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Average estimate for additive energy in prime

field.

Glibichuk Alexey™

Abstract

Assume that A CFy, B C 5, 1 < 5, [A] = p®,|B| = p°. We will

prove that for p > po(/5) one has

in{8,1—«

ST B (4,04) < 157 AP By,
beB

Here E, (A,bA) is an additive energy between subset A and it’s mul-
tiplicative shift bA. This improves previously known estimates of this

type.

1 Introduction.

Let X be a non-empty set endowed with a binary operation * : X x X — X.
Then one can define the operation * on pairs of subsets A, B C X by the
formula AxB = {axb:a € A,b € B}. In particular, if A and B are subsets of
a ring, we have two such operations: addition A+ B :={a+b:a € A,b € B}
and multiplication AB = A x B :={ab:a € A,b € B}. For given element b
we define operation bx A = bx A. The sign * may be omitted when there is no
danger of confusion. We write |A| for the cardinality of A. We take the ring
to be the field F, of p elements, where p is an arbitrary prime. All sets are
assumed to be subsets of F,,. Given any set Y C F,, we write Y* :=Y \ {0}
for the set of invertible elements of Y. We shall always assume that p is a
prime. Given any real number y, we write [y] for its integer part (the largest
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integer not exceeding y), and denote the fractional part of y by {y}. We
also define the operation h + A = {h} + A which adds an arbitrary element
h € I, to the set A.

Definition 1. For subsets A, B C [F, we denote
E+(A,B) = |{(a1,a2,bl,b2) EAXAXBXxB:a;—ay=0b — bg}|,

EX(A, B) = |{(a1,a2,bl,b2) € AXx AX BxB:aa = blb2}|

Numbers F, (A, B) and Ey (A, B) are said to be an additive energy and a
multiplicative energy of sets A and B respectively.

In the paper [1] J. Bourgain proved the following result.

Theorem 1. Assume A C F,, B C F, and |A| = p,|B| = p° with a > B.
Then

> EL(A,bA) < Cip™|AP|B

beB

where v = min(f,1 — a) and Cq,cy are absolute constants (independent on

a, ).

In the same paper J. Bourgain deduces from Theorem [I sum-product
estimate for two different subsets. Further, J. Bourgain and author [2] of
this paper extended Theorem [I] to the case of an arbitrary finite field. More
precisely, we proved the following result.

Theorem 2. Take arbitrary subsets A, B of a finite field F, with ¢ = p"
elements, such that |A| = ¢, |B| = ¢°,a > B and an arbitrary 0 < n < 1.
Suppose further that for every nontrivial subfield S C [, and every element
d € Fq the set B satisfies the restriction

|BNdS| < 4|B)".

Then
> " EL (A bA) < 13~ ™ | A]*| B

beB

where v = min (ﬁ, %517, 1— a).



In this paper we also deduced from the Theorem [2 a new character sum
estimate over a small multiplicative subgroup. J. Bourgain, S. J. Dilworth,
K. Ford, S. Konyagin and D. Kutzarova [3] applied Theorem [2 to one of
the problems of sparse signal recovery and several others branches of coding
theory. Also, M. Rudnev and H. Helfgott [4] used method, proposed in the
proof of the Theorem [I] to obtain an new explicit point-line incidence result
in F,. These examples demonstrate that estimates like Theorems [Il and
have wide range of applications.

In the current paper a slightly modified version of the method from paper
[4] will be used to obtain an improvement of the Theorem ] in the case of
prime field F,. We will establish the following theorem.

Theorem 3. Assume that A C F,, B C Fi, 1 < %, Al = p*,|B| = p~.
Then for p = po()
_min{'B,lfa} 3
> B (AbA) < 15p ws |AP|BY.

beB

Ideas of M. Rudnev and H. Helfgott in context of this problem working
only when |B| > K|A| for some absolute constant K. Case when |A] is
small comparatively to |B| was analyzed by another method. This method
is elementary in some extent and gives the following estimate.

Theorem 4. Assume that A C F,, B C Fy, [A| = p%,|B| = p®. Then for
p = pola, B) we have
_ min{B,1-a} 3
> Bi(AbA) <Opmm o |AP|B,

beB

where C > 0 is an absolute constant.

