Average estimate for additive energy in prime field.

Glibichuk Alexey*

Abstract

Assume that $A \subseteq \mathbb{F}_{p}, B \subseteq \mathbb{F}_{p}^{*}, \frac{1}{4} \leqslant \frac{|B|}{|A|},|A|=p^{\alpha},|B|=p^{\beta}$. We will prove that for $p \geqslant p_{0}(\beta)$ one has $$
\sum_{b \in B} E_{+}(A, b A) \leqslant 15 p^{-\frac{\min \{\beta, 1-\alpha\}}{308}}|A|^{3}|B| .
$$

Here $E_{+}(A, b A)$ is an additive energy between subset A and it's multiplicative shift $b A$. This improves previously known estimates of this type.

1 Introduction.

Let X be a non-empty set endowed with a binary operation $*: X \times X \rightarrow X$. Then one can define the operation ${ }^{*}$ on pairs of subsets $A, B \subset X$ by the formula $A * B=\{a * b: a \in A, b \in B\}$. In particular, if A and B are subsets of a ring, we have two such operations: addition $A+B:=\{a+b: a \in A, b \in B\}$ and multiplication $A B=A \times B:=\{a b: a \in A, b \in B\}$. For given element b we define operation $b * A=b \times A$. The $\operatorname{sign} *$ may be omitted when there is no danger of confusion. We write $|A|$ for the cardinality of A. We take the ring to be the field \mathbb{F}_{p} of p elements, where p is an arbitrary prime. All sets are assumed to be subsets of \mathbb{F}_{p}. Given any set $Y \subset \mathbb{F}_{p}$, we write $Y^{*}:=Y \backslash\{0\}$ for the set of invertible elements of Y. We shall always assume that p is a prime. Given any real number y , we write $[y]$ for its integer part (the largest

[^0]integer not exceeding y), and denote the fractional part of y by $\{y\}$. We also define the operation $h+A=\{h\}+A$ which adds an arbitrary element $h \in \mathbb{F}_{p}$ to the set A.

Definition 1. For subsets $A, B \subset \mathbb{F}_{p}$ we denote

$$
\begin{gathered}
E_{+}(A, B)=\left|\left\{\left(a_{1}, a_{2}, b_{1}, b_{2}\right) \in A \times A \times B \times B: a_{1}-a_{2}=b_{1}-b_{2}\right\}\right|, \\
E_{\times}(A, B)=\left|\left\{\left(a_{1}, a_{2}, b_{1}, b_{2}\right) \in A \times A \times B \times B: a_{1} a_{2}=b_{1} b_{2}\right\}\right| .
\end{gathered}
$$

Numbers $E_{+}(A, B)$ and $E_{\times}(A, B)$ are said to be an additive energy and a multiplicative energy of sets A and B respectively.

In the paper [1] J. Bourgain proved the following result.
Theorem 1. Assume $A \subset \mathbb{F}_{p}, B \subset \mathbb{F}_{p}$ and $|A|=p^{\alpha},|B|=p^{\beta}$ with $\alpha \geqslant \beta$. Then

$$
\sum_{b \in B} E_{+}(A, b A)<C_{1} p^{c_{2} \gamma}|A|^{3}|B|
$$

where $\gamma=\min (\beta, 1-\alpha)$ and C_{1}, c_{2} are absolute constants (independent on $\alpha, \beta)$.

In the same paper J. Bourgain deduces from Theorem 1 sum-product estimate for two different subsets. Further, J. Bourgain and author [2] of this paper extended Theorem to the case of an arbitrary finite field. More precisely, we proved the following result.

Theorem 2. Take arbitrary subsets A, B of a finite field \mathbb{F}_{q} with $q=p^{r}$ elements, such that $|A|=q^{\alpha},|B|=q^{\beta}, \alpha \geqslant \beta$ and an arbitrary $0<\eta \leqslant 1$. Suppose further that for every nontrivial subfield $S \subset \mathbb{F}_{q}$ and every element $d \in F q$ the set B satisfies the restriction

$$
|B \cap d S| \leqslant 4|B|^{1-\eta}
$$

Then

$$
\sum_{b \in B} E_{+}(A, b A) \leqslant 13 q^{-\frac{\gamma}{10430}}|A|^{3}|B|
$$

where $\gamma=\min \left(\beta, \frac{5215}{4} \beta \eta, 1-\alpha\right)$.

In this paper we also deduced from the Theorem 2 a new character sum estimate over a small multiplicative subgroup. J. Bourgain, S. J. Dilworth, K. Ford, S. Konyagin and D. Kutzarova [3] applied Theorem 2 to one of the problems of sparse signal recovery and several others branches of coding theory. Also, M. Rudnev and H. Helfgott [4] used method, proposed in the proof of the Theorem 1 to obtain an new explicit point-line incidence result in \mathbb{F}_{p}. These examples demonstrate that estimates like Theorems 1 and 2 have wide range of applications.

In the current paper a slightly modified version of the method from paper [4] will be used to obtain an improvement of the Theorem 2 in the case of prime field \mathbb{F}_{p}. We will establish the following theorem.

Theorem 3. Assume that $A \subseteq \mathbb{F}_{p}, B \subseteq \mathbb{F}_{p}^{*}, \frac{1}{4} \leqslant \frac{|B|}{|A|},|A|=p^{\alpha},|B|=p^{\beta}$. Then for $p \geqslant p_{0}(\beta)$

$$
\sum_{b \in B} E_{+}(A, b A) \leqslant 15 p^{-\frac{\min \{\beta, 1-\alpha\}}{308}}|A|^{3}|B|
$$

Ideas of M. Rudnev and H. Helfgott in context of this problem working only when $|B| \geqslant K|A|$ for some absolute constant K. Case when $|A|$ is small comparatively to $|B|$ was analyzed by another method. This method is elementary in some extent and gives the following estimate.

Theorem 4. Assume that $A \subseteq \mathbb{F}_{p}, B \subseteq \mathbb{F}_{p}^{*},|A|=p^{\alpha},|B|=p^{\beta}$. Then for $p \geqslant p_{0}(\alpha, \beta)$ we have

$$
\sum_{b \in B} E_{+}(A, b A) \leqslant C p^{-\frac{\min \{\beta, 1-\alpha\}}{2240}}|A|^{3}|B|
$$

where $C>0$ is an absolute constant.
As we see, Theorem 4 gives worse estimate than Theorem 3, but it still better than one delivered by the Theorem 2.

In section 2 we stating preliminary results which will be used in proofs of Theorems 3 and 4. Theorem 3 is proved in the Section 3, Theorem 4 is proved in the Section 4.

Acknowledgements. The author thank professor S. Konyagin and M. Rudnev for useful discussions helped me to improve the final result.

2 Preliminary results.

All the subsets in the Lemmas below are assumed to be non-empty. The first two lemmas is due to Ruzsa [5, [6]. It holds for subsets of any abelian group, but here we state them only for the subsets of \mathbb{F}_{p}.

