b0)

Q(b)

|B|53δ|A|5.

Using (7) finally we obtain

|b0A(b0)
1 + bA

(b0)
1 | 6 2219

√
2 ln16(e|A|)
C61

|B|61δ|A|.

Now we redefine A
(b0)
1 by A

′
and B2

b0
by B

′
one can deduce the following

properties (for δ < 1
440

):

|A′

+ bA
′ | < 2219

√
2 ln16(e|A|)
C61

|B|61δ|A| for all b ∈ B
′

(15)

|B′| > C7

226 ln2(e|A|)
|B|1−7δ (16)

|A′ | > C

24
√
2
|B|−δ|A|. (17)

Our aim is to get contradiction from (15), (16) and (17).
Let us use the symbol

K = max
b∈B

′
|A′

+ bA
′ | so K <

2219
√
2 ln16(e|A|)
C61

|B|61δ|A|. (18)

Now we use Lemma 4 to establish that

E+(A
′

, bA
′

) = |{(a1, a2, a3, a4) ∈ A
′ ×A

′ ×A
′ ×A

′

: a1+a2b = a3+a4b}| >

>
|A′|4

|A′ + bA′ | >
|A′|4
K

.
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Summing over all b ∈ B
′
we obviously obtain

|{(a1, a2, a3, a4, b) ∈ A
′ ×A

′ ×A
′ ×A

′ ×B
′

: a1+a2b = a3+a4b}| >
|A′|4|B′|

K
.

There are some elements ã2, ã3 ∈ A
′
such that

|{(a1, a4, b) ∈ A
′ × A

′ × B
′

: a1 − ã3 = (a4 − ã2)b}| >
|A′|2|B′ |

K
.

Let A
′

1 = A
′ − ã3, A

′

2 = A
′ − ã2 be translates of A

′
by ã3 and ã2 respectively.

Then

|{(a1, a2, b) ∈ A
′

1 × A
′

2 ×B
′

: a1 = a2b}| >
|A′|2|B′|

K
.

There is some a∗ ∈ A
′

2 such that

|{(a1, b) ∈ A
′

1 × B
′

: a1 = a∗b}| >
|A′||B′|

K
.

Thus, we have a subset B
′

1 ⊂ (A
′

1 ∩ a∗B
′
) of cardinality

|B′

1| >
|A′||B′|

K
.

In original notations B
′

1 lies in the intersection of a∗
b0
B2 and some translate

of A
(b0)
1 ; besides by the bounds (16), (17) and (18)

|B′

1| >
C69

2250 ln18(e|A|)
|B|1−69δ. (19)

We consider three cases.
1) Case 1. Suppose that Q[B

′

1] 6= Fp. It is clear that 1 + Q[B
′

1] 6=
Q[B

′

1] since otherwise Q[B
′

1] = Fp. The latter mean that there are elements
a, b, c, d ∈ B

′

1 with 1 + a−b
c−d

/∈ Q[B
′

1]. Now we recall that B
′

1 is a subset
of a∗

b0
B2 so we can regard a, b, c, d as elements of B2. Observe, that for an

arbitrary subset B
′′

1 ⊂ B
′

1, |B
′′

1 | > 0.98|B′

1| we have 1 + a−b
c−d

/∈ Q[B
′′

1 ] since

Q[B
′′

1 ] ⊂ Q[B
′

1]. Therefore, by Lemma 5, for these elements a, b, c, d ∈ B2 we
have

(0.98)2|B′

1|2 6 |B′′

1 |2 =
∣∣∣∣B

′′

1 +

(
B

′′

1 +
a− b

c− d
B

′′

1

)∣∣∣∣ 6
∣∣∣∣B

′′

1 +B
′′

1 +
a− b

c− d
B

′′

1

∣∣∣∣ .
(20)
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We now use Lemma 6. Let us first show that for any b1 ∈ B2 we can cover
99% of the elements of the set b1B

′

1 (a subset of the translation of b1A
(b0)
1 ) or

−b1B
′

1 by at most 2109 ln(100) ln8(e|A|)
C28 |B|28δ additive translates of the set b0A(b0)

1 .