As we see, Theorem [ gives worse estimate than Theorem [3], but it still
better than one delivered by the Theorem

In section [2] we stating preliminary results which will be used in proofs
of Theorems [B] and @l Theorem [3] is proved in the Section Bl Theorem @ is
proved in the Section Ml
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2 Preliminary results.

All the subsets in the Lemmas below are assumed to be non-empty. The first
two lemmas is due to Ruzsa [5], 6]. It holds for subsets of any abelian group,
but here we state them only for the subsets of I,

Lemma 1. For any subsets X, Y, Z of F, we have

I X =YY - Z|

X -7 <
V]

Lemma 2. Let Y, X1, X, ..., X}, be sets of F,. Then

[T, Y + X
Xi+Xo+. .+ X < ——.
| X0+ Xo+ ..+ X Y

Definition 2. For any nonempty subsets A C F,,B C F,,G C A x B, we
define their partial sum

|ALB| ={a+0b: (a,b) € G}.

Let us recall the modification of Balog-Szemeredi-Gowers result (see the
paper of J. Bourgain and M. Garaev [7], Lemma 2.3).

Proposition 1. Let A and B be subsets of F, and G C A x B be such that

|G| > &){B' for some K > 0. Then there exist subsets A C A, B C B and a
number (), with

|A] |A]
42K 8V2K2%In(e|A|)

such that

Al B]

Al >
41 8v2Q K2 In(e| Al)

<Q<24, |B|>

Q|B|
256 K3 1n(e|Al)

We shall use the following result from the book of T. Tao and V. Vu [§]
(Lemma 2.30, p. 80).

A5BI* > |A' + B

Lemma 3. If E{(A, B) > L|A]?|B|3,K > 1, then there is G C A x B
satisfying

1
G| > 5|AlIB] and |AB| < 2K|Alz|B|z.



This lemma represents a known technical approach for estimating sum-
product sets, see, for example [9], [10].

Lemma 4. For any gwen subsets X,Y C F,, G C F} there is an element

£ € G with
| XY]|G]

(XN +1G]

Moreover, the following inequality holds

| X +&Y[ >

(XY

Proof. Let us take an arbitrary element £ € G and s € [F,, and denote

f&(s) = H(z,y) € X XY 2+ y€ = s}.

It is obvious that

Z(fg(s))Q = [{(z1,y1,22,92) € X X X XY XY 101 + 11§ = 2 + 42}

selfp

= | XY+ (21,91, 22,92) € X X X XY XY 21 # 29,21 + 31§ = T2 + 128 }|

and

Y fEs) = Xyl (1)

self,

Let us observe that for every x1,x9 € X, y1,y2 € Y such that x; # o,
there is at most one n € G satisfying the equality x; + y1n = z2 + yon.
Therefore,

DD () S IXIYIGLH+ XY

£eq selFy

From the last inequality it directly follows that there is an element £ € G
such that XY
Y <X+ BT (2)
selFp
According to Cauchy-Schwartz,
2

ST | S IX+EYD (fF ()% (3)

s€fy s€lfp



Observing that
D (fE(5))? = Ep(X,€Y)

seFy
one can yield the second assertion of Lemma [4]
Combining inequalities (II), ([2]) and (3B) we see that

(XPY P IXIYG

X +&Y | > .
XN+ BEE XY+ 1G]

Lemma M] now follows. l

Definition 3. For any given subsets X,Y C F,,|Y| > 1 we denote

X-X 1 — X9
X, Y| = = : X Y, )
Q[ ) ] (Y—Y)\{O} {yl_yQ 1131,:326 ay1>y2€ ayl#yQ}

If X =Y then QX, X] = Q[X].

Lemma [G] is a simple extension of Lemma 2.50 from the book by T. Tao
and V. Vu [§].

Lemma 5. Consider two arbitrary subsets X, Y C F,,|Y| > 1. The given
element & € F, is contained in Q[X,Y] if and only if | X + £+ Y] < | X||Y].

Proof. Let us consider a mapping F' : X XY to X + £ %Y defined
by the identity F(z,y) = x + £y. F can be non-injective only when |X +
¢xY| < |X||Y|. On the other side, the non-injectivity of F' means that
there are elements xq1,22 € X, y1,y2 € Y such that (z1,y1) # (22,y2) and
F(x1,y1) = F(x2,y2). It is obvious that y; # ys since otherwise x; = x5 and
we have achieved a contradiction with condition (x1,y1) # (%2,y2). Hence,

€= (r1—x3)/(y2 —y1) € QIX,Y]. Lemma [l now follows. B
We need the following Lemma due to C.-Y. Shen [11].