Lemma 1. For any subsets X, Y, Z of \mathbb{F}_{p} we have

$$
|X-Z| \leqslant \frac{|X-Y||Y-Z|}{|Y|}
$$

Lemma 2. Let $Y, X_{1}, X_{2}, \ldots, X_{k}$ be sets of \mathbb{F}_{p}. Then

$$
\left|X_{1}+X_{2}+\ldots+X_{k}\right| \leqslant \frac{\prod_{i=1}^{k}\left|Y+X_{i}\right|}{|Y|^{k-1}}
$$

Definition 2. For any nonempty subsets $A \subset \mathbb{F}_{p}, B \subset \mathbb{F}_{p}, G \subset A \times B$, we define their partial sum

$$
\left|A_{G}^{+} B\right|=\{a+b:(a, b) \in G\} .
$$

Let us recall the modification of Balog-Szemeredi-Gowers result (see the paper of J. Bourgain and M. Garaev [7], Lemma 2.3).

Proposition 1. Let A and B be subsets of \mathbb{F}_{p} and $G \subset A \times B$ be such that $|G| \geqslant \frac{|A||B|}{K}$ for some $K>0$. Then there exist subsets $A^{\prime} \subset A, B^{\prime} \subset B$ and a number Q, with
$\left|A^{\prime}\right| \geqslant \frac{|A|}{4 \sqrt{2} K}, \quad \frac{|A|}{8 \sqrt{2} K^{2} \ln (e|A|)} \leqslant Q \leqslant 2\left|A^{\prime}\right|, \quad\left|B^{\prime}\right| \geqslant \frac{|A||B|}{8 \sqrt{2} Q K^{2} \ln (e|A|)}$ such that

$$
\left|A_{G}^{+} B\right|^{3} \geqslant\left|A^{\prime}+B^{\prime}\right| \frac{Q|B|}{256 K^{3} \ln (e|A|)} .
$$

We shall use the following result from the book of T . Tao and V . Vu [8] (Lemma 2.30, p. 80).

Lemma 3. If $E_{+}(A, B)>\frac{1}{K}|A|^{\frac{3}{2}}|B|^{\frac{3}{2}}, K \geqslant 1$, then there is $G \subset A \times B$ satisfying

$$
|G|>\frac{1}{2 K}|A||B| \text { and }\left|A_{G}^{+} B\right|<2 K|A|^{\frac{1}{2}}|B|^{\frac{1}{2}} .
$$

This lemma represents a known technical approach for estimating sumproduct sets, see, for example [9], [10.

Lemma 4. For any given subsets $X, Y \subseteq \mathbb{F}_{p}, G \subset \mathbb{F}_{p}^{*}$ there is an element $\xi \in G$ with

$$
|X+\xi Y| \geqslant \frac{|X||Y||G|}{|X||Y|+|G|}
$$

Moreover, the following inequality holds

$$
|X+\xi Y|>\frac{|X|^{2}|Y|^{2}}{E_{+}(X, \xi Y)}
$$

Proof. Let us take an arbitrary element $\xi \in G$ and $s \in \mathbb{F}_{p}$ and denote

$$
f_{\xi}^{+}(s):=|\{(x, y) \in X \times Y: x+y \xi=s\}| .
$$

It is obvious that

$$
\begin{aligned}
& \sum_{s \in \mathbb{F}_{p}}\left(f_{\xi}^{+}(s)\right)^{2}=\left|\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \in X \times X \times Y \times Y: x_{1}+y_{1} \xi=x_{2}+y_{2} \xi\right\}\right| \\
= & |X||Y|+\left|\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \in X \times X \times Y \times Y: x_{1} \neq x_{2}, x_{1}+y_{1} \xi=x_{2}+y_{2} \xi\right\}\right|
\end{aligned}
$$

and

$$
\begin{equation*}
\sum_{s \in \mathbb{F}_{p}} f_{\xi}^{+}(s)=|X||Y| . \tag{1}
\end{equation*}
$$

Let us observe that for every $x_{1}, x_{2} \in X, y_{1}, y_{2} \in Y$ such that $x_{1} \neq x_{2}$, there is at most one $\eta \in G$ satisfying the equality $x_{1}+y_{1} \eta=x_{2}+y_{2} \eta$. Therefore,

$$
\sum_{\xi \in G} \sum_{s \in \mathbb{F}_{p}}\left(f_{\xi}^{+}(s)\right)^{2} \leqslant|X||Y||G|+|X|^{2}|Y|^{2}
$$

From the last inequality it directly follows that there is an element $\xi \in G$ such that

$$
\begin{equation*}
\sum_{s \in \mathbb{F}_{p}}\left(f_{\xi}^{+}(s)\right)^{2} \leqslant|X||Y|+\frac{|X|^{2}|Y|^{2}}{|G|} \tag{2}
\end{equation*}
$$

According to Cauchy-Schwartz,

$$
\begin{equation*}
\left(\sum_{s \in \mathbb{F}_{p}} f_{\xi}^{+}(s)\right)^{2} \leqslant|X+\xi Y| \sum_{s \in \mathbb{F}_{p}}\left(f_{\xi}^{+}(s)\right)^{2} \tag{3}
\end{equation*}
$$

Observing that

$$
\sum_{s \in \mathbb{F}_{p}^{*}}\left(f_{\xi}^{+}(s)\right)^{2}=E_{+}(X, \xi Y)
$$

one can yield the second assertion of Lemma 4.
Combining inequalities (1), (2) and (3) we see that

$$
|X+\xi Y| \geqslant \frac{|X|^{2}|Y|^{2}}{|X||Y|+\frac{|X|^{2}|Y|^{2}}{|G|}}=\frac{|X||Y||G|}{|X||Y|+|G|}
$$

Lemma 4 now follows.
Definition 3. For any given subsets $X, Y \subset \mathbb{F}_{p},|Y|>1$ we denote

$$
Q[X, Y]=\frac{X-X}{(Y-Y) \backslash\{0\}}:=\left\{\frac{x_{1}-x_{2}}{y_{1}-y_{2}}: x_{1}, x_{2} \in X, y_{1}, y_{2} \in Y, y_{1} \neq y_{2}\right\}
$$

If $X=Y$ then $Q[X, X]=Q[X]$.
Lemma 5 is a simple extension of Lemma 2.50 from the book by T. Tao and $\mathrm{V} . \mathrm{Vu}$ [8].

Lemma 5. Consider two arbitrary subsets $X, Y \subset \mathbb{F}_{p},|Y|>1$. The given element $\xi \in \mathbb{F}_{p}$ is contained in $Q[X, Y]$ if and only if $|X+\xi * Y|<|X||Y|$.