Indeed b0A
(b1)
1 ∩A

(b0)
1 is a subset of b0A

(b0)
1 , and by Lemma 6 and Lemma 1)

we can cover 99% of the elements of either b1B
′

1 or −b1B
′

1 by at most

ln(100)

|b0A(b1)
1 ∩ A

(b0)
1 |

min
{
|b0A(b1)

1 ∩ A
(b0)
1 + b1B

′

1|, |b0A
(b1)
1 ∩ A

(b0)
1 − b1B

′

1|
}
6

6
ln(100)

|A(b1)
1 ∩A

(b0)
1 |

min
{
|b0A(b1)

1 ∩A
(b0)
1 + b1A

(b0)
1 |, |b0A(b1)

1 ∩ A
(b0)
1 − b1A

(b0)
1 |

}
6

6
ln(100)|A(b1)

1 ∩ A
(b0)
1 + b1A

(b0)
2 ∩ A

(b1)
2 ||A(b0)

1 + b0A
(b0)
2 ∩ A

(b1)
2 |

|A(b1)
1 ∩A

(b0)
1 ||b0b1A(b1)

2 ∩ A
(b0)
2 |

6

6
ln(100)|A(b1)

1 + b1A
(b1)
2 ||A(b0)

1 + b0A
(b0)
2 |

|A(b1)
1 ∩ A

(b0)
1 ||A(b1)

2 ∩ A
(b0)
2 |

6
2105 ln(100) ln8(e|A|)

C28
|B|28δ

additive translates of b0A
(b1)
1 ∩A(b0)

1 and whence of b0A
(b0)
1 . In the last estimate

we have used (7), (9) and (11).
This altogether enables us to choose B

′′

1 as a subset containing at least
98% of the elements from B

′

1 such that (a − b)B
′′

1 gets covered by at most
2210 ln2(100) ln16(e|A|)

C56 |B|56δ translates of b0A
(b0)
1 + b0A

(b0)
1 . Similarly, we can find

a subset Ã
(b0)
1 containing at least 98% of the elements of A

(b0)
1 such that

(c − d)Ã
(b0)
1 gets covered by at most 2210 ln2(100) ln16(e|A|)

C56 |B|56δ translates of

b0A
(b0)
1 + b0A

(b0)
1 . Now we apply Lemma 2 to (20) as follows

∣∣∣∣B
′′

1 +B
′′

1 +
a− b

c− d
B

′′

1

∣∣∣∣ 6
|Ã(b0)

1 +B
′′

1 +B
′′

1 ||Ã
(b0)
1 + a−b

c−d
B

′′

1 |
|Ã(b0)

1 |
6

6
24
√
2|B|δ

C|A| |A(b0)
1 + A

(b0)
1 + A

(b0)
1 ||Ã(b0)

1 +
a− b

c− d
B

′′

1 | 6

6
287 ln6(e|A|)

C25
|B|25δ|Ã(b0)

1 +
a− b

c− d
B

′′

1 | (21)

The covering arguments above implies that

|Ã(b0)
1 +

a− b

c− d
B

′′

1 | 6
2420 ln4(100) ln32(e|A|)

C112
|B|112δ|A(b0)

1 +A
(b0)
1 +A

(b0)
1 +A

(b0)
1 | 6

12



6
2530 ln4(100) ln40(e|A|)

C144
|B|144δ|A|.

Comparing to (19) and using the condition |B|
|A|

> 1
4
, for large p we deduce

(0.98)2C138

2500 ln36(e|A|) |B|2−138δ <
2613 ln4(100) ln46(e|A|)

C169
|B|169δ|A| ⇔

⇔ |B|2−307δ

|A| ln82(e|A|) <
21113 ln4(100)

(0, 98)2C307
⇒ |B|1−308δ <

21115 ln4(100)

(0, 98)2C307
. (22)

Now we define C = 2
1115
307 ln

4
307 (100)

(0.98)
2

307
and from (22) deduce the inequality

|B| < |B|308δ

which is false when δ 6 1
308

. This finishes proof of the Theorem 3 in case 1.

2) Case 2. Suppose that |B′

1| >
√
p. It is clear that Q[B

′

1] = Fp since

for an arbitrary ξ ∈ Fp the equality |B′

1 + ξB
′

1| = |B′

1|2 is impossible (simply
because |B′

1|2 > p). Let us take arbitrary elements ξ ∈ F
∗
p, s ∈ Fp, an

arbitrary subset |B′′

1 | > 0.96|B′

1| and denote

fξ(s) := |{(b1, b2) ∈ B
′

1 × B
′

1 : b1 + ξb2 = s}|

f
′

ξ(s) := |{(b1, b2) ∈ B
′′

1 × B
′′

1 : b1 + ξb2 = s}|
It is obvious that

∑

s∈Fp

(fξ(s))
2 = |{(b1, b2, b3, b4) ∈ B

′

1 × B
′

1 × B
′

1 ×B
′

1 : b1 + ξb2 = b3 + ξb4}|

= |B′

1|2 + |{(b1, b2, b3, b4) ∈ B
′

1 ×B
′

1 ×B
′

1 ×B
′

1 : b1 6= b3, b1 + ξb2 = b3 + ξb4}|
and ∑

s∈Fp

fξ(s) = |B′

1|2

∑

s∈Fp

f
′

ξ(s) = |B′′

1 |2.