Lemma 6. Let Xy and X, be two sets. Then for any e € (0,1) there ezist at
nl . . .
|1X25| min {| Xy + Xs|, | X1 — Xa|} additive translates of Xo whose union

contains not less than (1 —€)|Xy| elements of X;.

most



Proof. For simplicity, we assume that | X; + X5| < |X; — X3|. The case
when | X + X5| > | X; — Xs| can be considered similarly. Using Lemma [4] we
deduce

| X1 X

H(z,y,21,01) € XK x Xox Xy x Xo v +y=a21+ 11} = X, + X|

Now we can fix two elements z! € X;,y! € X, for which the equation

rl4+y=x+yl, v e X1,y € X, has at least % solutions and, therefore,

(2l 4+ Xo) N (Yl + X)) = ||))§11J|1§(22|‘. Denoting K = ‘X|1;£2)‘(2| we can observe that

X
X1 N (2 —yr + Xo)| = % (4)

Obviously, from (@) it is follows that

1
X = X -+ ) < (1 )

We can repeat previous arguments for sets X{ and X, and find elements
r? € X] and y? € X, such that

1
XN g2+ ) >

1 1)’
X = I -t < (1o ) It < (1- ) 1l

On i-th iteration we finding elements 2! € X} ' and y! € X, with

X

|Xf_1 N (Ii —yl+ Xo)| > K

IXﬂ:ﬂX?“dﬂ—ybh&ﬂé(1—%)Lﬁ”¢<(r—%)IXw
We stop when |X7'| < e]X;]| for some n. It is easy to see that we will make
not more than In (é) K steps. The last observation finishes the proof of the
Lemma [6. W

We also need the following sum-product estimate of M. Z. Garaev [12]
Theorem 3.1].



Theorem 5. Let A, B C I, be an arbitrary subsets. Then

AP BI*

> 3ri -1
EX(A7 B) = C‘A| L9(10g2 L) )

[A— AP
where L = min {|B|, ﬁ} and C' > 0 is an absolute constant.

3 Proof of the Theorem 3.

Let A,B C F, be as in Theorem Bl and § > 0, C' > 1 (to be specified).
Assume

> E,(A,bA) > C|BI' AP

beB
Hence there is a subset B; C B such that

C
B > S |BI?

and o
E (A bA) > §\B|‘5\A|3 for b € By. (5)

Fix b € B;. By the application of Lemma Bl to (&), one can deduce that
there is G C A x bA,|GY)| > £|B|79| A|? such that

4
AghbAl < =|BPIAI

Now, by Proposition [ there are @), Agb), Agb) C A such that

C

AV > 7511714, (6)
c? o5 (b)
mﬁ‘l\\m < Quy < 21477, (7)
2
4 AP 0

A7 >
[427) 27/2Q ) In(e] A|)

220
CoQ)

8

AP + 04y < In(e| A[)| B[ AP, (9)



Write

03

— IB/IBI73% Al AL o 40
2121H(€‘A|)| 1H | ‘ | <Z| 1 X 2|

beB1
1
2
<Al Y |(A0 R A x (49 a0

bb' €B;

by Cauchy-Schwartz. Hence

c* 2( B|-65 A2 ®) 4 40 ®) A 40
sy PP < 3 (4P nal) x (4P nad)|

bb' €By
and there is some by € By, By C B; such that

C?

> Bl—76 10
2261n2(e|A\)| | (10)

| B

06
225 In?(e| Al)
Let us estimate from (@), (), @), (I1) and Lemma Il

AP N AP AP 0 AP > [BI™|A] for be B, (11)

o 1A+ DA AP+ b0 ARY]
45°)
< 227\/21n*(e| A)
b C

8

b AL 1 AP

1B®|A" + 040 (12)

AL + DA AT + A
A9 N A
AP+ DA + by A P
S ) ~ 4 o) 1 200 S
457 0 AZ||A)
. 2694/21n*(e| A)
= 2
C’ng(bo)