Proof. Let us consider a mapping $F: X \times Y$ to $X+\xi * Y$ defined by the identity $F(x, y)=x+\xi y . F$ can be non-injective only when $\mid X+$ $\xi * Y|<|X|| Y \mid$. On the other side, the non-injectivity of F means that there are elements $x_{1}, x_{2} \in X, y_{1}, y_{2} \in Y$ such that $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$ and $F\left(x_{1}, y_{1}\right)=F\left(x_{2}, y_{2}\right)$. It is obvious that $y_{1} \neq y_{2}$ since otherwise $x_{1}=x_{2}$ and we have achieved a contradiction with condition $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$. Hence, $\xi=\left(x_{1}-x_{2}\right) /\left(y_{2}-y_{1}\right) \in Q[X, Y]$. Lemma 5 now follows.

We need the following Lemma due to C.-Y. Shen [11].
Lemma 6. Let X_{1} and X_{2} be two sets. Then for any $\varepsilon \in(0,1)$ there exist at most $\frac{\ln \frac{1}{\varepsilon}}{\left|X_{2}\right|} \min \left\{\left|X_{1}+X_{2}\right|,\left|X_{1}-X_{2}\right|\right\}$ additive translates of X_{2} whose union contains not less than $(1-\varepsilon)\left|X_{1}\right|$ elements of X_{1}.

Proof. For simplicity, we assume that $\left|X_{1}+X_{2}\right| \leqslant\left|X_{1}-X_{2}\right|$. The case when $\left|X_{1}+X_{2}\right|>\left|X_{1}-X_{2}\right|$ can be considered similarly. Using Lemma 4 we deduce

$$
\left|\left\{\left(x, y, x_{1}, y_{1}\right) \in X_{1} \times X_{2} \times X_{1} \times X_{2}: x+y=x_{1}+y_{1}\right\}\right| \geqslant \frac{\left|X_{1}\right|^{2}\left|X_{2}\right|^{2}}{\left|X_{1}+X_{2}\right|}
$$

Now we can fix two elements $x_{*}^{1} \in X_{1}, y_{*}^{1} \in X_{2}$ for which the equation $x_{*}^{1}+y=x+y_{*}^{1}, x \in X_{1}, y \in X_{2}$ has at least $\frac{\left|X_{1}\right|\left|X_{2}\right|}{\left|X_{1}+X_{2}\right|}$ solutions and, therefore, $\left|\left(x_{*}^{1}+X_{2}\right) \cap\left(y_{*}^{1}+X_{1}\right)\right| \geqslant \frac{\left|X_{1}\right|\left|X_{2}\right|}{\left|X_{1}+X_{2}\right|}$. Denoting $K=\frac{\left|X_{1}+X_{2}\right|}{\left|X_{2}\right|}$ we can observe that

$$
\begin{equation*}
\left|X_{1} \cap\left(x_{*}^{1}-y_{*}^{1}+X_{2}\right)\right| \geqslant \frac{\left|X_{1}\right|}{K} \tag{4}
\end{equation*}
$$

Obviously, from (4) it is follows that

$$
\left|X_{1}^{1}\right|:=\left|X_{1} \backslash\left(x_{*}^{1}-y_{*}^{1}+X_{2}\right)\right| \leqslant\left(1-\frac{1}{K}\right)\left|X_{1}\right| .
$$

We can repeat previous arguments for sets X_{1}^{1} and X_{2} and find elements $x_{*}^{2} \in X_{1}^{1}$ and $y_{*}^{2} \in X_{2}$ such that

$$
\begin{gathered}
\left|X_{1}^{1} \cap\left(x_{*}^{2}-y_{*}^{2}+X_{2}\right)\right| \geqslant \frac{\left|X_{1}^{1}\right|}{K} \\
\left|X_{1}^{2}\right|:=\left|X_{1}^{1} \backslash\left(x_{*}^{2}-y_{*}^{2}+X_{2}\right)\right| \leqslant\left(1-\frac{1}{K}\right)\left|X_{1}^{1}\right| \leqslant\left(1-\frac{1}{K}\right)^{2}\left|X_{1}\right| .
\end{gathered}
$$

On i-th iteration we finding elements $x_{*}^{i} \in X_{1}^{i-1}$ and $y_{*}^{i} \in X_{2}$ with

$$
\begin{gathered}
\left|X_{1}^{i-1} \cap\left(x_{*}^{i}-y_{*}^{i}+X_{2}\right)\right| \geqslant \frac{\left|X_{1}^{i-1}\right|}{K} \\
\left|X_{1}^{i}\right|:=\left|X_{1}^{i-1} \backslash\left(x_{*}^{i}-y_{*}^{i}+X_{2}\right)\right| \leqslant\left(1-\frac{1}{K}\right)\left|X_{1}^{i-1}\right| \leqslant\left(1-\frac{1}{K}\right)^{i}\left|X_{1}\right| .
\end{gathered}
$$

We stop when $\left|X_{1}^{n}\right|<\varepsilon\left|X_{1}\right|$ for some n. It is easy to see that we will make not more than $\ln \left(\frac{1}{\varepsilon}\right) K$ steps. The last observation finishes the proof of the Lemma 6

We also need the following sum-product estimate of M. Z. Garaev [12, Theorem 3.1].

Theorem 5. Let $A, B \subset \mathbb{F}_{p}$ be an arbitrary subsets. Then

$$
|A-A|^{2} \cdot \frac{|A|^{2}|B|^{2}}{E_{\times}(A, B)} \geqslant C|A|^{3} L^{\frac{1}{9}}\left(\log _{2} L\right)^{-1}
$$

where $L=\min \left\{|B|, \frac{p}{|A|}\right\}$ and $C>0$ is an absolute constant.

3 Proof of the Theorem 3.

Let $A, B \subseteq \mathbb{F}_{p}$ be as in Theorem 3 and $\delta>0, C>1$ (to be specified). Assume

$$
\sum_{b \in B} E_{+}(A, b A)>C|B|^{1-\delta}|A|^{3}
$$

Hence there is a subset $B_{1} \subseteq B$ such that

$$
\left|B_{1}\right|>\frac{C}{2}|B|^{1-\delta}
$$

and

$$
\begin{equation*}
E_{+}(A, b A)>\frac{C}{2}|B|^{-\delta}|A|^{3} \text { for } b \in B_{1} \tag{5}
\end{equation*}
$$