Let us observe that for every b1, b2, b3, b4 ∈ B
′

1 such that b1 6= b3, there is
at most one η ∈ F

∗
p satisfying the equality b1 + ηb2 = b3 + ηb4. Therefore,
∑

ξ∈F∗
p

∑

s∈Fp

(fξ(s))
2 6 |B′

1|2(p− 1) + |B′

1|4.

13



From the last inequality it directly follows that there is an element ξ ∈ F
∗
p

such that ∑

s∈Fp

(f
′

ξ(s))
2 6

∑

s∈Fp

(fξ(s))
2 6 |B′

1|2 +
|B′

1|4
p− 1

.

Note that this ξ is independent on B
′′

1 . According to Cauchy-Schwartz,




∑

s∈Fp

f
′

ξ(s)




2

6 |B′′

1 + ξB
′′

1 |
∑

s∈Fp

(f
′

ξ(s))
2.

Now we see that

|B′′

1 + ξB
′′

1 | >
|B′′

1 |4(p− 1)

|B′

1|2(p− 1) + |B′

1|4
>

(0.96)4|B′

1|4(p− 1)

|B′

1|2(p− 1) + |B′

1|4
> (0.96)4

p− 1

2
.

(23)
Reminding that Q[B

′

1] = Fp, we can find elements a, b, c, d ∈ B
′

1, such
that ξ = a−b

c−d
(again, we can regard them as elements of B2). Using similar

covering arguments as in proof of the case 1 we can deduce that we can
choose B

′′

1 as a subset containing at least 96% of the elements from B
′

1 such

that (a− b)B
′′

1 + (c− d)B
′′

1 gets covered by at most 2420 ln4(100) ln32(e|A|)
C112 |B|112δ

translates of b0A
(b0)
1 + b0A

(b0)
1 + b0A

(b0)
1 + b0A

(b0)
1 . Now we see that

∣∣∣∣B
′′

1 +
a− b

c− d
B

′′

1

∣∣∣∣ 6
2420 ln4(100) ln32(e|A|)

C112
|B|112δ|A(b0)

1 +A
(b0)
1 +A

(b0)
1 +A

(b0)
1 | 6

6
2530 ln4(100) ln40(e|A|)

C144
|B|144δ|A|.

Again, comparing to (23) and using the condition |B|
|A|

> 1
4
, we deduce

(0.96)4
p

4
6 (0.96)4

p− 1

2
<

2530 ln4(100) ln40(e|A|)
C144

|B|144δ|A| ⇒

⇒ p

4
<

2530 ln4(100)

C144(0.96)4
p145βδ+α (24)

Now we define C = 2
265
72 ln

1
36 (100)

(0.96)
1
36

and from (24) deduce the inequality

p < p145βδ+α

14



which is false when δ 6 1−α
145β

. This concludes proof of the Theorem in case 2.

3) Case 3. Suppose that Q[B
′

1] = Fp and |B′′

1 | 6
√
p. Repeating ar-

guments from the proof of case 2 for an arbitrary subset B
′′

1 ⊂ B
′

1, |B
′′

1 | >
0.96|B′

1| we finding elements a, b, c, d ∈ B2 independent on the subset B
′′

1

with ∣∣∣∣B
′′

1 +
a− b

c− d
B

′′

1

∣∣∣∣ > (0.96)4
|B′

1|2
2

.

Using similar covering arguments as in proof of the case 1 we can de-
duce that we can choose B

′′

1 as a subset containing at least 96% of the el-
ements from B

′

1 such that (a − b)B
′′

1 + (c − d)B
′′

1 gets covered by at most
2420 ln4(100) ln32(e|A|)

C112 |B|112δ translates of b0A(b0)
1 +b0A

(b0)
1 +b0A

(b0)
1 +b0A

(b0)
1 . Now

we see that
∣∣∣∣B

′′

1 +
a− b

c− d
B

′′

1

∣∣∣∣ 6
2420 ln4(100) ln32(e|A|)

C112
|B|112δ|A(b0)

1 +A
(b0)
1 +A

(b0)
1 +A

(b0)
1 | 6

6
2530 ln4(100) ln40(e|A|)

C144
|B|144δ|A|.