‘Agbo) + bAgbo)| <

A2 B AP 454D (13)




b b b b
AP+ 0AP (AT + AP
|A(bo) N A(b)| =
\A(b + AP | APO) 4 py A2
|Ab0 ﬂA(b ||A(bo |
_ 292,/2 In%(e| A|)
= C%Q 4 Q)

AP +pAP)| <

[BP|AP. (14)

Hence, by ([I2), (I3) and (I4)

21%9/21n"*(e| A
‘bgAgbO)—FbAgbO)‘ < \/_ 1 (6| |)

|B‘535‘A|5.
CPQ @

Using () finally we obtain

20210 (e[ A)
61

Now we redefine A (bo) by A" and f—; by B’ one can deduce the following

|bo AT + bAT| < | B|59| Al

properties (for § < 45):

, o 229/21n'0(e|A ,
A+ bA| < fclél AD, 5013 4| for atl be B (15)
, (ol
B|>———|B|'™™ 16
A > |B|I7|Al. (17)

24\f
Our aim is to get contradiction from (I5]), (I6) and (I7]).
Let us use the symbol

2219\/_1n16(e|A|)

B AL (19)

K = max |A 4 bA'| S0 K <
beB’

Now we use Lemma [ to establish that

E (A bA) = [{(a1, a2, a3,a1) € A x A" x A" x A" - ay +agb = ag+asb}| >

AL AT

10



Summing over all b € B we obviously obtain
A" B

[{(a1,az,as,as,0) € A x A'x A x A" x B" : ay +asb = ag+asb}| > =

There are some elements as, asz € A" such that
/ ’ ’ - " A’ 2 B’
|{(a1,a4,b) cA xA xB I&l—agz(a4_a2)b}| 2 %

Let A} = A" — a3, A, = A" — @, be translates of A by @3 and @, respectively.
Then

!’ ’ ’ Al 2 B/
(a0 h) € A} x Ay x B s = agt| > ALIEL
There is some a, € A, such that
’ ’ A/ B’
NP I SNP i L]

Thus, we have a subset B, C (A} Na,B’) of cardinality

/ | l|| ,|
| 1| K

In original notations B, lies in the intersection of =By and some translate
of A": besides by the bounds (I6), (I7) and (IX)

, 069

1-695
| By > mﬁﬂ : (19)

We consider three cases.

1) Case 1. Suppose that Q[B;] # F,. It is clear that 1 + Q[B;] #
Q[B]] since otherwise Q[B]] = F,. The latter mean that there are elements
a,b,c,d € By with 1 + et ¢ Q[B;]. Now we recall that B, is a subset
of =By so we can regard a, b, c,d as elements of By. Observe, that for an
arbitrary subset B] C By, |B|| > 0.98|B| we have 1 + =% ¢ Q[B]] since
Q[B]] € Q[B;]. Therefore, by Lemma [5, for these elements a, b, ¢, d € By we
have

"

a—>b ” ” a—>

0.98)%|B,|* < |B;|> =
( )7|B1] | B | g d
(20)

g+(m+

11



We now use Lemmal[6l Let us first show that for any b; € B, we can cover
99% of the elements of the set b; B, (a subset of the translation of blAgbO)) or

—b, B, by at most 2 ln(lg)gslns(e|A‘) | B|? additive translates of the set by A"

Indeed byA'™) N A% is a subset of byA™, and by Lemma [0 and Lemma [
we can cover 99% of the elements of either b B; or —b; B, by at most

In(100)
|bp ALY N AP

i {IboAl™ 0 A+ by B bo A 1 AP — b, B[} <

< % min {\boAf’l’ N A 1 p AP pe Al [ AL blA§b°>|} <

In(100) [ AP 0 AP + by AP 0 APV || AP + by AT 0 AT

ALY 1A bobr A 0 AP b

. In(100)| AP + b, ATV |AP) + by ALY . 2105 11(100) In®(e| A])
AP AP AP 0 ALY o=

additive translates of by A" NA) and whence of bpA™. In the last estimate

we have used (7)), (@) and (II)).