Fix $b \in B_{1}$. By the application of Lemma 3 to (5), one can deduce that there is $G^{(b)} \subset A \times b A,\left|G^{(b)}\right|>\frac{C}{4}|B|^{-\delta}|A|^{2}$ such that

$$
\left|A_{G^{(b)}}^{+} b A\right|<\frac{4}{C}|B|^{\delta}|A|
$$

Now, by Proposition 1, there are $Q_{(b)}, A_{1}^{(b)}, A_{2}^{(b)} \subset A$ such that

$$
\begin{gather*}
\left|A_{1}^{(b)}\right|>\frac{C}{2^{4} \sqrt{2}}|B|^{-\delta}|A|, \tag{6}\\
\frac{C^{2}}{2^{7} \sqrt{2} \ln (e|A|)}|A||B|^{-2 \delta} \leqslant Q_{(b)} \leqslant 2\left|A_{1}^{(b)}\right|, \tag{7}\\
\left|A_{2}^{(b)}\right|>\frac{C^{2}}{2^{7} \sqrt{2} Q_{(b)} \ln (e|A|)}|B|^{-2 \delta}|A|^{2}, \tag{8}\\
\left|A_{1}^{(b)}+b A_{2}^{(b)}\right|<\frac{2^{20}}{C^{6} Q_{(b)}} \ln (e|A|)|B|^{6 \delta}|A|^{2} . \tag{9}
\end{gather*}
$$

Write

$$
\begin{aligned}
\frac{C^{3}}{2^{12} \ln (e|A|)}\left|B_{1}\right||B|^{-3 \delta}|A|^{2} & <\sum_{b \in B_{1}}\left|A_{1}^{(b)} \times A_{2}^{(b)}\right| \\
& \leqslant|A|\left[\sum_{b, b^{\prime} \in B_{1}}\left|\left(A_{1}^{(b)} \cap A_{1}^{\left(b^{\prime}\right)}\right) \times\left(A_{2}^{(b)} \cap A_{2}^{\left(b^{\prime}\right)}\right)\right|\right]^{\frac{1}{2}}
\end{aligned}
$$

by Cauchy-Schwartz. Hence

$$
\frac{C^{6}}{2^{24} \ln ^{2}(e|A|)}\left|B_{1}\right|^{2}|B|^{-6 \delta}|A|^{2}<\sum_{b, b^{\prime} \in B_{1}}\left|\left(A_{1}^{(b)} \cap A_{1}^{\left(b^{\prime}\right)}\right) \times\left(A_{2}^{(b)} \cap A_{2}^{\left(b^{\prime}\right)}\right)\right|
$$

and there is some $b_{0} \in B_{1}, B_{2} \subset B_{1}$ such that

$$
\begin{gather*}
\left|B_{2}\right|>\frac{C^{7}}{2^{26} \ln ^{2}(e|A|)}|B|^{1-7 \delta} \tag{10}\\
\left|A_{1}^{(b)} \cap A_{1}^{\left(b_{0}\right)}\right|,\left|A_{2}^{(b)} \cap A_{2}^{\left(b_{0}\right)}\right| \tag{11}
\end{gather*}>\frac{C^{6}}{2^{25} \ln ^{2}(e|A|)}|B|^{-6 \delta}|A| \text { for } b \in B_{2} .
$$

Let us estimate from (6), (8), (9), (11) and Lemma 1

$$
\begin{align*}
&\left|b_{0} A_{1}^{\left(b_{0}\right)}+b A_{1}^{\left(b_{0}\right)}\right| \leqslant \frac{\left|A_{1}^{\left(b_{0}\right)}+b A_{2}^{\left(b_{0}\right)}\right|\left|A_{1}^{\left(b_{0}\right)}+b_{0} A_{2}^{\left(b_{0}\right)}\right|}{\left|A_{2}^{\left(b_{0}\right)}\right|} \leqslant \\
& \leqslant \frac{2^{27} \sqrt{2} \ln ^{2}(e|A|)}{C^{8}}|B|^{8 \delta}\left|A_{1}^{\left(b_{0}\right)}+b A_{2}^{\left(b_{0}\right)}\right| \tag{12}\\
&\left|A_{1}^{\left(b_{0}\right)}+b A_{2}^{\left(b_{0}\right)}\right| \leqslant \frac{\left|A_{1}^{\left(b_{0}\right)}+b A_{2}^{(b)}\right|\left|A_{2}^{\left(b_{0}\right)}+A_{2}^{\left(b_{0}\right)}\right|}{\left|A_{2}^{(b)} \cap A_{2}^{\left(b_{0}\right)}\right|} \leqslant \\
& \leqslant \frac{\left|A_{1}^{\left(b_{0}\right)}+b A_{2}^{(b)}\right|\left|A_{1}^{\left(b_{0}\right)}+b_{0} A_{2}^{\left(b_{0}\right)}\right|^{2}}{\left|A_{2}^{(b)} \cap A_{2}^{\left(b_{0}\right)}\right|\left|A_{1}^{\left(b_{0}\right)}\right|} \leqslant \\
& \leqslant \frac{2^{69} \sqrt{2} \ln ^{4}(e|A|)}{C^{19} Q_{\left(b_{0}\right)}^{2}}|A|^{2}|B|^{19 \delta}\left|A_{1}^{\left(b_{0}\right)}+b A_{2}^{(b)}\right| \tag{13}
\end{align*}
$$

$$
\begin{align*}
& \left|A_{1}^{\left(b_{0}\right)}+b A_{2}^{(b)}\right| \leqslant \frac{\left|A_{1}^{(b)}+b A_{2}^{(b)}\right|\left|A_{1}^{\left(b_{0}\right)}+A_{1}^{\left(b_{0}\right)}\right|}{\left|A_{1}^{\left(b_{0}\right)} \cap A_{1}^{(b)}\right|} \leqslant \\
& \leqslant \frac{\left|A_{1}^{(b)}+b A_{2}^{(b)}\right|\left|A_{1}^{\left(b_{0}\right)}+b_{0} A_{2}^{\left(b_{0}\right)}\right|^{2}}{\left|A_{1}^{\left(b_{0}\right)} \cap A_{1}^{(b)}\right|\left|A_{2}^{\left(b_{0}\right)}\right|} \leqslant \\
& \quad \leqslant \frac{2^{92} \sqrt{2} \ln ^{6}(e|A|)}{C^{26} Q_{(b)} Q_{\left(b_{0}\right)}}|B|^{26 \delta}|A|^{3} . \tag{14}
\end{align*}
$$

Hence, by (12), (13) and (14)

$$
\left|b_{0} A_{1}^{\left(b_{0}\right)}+b A_{1}^{\left(b_{0}\right)}\right| \leqslant \frac{2^{189} \sqrt{2} \ln ^{12}(e|A|)}{C^{53} Q_{\left(b_{0}\right)}^{3} Q_{(b)}}|B|^{53 \delta}|A|^{5}
$$

Using (77) finally we obtain

$$
\left|b_{0} A_{1}^{\left(b_{0}\right)}+b A_{1}^{\left(b_{0}\right)}\right| \leqslant \frac{2^{219} \sqrt{2} \ln ^{16}(e|A|)}{C^{61}}|B|^{61 \delta}|A| .
$$