Comparing to (19) and using the condition |B|
|A|

> 1
4
, we deduce

(0.96)4C138

2500 ln36(e|A|)
|B|2−138δ <

2530 ln4(100) ln40(e|A|)
C144

|B|144δ|A| ⇔

⇔ |B|2−282δ

|A| ln76(e|A|) <
21030 ln4(100)

(0, 96)4C282
⇒ |B|1−283δ <

21032 ln4(100)

(0, 96)4C282
. (25)

Now we define C = 2
516
141 ln

2
141 (100)

(0.96)
2

141
and from (25) deduce the inequality

|B| < |B|283δ

which is false when δ 6 1
283

. Note that in all the cases the meaning assigned
for the constant C is strictly less than 15. The Theorem 3 is proved. �

15



4 Proof of the Theorem 4.

As in the proof of the Proposition 3 we assume contrary, i.e.

∑

b∈B

E+(A, bA) > C|B|1−δ|A|3

for some C > 0, δ > 0. Following arguments in the beginning of the proof of
the Proposition 3, we finding A

′ ⊂ A and B
′ ⊂ F

∗
p, 1 ∈ B

′
(which is in fact a

subset of a multiplicative shift of B) such that

|A′

+ bA
′ | < 2219

√
2 ln16(e|A|)
C61

|B|61δ|A| = K for all b ∈ B
′

(26)

|B′| > C7

226 ln2(e|A|)
|B|1−7δ (27)

|A′ | > C

24
√
2
|B|−δ|A|. (28)

Using Lemma 4 we obtain

|{(a1, a2, a3, a4) ∈ A
′ × A

′ ×A
′ × A

′

: a1 + ba2 = a3 + ba4}| >

>
|A′|4
K

for all b ∈ B
′
.

Summing up by all b ∈ B
′
one gets

|{(a1, a2, a3, a4, b) ∈ A
′ ×A

′ × A
′ × A

′ ×B
′

: a1 + ba2 = a3 + ba4}| >

>
|A′|4|B′ |

K
for all b ∈ B

′
.

Now we can fix elements a03, a
0
2 ∈ A

′
such that

|{(a1, a4, b) ∈ A
′ × A

′ × B
′

: a1 − a03 = b(a4 − a02)}| >
|A′|2|B′|

K
. (29)

We denote
f(s) = |{(a, b) ∈ A

′ × B
′

: b(a− a02) = s}|,

g(s) =

{
1, if s ∈ A

′ − a03;
0, otherwise.

16



Clearly,

|{(a1, a4, b) ∈ A
′ × A

′ × B
′

: a1 − a03 = b(a4 − a02)}| =
∑

s∈Fp

f(s)g(s), (30)

∑

s∈Fp

f 2(s) = E×(A
′ − a02, B

′

). (31)

Now, by Cauchy-Schwartz,



∑

s∈Fp

f(s)g(s)




2

6
∑

s∈Fp

f 2(s)
∑

s∈Fp

g2(s)

and, by (30) and (31), one can deduce

E×(A
′ − a02, B

′

) >
|A′ |3|B′|

K2
.

Consider two cases.
Case 1. Assume that |A′||B′| 6 p. Applying Theorem 5 one obtains

K4

|A′| > |A′ −A
′ |2 · |A′|2|B′|2

E×(A
′ − a02, B

′)
> C1

|A′ |3|B′| 19
log2(|B′|) .

Using (26), (27) and (28) we deduce

C1C
43
9 |B| 19− 43

9
δ|A|4

2
188
9 ln

2
9 (e|A|) log2(|B|)

<
2878 ln64(e|A|)

C244
|B|244δ|A|4 ⇒

|B| 19 <
2

8090
9 ln

578
9 (e|A|) log2(|B|)
C1C

2239
9

|B| 22399
δ. (32)

Defining C = 2
8090
2239

C
9

2239
1

, we observe that for sufficiently large p from (32) follows

the inequality
|B| 19 < |B| 22409

δ.

which gives a contradiction when δ = 1
2240

. This completes proof of the
Theorem 4 in this case.
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Case 2. Assume that |A′ ||B′| > p. Again, applying Theorem 5 we obtain

K4

|A′ | > |A′ −A
′ |2 · |A′|2|B′ |2

E×(A
′ − a02, B

′)
> C1

|A′| 269 p 1
9

log2 p
.

Using (26) and (28) we deduce

C1C
35
9 |A| 359 p 1

9

2
35
2 |B| 359 log2 p

<
2878 ln64(e|A|)

C244
|B|244δ|A|4 ⇒

⇒ 2
1791
2 ln64(e|A|) log2 p

C
2231
9 C1

|A| 19 |B| 22319
δ > p

1
9 . (33)

Defining C = 2
19119
4462

C
9

2231
1

, we observe that for sufficiently large p from (33) follows

the inequality
p

1
9 < |B| 22329

δ|A| 19 .
which gives a contradiction when δ = 1−α

2232
. Theorem 4 is proved. �
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