This altogether enables us to choose B; as a subset containing at least
98% of the elements from B such that (a — b)B, gets covered by at most

2 1n2(10005)61n16(e|A\) | B translates of byA™ + by A Similarly, we can find

a subset fﬁb‘)) containing at least 98% of the elements of Agb‘)) such that

2210112(100) In16(e| A)
o |B

<

|B|285

(c — d)A" gets covered by at most % translates of
boAgbO) + boAgbO). Now we apply Lemma 2] to (20)) as follows

1 (bo) " 11 7 (bo) a=bn"
By + B + ——B/| < — <
A
24\/§|B‘6 b b b ~(b a—>b _u
< 2B o a4 a0+ 2 <

a—>b

257 1n%(e| A ~
< ( ‘ |>|B|256|A§b0)+0_d31| (21)

= 25

The covering arguments above implies that

_ 420 14 32
a SB,I,|<2 In*(100) In**(e| A|)

¢ ci |B122 | AP 4 AP AP 4P| <

AP+

12



. 2930 1n*(100) In** (e A|)

X 0144 ‘B|1446‘A|’

Comparing to (I9) and using the condition % > i, for large p we deduce

(0.98)2C138 2195 2613 1n(100) In*® (e A|)
FOEA) D 1

- |B|2—3076 - 91113 1n4(100)
|A[In**(e|A]) ~ (0,98)2C37

|B|1695|A| =

21115 1n%(100)
(O, 98)20307 ’

= |B|'730% < (22)

1115 4
Now we define C' = m:;;g—jw and from (22)) deduce the inequality
| B| < | B|3086

which is false when § < WIS' This finishes proof of the Theorem [3] in case 1.

2) Case 2. Suppose that |B;| > \/p. It is clear that Q[B;] = F,, since
for an arbitrary ¢ € F, the equality |B; + £B;| = | B;|? is impossible (simply
because |B;|? > p). Let us take arbitrary elements £ € F, s € F,, an
arbitrary subset |B]| > 0.96|B;| and denote

fe(s) == [{(b1, b2) € B) x By : by + £by = s}
fe(s) = [{(b1,bs) € B x B : by + &by = s}
It is obvious that

Z(ff(s))2 = |{(by, by, b3, by) € By x By x By x By : by + by = by + by}

s€lFp

= | By|> + [{(by, by, b3, by) € By x B} x By x By : by # b3, by + by = bs + Eby}|

and
> fels) =B
sclf,
> fels) = IB/I*
sclFy

Let us observe that for every by, by, b3, by € B/1 such that by # b3, there is
at most one n € ) satisfying the equality by + nby = b3 + nbs. Therefore,

YD ) <IBPe -1+ |B"

§€T;, selp

13



From the last inequality it directly follows that there is an element § € F)

such that i
S < T (lol? < B

selfp selfp

Note that this ¢ is independent on B;. According to Cauchy-Schwartz,

2

> fels) | <IBYHEBIY (fe(s))*.

s€lfp s€lfp
Now we see that

=1
5
(23)
Reminding that Q[B;] = F,, we can find elements a,b,c,d € B,, such
a—b

that { = %= (again, we can regard them as elements of B;). Using similar

covering arguments as in proof of the case 1 we can deduce that we can
choose B; as a subset containing at least 96% of the elements from B; such

"

that (a — b)B, + (c — d) B, gets covered by at most 2— 1n4(189321n32(e|‘4‘) | B|H2
translates of by A + by A 4+ b A" 4 by AL Now we see that

Bile-1) 001801 _ oo

B, +£B)| > — — > — >
BB 1B B — 1) + B

" a—>b
B+ g

- 2201n*(100) In*?(e| A|)

N i [BI12] AL 4 AP+ AP A )| <

. 2930 1n*(100) In* (e A|)

X 0144 ‘B|1446‘A|’

Again, comparing to ([23) and using the condition % > 1, we deduce

)4p—1 _ 2°301n(100) In**(e| A|)
2 0144

p 250 1114(100) 14585+«
> <
4= om(0.96)+ 7

|B|1446|A| =

(0.96)42 < (0.96

(24)

265 1
Now we define C' = %:%100) and from (24) deduce the inequality

p < p14566+oc

14



which is false when § < 1 = B This concludes proof of the Theorem in case 2.