Now we redefine $A_{1}^{\left(b_{0}\right)}$ by A^{\prime} and $\frac{B_{2}}{b_{0}}$ by B^{\prime} one can deduce the following properties (for $\delta<\frac{1}{440}$):

$$
\begin{gather*}
\left|A^{\prime}+b A^{\prime}\right|<\frac{2^{219} \sqrt{2} \ln ^{16}(e|A|)}{C^{61}}|B|^{61 \delta}|A| \text { for all } b \in B^{\prime} \tag{15}\\
\left|B^{\prime}\right|>\frac{C^{7}}{2^{26} \ln ^{2}(e|A|)}|B|^{1-7 \delta} \tag{16}\\
\left|A^{\prime}\right|>\frac{C}{2^{4} \sqrt{2}}|B|^{-\delta}|A| . \tag{17}
\end{gather*}
$$

Our aim is to get contradiction from (15), (16) and (17).
Let us use the symbol

$$
\begin{equation*}
K=\max _{b \in B^{\prime}}\left|A^{\prime}+b A^{\prime}\right| \quad \text { so } \quad K<\frac{2^{219} \sqrt{2} \ln ^{16}(e|A|)}{C^{61}}|B|^{61 \delta}|A| . \tag{18}
\end{equation*}
$$

Now we use Lemma 4 to establish that

$$
\begin{array}{r}
E_{+}\left(A^{\prime}, b A^{\prime}\right)=\left|\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in A^{\prime} \times A^{\prime} \times A^{\prime} \times A^{\prime}: a_{1}+a_{2} b=a_{3}+a_{4} b\right\}\right| \geqslant \\
\\
\geqslant \frac{\left|A^{\prime}\right|^{4}}{\left|A^{\prime}+b A^{\prime}\right|} \geqslant \frac{\left|A^{\prime}\right|^{4}}{K} .
\end{array}
$$

Summing over all $b \in B^{\prime}$ we obviously obtain
$\left|\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, b\right) \in A^{\prime} \times A^{\prime} \times A^{\prime} \times A^{\prime} \times B^{\prime}: a_{1}+a_{2} b=a_{3}+a_{4} b\right\}\right| \geqslant \frac{\left|A^{\prime}\right|^{4}\left|B^{\prime}\right|}{K}$.
There are some elements $\widetilde{a}_{2}, \widetilde{a}_{3} \in A^{\prime}$ such that

$$
\left|\left\{\left(a_{1}, a_{4}, b\right) \in A^{\prime} \times A^{\prime} \times B^{\prime}: a_{1}-\widetilde{a}_{3}=\left(a_{4}-\widetilde{a}_{2}\right) b\right\}\right| \geqslant \frac{\left|A^{\prime}\right|^{2}\left|B^{\prime}\right|}{K}
$$

Let $A_{1}^{\prime}=A^{\prime}-\widetilde{a}_{3}, A_{2}^{\prime}=A^{\prime}-\widetilde{a}_{2}$ be translates of A^{\prime} by \widetilde{a}_{3} and \widetilde{a}_{2} respectively. Then

$$
\left|\left\{\left(a_{1}, a_{2}, b\right) \in A_{1}^{\prime} \times A_{2}^{\prime} \times B^{\prime}: a_{1}=a_{2} b\right\}\right| \geqslant \frac{\left|A^{\prime}\right|^{2}\left|B^{\prime}\right|}{K}
$$

There is some $a_{*} \in A_{2}^{\prime}$ such that

$$
\left|\left\{\left(a_{1}, b\right) \in A_{1}^{\prime} \times B^{\prime}: a_{1}=a_{*} b\right\}\right| \geqslant \frac{\left|A^{\prime}\right|\left|B^{\prime}\right|}{K} .
$$

Thus, we have a subset $B_{1}^{\prime} \subset\left(A_{1}^{\prime} \cap a_{*} B^{\prime}\right)$ of cardinality

$$
\left|B_{1}^{\prime}\right| \geqslant \frac{\left|A^{\prime}\right|\left|B^{\prime}\right|}{K}
$$

In original notations B_{1}^{\prime} lies in the intersection of $\frac{a_{*}}{b_{0}} B_{2}$ and some translate of $A_{1}^{\left(b_{0}\right)}$; besides by the bounds (16), (17) and (18)

$$
\begin{equation*}
\left|B_{1}^{\prime}\right|>\frac{C^{69}}{2^{250} \ln ^{18}(e|A|)}|B|^{1-69 \delta} \tag{19}
\end{equation*}
$$

We consider three cases.

1) Case 1. Suppose that $Q\left[B_{1}^{\prime}\right] \neq \mathbb{F}_{p}$. It is clear that $1+Q\left[B_{1}^{\prime}\right] \neq$ $Q\left[B_{1}^{\prime}\right]$ since otherwise $Q\left[B_{1}^{\prime}\right]=\mathbb{F}_{p}$. The latter mean that there are elements $a, b, c, d \in B_{1}^{\prime}$ with $1+\frac{a-b}{c-d} \notin Q\left[B_{1}^{\prime}\right]$. Now we recall that B_{1}^{\prime} is a subset of $\frac{a_{*}}{b_{0}} B_{2}$ so we can regard a, b, c, d as elements of B_{2}. Observe, that for an arbitrary subset $B_{1}^{\prime \prime} \subset B_{1}^{\prime},\left|B_{1}^{\prime \prime}\right| \geqslant 0.98\left|B_{1}^{\prime}\right|$ we have $1+\frac{a-b}{c-d} \notin Q\left[B_{1}^{\prime \prime}\right]$ since $Q\left[B_{1}^{\prime \prime}\right] \subset Q\left[B_{1}^{\prime}\right]$. Therefore, by Lemma [5, for these elements $a, b, c, d \in B_{2}$ we have

$$
\begin{equation*}
(0.98)^{2}\left|B_{1}^{\prime}\right|^{2} \leqslant\left|B_{1}^{\prime \prime}\right|^{2}=\left|B_{1}^{\prime \prime}+\left(B_{1}^{\prime \prime}+\frac{a-b}{c-d} B_{1}^{\prime \prime}\right)\right| \leqslant\left|B_{1}^{\prime \prime}+B_{1}^{\prime \prime}+\frac{a-b}{c-d} B_{1}^{\prime \prime}\right| . \tag{20}
\end{equation*}
$$

We now use Lemma6. Let us first show that for any $b_{1} \in B_{2}$ we can cover 99% of the elements of the set $b_{1} B_{1}^{\prime}$ (a subset of the translation of $b_{1} A_{1}^{\left(b_{0}\right)}$) or $-b_{1} B_{1}^{\prime}$ by at most $\frac{2^{109} \ln (100) \ln ^{8}(e|A|)}{C^{28}}|B|^{28 \delta}$ additive translates of the set $b_{0} A_{1}^{\left(b_{0}\right)}$. Indeed $b_{0} A_{1}^{\left(b_{1}\right)} \cap A_{1}^{\left(b_{0}\right)}$ is a subset of $b_{0} A_{1}^{\left(b_{0}\right)}$, and by Lemma 6 and Lemma 11) we can cover 99% of the elements of either $b_{1} B_{1}^{\prime}$ or $-b_{1} B_{1}^{\prime}$ by at most

$$
\begin{aligned}
& \frac{\ln (100)}{\left|b_{0} A_{1}^{\left(b_{1}\right)} \cap A_{1}^{\left(b_{0}\right)}\right|} \min \left\{\left|b_{0} A_{1}^{\left(b_{1}\right)} \cap A_{1}^{\left(b_{0}\right)}+b_{1} B_{1}^{\prime}\right|,\left|b_{0} A_{1}^{\left(b_{1}\right)} \cap A_{1}^{\left(b_{0}\right)}-b_{1} B_{1}^{\prime}\right|\right\} \leqslant \\
& \leqslant \frac{\ln (100)}{\left|A_{1}^{\left(b_{1}\right)} \cap A_{1}^{\left(b_{0}\right)}\right|} \min \left\{\left|b_{0} A_{1}^{\left(b_{1}\right)} \cap A_{1}^{\left(b_{0}\right)}+b_{1} A_{1}^{\left(b_{0}\right)}\right|,\left|b_{0} A_{1}^{\left(b_{1}\right)} \cap A_{1}^{\left(b_{0}\right)}-b_{1} A_{1}^{\left(b_{0}\right)}\right|\right\} \leqslant \\
& \quad \leqslant \frac{\ln (100)\left|A_{1}^{\left(b_{1}\right)} \cap A_{1}^{\left(b_{0}\right)}+b_{1} A_{2}^{\left(b_{0}\right)} \cap A_{2}^{\left(b_{1}\right)}\right|\left|A_{1}^{\left(b_{0}\right)}+b_{0} A_{2}^{\left(b_{0}\right)} \cap A_{2}^{\left(b_{1}\right)}\right|}{\left|A_{1}^{\left(b_{1}\right)} \cap A_{1}^{\left(b_{0}\right)}\right|\left|b_{0} b_{1} A_{2}^{\left(b_{1}\right)} \cap A_{2}^{\left(b_{0}\right)}\right|} \leqslant \\
& \leqslant \frac{\ln (100)\left|A_{1}^{\left(b_{1}\right)}+b_{1} A_{2}^{\left(b_{1}\right)}\right|\left|A_{1}^{\left(b_{0}\right)}+b_{0} A_{2}^{\left(b_{0}\right)}\right|}{\left|A_{1}^{\left(b_{1}\right)} \cap A_{1}^{\left(b_{0}\right)}\right|\left|A_{2}^{\left(b_{1}\right)} \cap A_{2}^{\left(b_{0}\right)}\right|} \leqslant \frac{2^{105} \ln (100) \ln ^{8}(e|A|)}{C^{28}}|B|^{28 \delta}
\end{aligned}
$$

additive translates of $b_{0} A_{1}^{\left(b_{1}\right)} \cap A_{1}^{\left(b_{0}\right)}$ and whence of $b_{0} A_{1}^{\left(b_{0}\right)}$. In the last estimate we have used (77), (9) and (11).

This altogether enables us to choose $B_{1}^{\prime \prime}$ as a subset containing at least 98% of the elements from B_{1}^{\prime} such that $(a-b) B_{1}^{\prime \prime}$ gets covered by at most $\frac{2^{210} \ln ^{2}(100) \ln ^{16}(e|A|)}{C^{56}}|B|^{56 \delta}$ translates of $b_{0} A_{1}^{\left(b_{0}\right)}+b_{0} A_{1}^{\left(b_{0}\right)}$. Similarly, we can find a subset $\widetilde{A}_{1}^{\left(b_{0}\right)}$ containing at least 98% of the elements of $A_{1}^{\left(b_{0}\right)}$ such that $(c-d) \widetilde{A}_{1}^{\left(b_{0}\right)}$ gets covered by at most $\frac{2^{210} \ln ^{2}(100) \ln ^{16}(e|A|)}{C^{56}}|B|^{56 \delta}$ translates of $b_{0} A_{1}^{\left(b_{0}\right)}+b_{0} A_{1}^{\left(b_{0}\right)}$. Now we apply Lemma 2 to (20) as follows

$$
\begin{align*}
& \mid B_{1}^{\prime \prime}+B_{1}^{\prime \prime}+ \frac{a-b}{c-d} B_{1}^{\prime \prime} \left\lvert\, \leqslant \frac{\left|\widetilde{A}_{1}^{\left(b_{0}\right)}+B_{1}^{\prime \prime}+B_{1}^{\prime \prime}\right|\left|\widetilde{A}_{1}^{\left(b_{0}\right)}+\frac{a-b}{c-d} B_{1}^{\prime \prime}\right|}{\left|\widetilde{A}_{1}^{\left(b_{0}\right)}\right|} \leqslant\right. \\
& \leqslant \frac{2^{4} \sqrt{2}|B|^{\delta}}{C|A|}\left|A_{1}^{\left(b_{0}\right)}+A_{1}^{\left(b_{0}\right)}+A_{1}^{\left(b_{0}\right)}\right|\left|\widetilde{A}_{1}^{\left(b_{0}\right)}+\frac{a-b}{c-d} B_{1}^{\prime \prime}\right| \leqslant \\
& \leqslant \frac{2^{87} \ln ^{6}(e|A|)}{C^{25}}|B|^{25 \delta}\left|\widetilde{A}_{1}^{\left(b_{0}\right)}+\frac{a-b}{c-d} B_{1}^{\prime \prime}\right| \tag{21}
\end{align*}
$$

The covering arguments above implies that

$$
\left|\widetilde{A}_{1}^{\left(b_{0}\right)}+\frac{a-b}{c-d} B_{1}^{\prime \prime}\right| \leqslant \frac{2^{420} \ln ^{4}(100) \ln ^{32}(e|A|)}{C^{112}}|B|^{112 \delta}\left|A_{1}^{\left(b_{0}\right)}+A_{1}^{\left(b_{0}\right)}+A_{1}^{\left(b_{0}\right)}+A_{1}^{\left(b_{0}\right)}\right| \leqslant
$$

$$
\leqslant \frac{2^{530} \ln ^{4}(100) \ln ^{40}(e|A|)}{C^{144}}|B|^{144 \delta}|A|
$$

Comparing to (19) and using the condition $\frac{|B|}{|A|} \geqslant \frac{1}{4}$, for large p we deduce

$$
\begin{align*}
& \frac{(0.98)^{2} C^{138}}{2^{500} \ln ^{36}(e|A|)}|B|^{2-138 \delta}<\frac{2^{613} \ln ^{4}(100) \ln ^{46}(e|A|)}{C^{169}}|B|^{169 \delta}|A| \Leftrightarrow \\
\Leftrightarrow & \frac{|B|^{2-307 \delta}}{|A| \ln ^{82}(e|A|)}<\frac{2^{1113} \ln ^{4}(100)}{(0,98)^{2} C^{307}} \Rightarrow|B|^{1-308 \delta}<\frac{2^{1115} \ln ^{4}(100)}{(0,98)^{2} C^{307}} . \tag{22}
\end{align*}
$$