3) Case 3. Suppose that Q[B;] = F, and |B|| < /p. Repeating ar-
guments from the proof of case 2 for an arbitrary subset B, C By, |B;| >
0.96|B;| we finding elements a,b,c,d € B, independent on the subset B,

with 1B |2
B, + — B, -
e—d 2
Using similar covering arguments as in proof of the case 1 we can de-
duce that we can choose B] as a subset containing at least 96% of the el-
ements from B; such that (a — b)B; + (c — d)B] gets covered by at most

220 (100 P (el A | 1311126 tranglates of by AL +by A% +by A% +5y A% Now

v a—b (096)

0112
we see that
" a — b " 2420 1114(10()) 11132(6‘A|) b b b b
B+ o dBl S 112 |B|1126|A§ O)+A§ O)+A§ O)+A§ ) <

- 2°301n1(100) In*(e| A|)

~ (/144

| B|1446| A|
Comparing to (I9) and using the condition % > i, we deduce

(0.96)*C'38 B < 2530 1n%(100) In*®(e| A))

Bl446A PEN
2500 In (e[ A[) Cas BIEIA

| B|?~282 21930 1n"(100) B2 21952 1n"(100)

@ A (e 4]) ~ (0,96)'C?2 0,96c= (%)

516 2
Now we define €' = 227000 41 q from (25) deduce the inequality

(0.96) TIT
‘ B| < | B‘2835
which is false when § < 283 Note that in all the cases the meaning assigned

for the constant C is strictly less than 15. The Theorem [l is proved. B

15



4 Proof of the Theorem 4.

As in the proof of the Proposition [3] we assume contrary, i.e.
> E,(AbA) > C|B|'|AP
beB

for some C' > 0, 6 > 0. Following arguments in the beginning of the proof of
the Proposition B we finding A" € A and B’ C Fr 1€ B’ (which is in fact a
subset of a multiplicative shift of B) such that

22194/21n'%(e| A|)

|A"+bA'| < o |B|*®|A| = K for all be B©  (26)
, ol
B|>————|B''™® 27
‘ | 226 1n2(6|A|)‘ | ( )
, c o
A > 24\/§|B| °A. (28)

Using Lemma [4] we obtain

|{(CL1,CL2,CL3,G4) € Al X A/ X Al X Al cay + bay = as + ba4}| >
A

> forallb e B'.

Summing up by all b € B one gets

\{(al,ag,ag,a4,b) EA/ X Al X Al X Al X Bl : a1+ba2 :a3+ba4}| >
AlYB :
>LK|| forallbe B .

Now we can fix elements a3, aJ € A" such that

[APIB]

[{(ar,as,b) € A" x A" x B": a; — a§ = b(ay — al)}| > K

(29)

We denote
f(s) ={(a,b) € A" x B" : b(a — af) = s},

(s) = 1, ifse A —al;
9\8) = 0, otherwise.

16



Clearly,

{(ar,as,0) € A" x A" x B' 1 ay — a§ = blas — a9)}| = Y _ f(s)g (30)
self,
> f3s) = Ex(A — dl, B). (31)
self,

Now, by Cauchy-Schwartz,

DY f)gls) ] <DL D g s)

seF, seF, s€lfy
and, by ([B0) and (3II), one can deduce

APIB|

E (A —d), B) > 702

Consider two cases.
Case 1. Assume that |A'||B’| < p. Applying Theorem [§ one obtains

K4
[A]

Using (26), (27) and (28) we deduce
¥ BB _ 2 % (el4)

APIBP AP

A — A% > .
WA T a5y 7 Mes,(B)

‘B|2445‘A|4 =
2% 11fl*’(6|A|)10g2(|B|) S
8090 578
1 279 In9 (e|lA log B 2239
5} < 2 AER 0P s (52)
1
8090
Defining C' = 27;;; , we observe that for sufficiently large p from (32]) follows
the inequality '
|B| 9 < |B| 22406

which gives a contradiction when § = This completes proof of the

Theorem [ in this case.

2240
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Case 2. Assume that |A'||B'| > p. Again, applying Theorem [fl we obtain

K4 / ’ |A/‘2|Bl|2 |A/‘%p%
S A — A2 > —.
w AT T B 7 O Temp

Using (26) and (28)) we deduce

CLCT| Al ps . 2878 In%(e| A|)

B2446A4:>
H T
1791
2 In%(elAN1
L 27 el A)logap 45 g3 s b, (33)

0901
1911

Defining C' = 2252 we observe that for sufficiently large p from (B3)) follows
C 231

the inequality

©

=y

p? < |BIFIAR.

which gives a contradiction when § = ;2_—3‘; Theorem (] is proved. W
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