Now we define $C=\frac{2 \frac{1115}{307} \ln \frac{4}{307}(100)}{(0.98) \frac{2}{307}}$ and from (221) deduce the inequality

$$
|B|<|B|^{308 \delta}
$$

which is false when $\delta \leqslant \frac{1}{308}$. This finishes proof of the Theorem 3 in case 1 .
2) Case 2. Suppose that $\left|B_{1}^{\prime}\right|>\sqrt{p}$. It is clear that $Q\left[B_{1}^{\prime}\right]=\mathbb{F}_{p}$ since for an arbitrary $\xi \in \mathbb{F}_{p}$ the equality $\left|B_{1}^{\prime}+\xi B_{1}^{\prime}\right|=\left|B_{1}^{\prime}\right|^{2}$ is impossible (simply because $\left|B_{1}^{\prime}\right|^{2}>p$). Let us take arbitrary elements $\xi \in \mathbb{F}_{p}^{*}, s \in \mathbb{F}_{p}$, an arbitrary subset $\left|B_{1}^{\prime \prime}\right| \geqslant 0.96\left|B_{1}^{\prime}\right|$ and denote

$$
\begin{aligned}
& f_{\xi}(s):=\left|\left\{\left(b_{1}, b_{2}\right) \in B_{1}^{\prime} \times B_{1}^{\prime}: b_{1}+\xi b_{2}=s\right\}\right| \\
& f_{\xi}^{\prime}(s):=\left|\left\{\left(b_{1}, b_{2}\right) \in B_{1}^{\prime \prime} \times B_{1}^{\prime \prime}: b_{1}+\xi b_{2}=s\right\}\right|
\end{aligned}
$$

It is obvious that

$$
\begin{aligned}
& \sum_{s \in \mathbb{F}_{p}}\left(f_{\xi}(s)\right)^{2}=\left|\left\{\left(b_{1}, b_{2}, b_{3}, b_{4}\right) \in B_{1}^{\prime} \times B_{1}^{\prime} \times B_{1}^{\prime} \times B_{1}^{\prime}: b_{1}+\xi b_{2}=b_{3}+\xi b_{4}\right\}\right| \\
= & \left|B_{1}^{\prime}\right|^{2}+\left|\left\{\left(b_{1}, b_{2}, b_{3}, b_{4}\right) \in B_{1}^{\prime} \times B_{1}^{\prime} \times B_{1}^{\prime} \times B_{1}^{\prime}: b_{1} \neq b_{3}, b_{1}+\xi b_{2}=b_{3}+\xi b_{4}\right\}\right|
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{s \in \mathbb{F}_{p}} f_{\xi}(s)=\left|B_{1}^{\prime}\right|^{2} \\
& \sum_{s \in \mathbb{F}_{p}} f_{\xi}^{\prime}(s)=\left|B_{1}^{\prime \prime}\right|^{2} .
\end{aligned}
$$

Let us observe that for every $b_{1}, b_{2}, b_{3}, b_{4} \in B_{1}^{\prime}$ such that $b_{1} \neq b_{3}$, there is at most one $\eta \in \mathbb{F}_{p}^{*}$ satisfying the equality $b_{1}+\eta b_{2}=b_{3}+\eta b_{4}$. Therefore,

$$
\sum_{\xi \in \mathbb{F}_{p}^{*}} \sum_{s \in \mathbb{F}_{p}}\left(f_{\xi}(s)\right)^{2} \leqslant\left|B_{1}^{\prime}\right|^{2}(p-1)+\left|B_{1}^{\prime}\right|^{4}
$$

From the last inequality it directly follows that there is an element $\xi \in \mathbb{F}_{p}^{*}$ such that

$$
\sum_{s \in \mathbb{F}_{p}}\left(f_{\xi}^{\prime}(s)\right)^{2} \leqslant \sum_{s \in \mathbb{F}_{p}}\left(f_{\xi}(s)\right)^{2} \leqslant\left|B_{1}^{\prime}\right|^{2}+\frac{\left|B_{1}^{\prime}\right|^{4}}{p-1}
$$

Note that this ξ is independent on $B_{1}^{\prime \prime}$. According to Cauchy-Schwartz,

$$
\left(\sum_{s \in \mathbb{F}_{p}} f_{\xi}^{\prime}(s)\right)^{2} \leqslant\left|B_{1}^{\prime \prime}+\xi B_{1}^{\prime \prime}\right| \sum_{s \in \mathbb{F}_{p}}\left(f_{\xi}^{\prime}(s)\right)^{2}
$$

Now we see that

$$
\begin{equation*}
\left|B_{1}^{\prime \prime}+\xi B_{1}^{\prime \prime}\right| \geqslant \frac{\left|B_{1}^{\prime \prime}\right|^{4}(p-1)}{\left|B_{1}^{\prime}\right|^{2}(p-1)+\left|B_{1}^{\prime}\right|^{4}} \geqslant \frac{(0.96)^{4}\left|B_{1}^{\prime}\right|^{4}(p-1)}{\left|B_{1}^{\prime}\right|^{2}(p-1)+\left|B_{1}^{\prime}\right|^{4}} \geqslant(0.96)^{4} \frac{p-1}{2} . \tag{23}
\end{equation*}
$$

Reminding that $Q\left[B_{1}^{\prime}\right]=\mathbb{F}_{p}$, we can find elements $a, b, c, d \in B_{1}^{\prime}$, such that $\xi=\frac{a-b}{c-d}$ (again, we can regard them as elements of B_{2}). Using similar covering arguments as in proof of the case 1 we can deduce that we can choose $B_{1}^{\prime \prime}$ as a subset containing at least 96% of the elements from B_{1}^{\prime} such that $(a-b) B_{1}^{\prime \prime}+(c-d) B_{1}^{\prime \prime}$ gets covered by at most $\frac{2^{420} \ln ^{4}(100) \ln ^{32}(e|A|)}{C^{112}}|B|^{112 \delta}$ translates of $b_{0} A_{1}^{\left(b_{0}\right)}+b_{0} A_{1}^{\left(b_{0}\right)}+b_{0} A_{1}^{\left(b_{0}\right)}+b_{0} A_{1}^{\left(b_{0}\right)}$. Now we see that

$$
\begin{aligned}
\left|B_{1}^{\prime \prime}+\frac{a-b}{c-d} B_{1}^{\prime \prime}\right| \leqslant & \frac{2^{420} \ln ^{4}(100) \ln ^{32}(e|A|)}{C^{112}}|B|^{112 \delta}\left|A_{1}^{\left(b_{0}\right)}+A_{1}^{\left(b_{0}\right)}+A_{1}^{\left(b_{0}\right)}+A_{1}^{\left(b_{0}\right)}\right| \leqslant \\
& \leqslant \frac{2^{530} \ln ^{4}(100) \ln ^{40}(e|A|)}{C^{144}}|B|^{144 \delta}|A| .
\end{aligned}
$$

Again, comparing to (23) and using the condition $\frac{|B|}{|A|} \geqslant \frac{1}{4}$, we deduce

$$
\begin{gather*}
(0.96)^{4} \frac{p}{4} \leqslant(0.96)^{4} \frac{p-1}{2}<\frac{2^{530} \ln ^{4}(100) \ln ^{40}(e|A|)}{C^{144}}|B|^{144 \delta}|A| \Rightarrow \\
\Rightarrow \frac{p}{4}<\frac{2^{530} \ln ^{4}(100)}{C^{144}(0.96)^{4}} p^{145 \beta \delta+\alpha} \tag{24}
\end{gather*}
$$

Now we define $C=\frac{2^{\frac{265}{72} \ln \frac{1}{36}(100)}}{(0.96)}$ and from (24) deduce the inequality

$$
p<p^{145 \beta \delta+\alpha}
$$

which is false when $\delta \leqslant \frac{1-\alpha}{145 \beta}$. This concludes proof of the Theorem in case 2.
3) Case 3. Suppose that $Q\left[B_{1}^{\prime}\right]=\mathbb{F}_{p}$ and $\left|B_{1}^{\prime \prime}\right| \leqslant \sqrt{p}$. Repeating arguments from the proof of case 2 for an arbitrary subset $B_{1}^{\prime \prime} \subset B_{1}^{\prime},\left|B_{1}^{\prime \prime}\right| \geqslant$ $0.96\left|B_{1}^{\prime}\right|$ we finding elements $a, b, c, d \in B_{2}$ independent on the subset $B_{1}^{\prime \prime}$ with

$$
\left|B_{1}^{\prime \prime}+\frac{a-b}{c-d} B_{1}^{\prime \prime}\right| \geqslant(0.96)^{4} \frac{\left|B_{1}^{\prime}\right|^{2}}{2} .
$$

Using similar covering arguments as in proof of the case 1 we can deduce that we can choose $B_{1}^{\prime \prime}$ as a subset containing at least 96% of the elements from B_{1}^{\prime} such that $(a-b) B_{1}^{\prime \prime}+(c-d) B_{1}^{\prime \prime}$ gets covered by at most $\frac{2^{420} \ln ^{4}(100) \ln ^{32}(e|A|)}{C^{112}}|B|^{112 \delta}$ translates of $b_{0} A_{1}^{\left(b_{0}\right)}+b_{0} A_{1}^{\left(b_{0}\right)}+b_{0} A_{1}^{\left(b_{0}\right)}+b_{0} A_{1}^{\left(b_{0}\right)}$. Now we see that

$$
\begin{aligned}
\left|B_{1}^{\prime \prime}+\frac{a-b}{c-d} B_{1}^{\prime \prime}\right| \leqslant & \frac{2^{420} \ln ^{4}(100) \ln ^{32}(e|A|)}{C^{112}}|B|^{112 \delta}\left|A_{1}^{\left(b_{0}\right)}+A_{1}^{\left(b_{0}\right)}+A_{1}^{\left(b_{0}\right)}+A_{1}^{\left(b_{0}\right)}\right| \leqslant \\
& \leqslant \frac{2^{530} \ln ^{4}(100) \ln ^{40}(e|A|)}{C^{144}}|B|^{144 \delta}|A|
\end{aligned}
$$

Comparing to (19) and using the condition $\frac{|B|}{|A|} \geqslant \frac{1}{4}$, we deduce

$$
\begin{align*}
& \frac{(0.96)^{4} C^{138}}{2^{500} \ln ^{36}(e|A|)}|B|^{2-138 \delta}<\frac{2^{530} \ln ^{4}(100) \ln ^{40}(e|A|)}{C^{144}}|B|^{144 \delta}|A| \Leftrightarrow \\
\Leftrightarrow & \frac{|B|^{2-282 \delta}}{|A| \ln ^{76}(e|A|)}<\frac{2^{1030} \ln ^{4}(100)}{(0,96)^{4} C^{282}} \Rightarrow|B|^{1-283 \delta}<\frac{2^{1032} \ln ^{4}(100)}{(0,96)^{4} C^{282}} . \tag{25}
\end{align*}
$$

Now we define $C=\frac{2^{\frac{516}{144} \ln \frac{2}{24}(100)}}{(0.96)^{\frac{2}{44}}}$ and from (25) deduce the inequality

$$
|B|<|B|^{283 \delta}
$$

which is false when $\delta \leqslant \frac{1}{283}$. Note that in all the cases the meaning assigned for the constant C is strictly less than 15 . The Theorem 3 is proved.

4 Proof of the Theorem 4.

As in the proof of the Proposition 3 we assume contrary, i.e.

$$
\sum_{b \in B} E_{+}(A, b A)>C|B|^{1-\delta}|A|^{3}
$$

for some $C>0, \delta>0$. Following arguments in the beginning of the proof of the Proposition 3, we finding $A^{\prime} \subset A$ and $B^{\prime} \subset \mathbb{F}_{p}^{*}, 1 \in B^{\prime}$ (which is in fact a subset of a multiplicative shift of B) such that

$$
\begin{gather*}
\left|A^{\prime}+b A^{\prime}\right|<\frac{2^{219} \sqrt{2} \ln ^{16}(e|A|)}{C^{61}}|B|^{61 \delta}|A|=K \text { for all } b \in B^{\prime} \tag{26}\\
\left|B^{\prime}\right|>\frac{C^{7}}{2^{26} \ln ^{2}(e|A|)}|B|^{1-7 \delta} \tag{27}\\
\left|A^{\prime}\right|>\frac{C}{2^{4} \sqrt{2}}|B|^{-\delta}|A| . \tag{28}
\end{gather*}
$$

Using Lemma 4 we obtain

$$
\begin{aligned}
\mid\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in A^{\prime} \times A^{\prime} \times A^{\prime} \times A^{\prime}: a_{1}+b a_{2}=\right. & \left.a_{3}+b a_{4}\right\} \mid> \\
& >\frac{\left|A^{\prime}\right|^{4}}{K} \text { for all } b \in B^{\prime} .
\end{aligned}
$$

Summing up by all $b \in B^{\prime}$ one gets

$$
\begin{aligned}
\mid\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, b\right) \in A^{\prime} \times A^{\prime} \times A^{\prime} \times A^{\prime} \times B^{\prime}:\right. & \left.a_{1}+b a_{2}=a_{3}+b a_{4}\right\} \mid> \\
& >\frac{\left|A^{\prime}\right|^{4}\left|B^{\prime}\right|}{K} \text { for all } b \in B^{\prime} .
\end{aligned}
$$

Now we can fix elements $a_{3}^{0}, a_{2}^{0} \in A^{\prime}$ such that

$$
\begin{equation*}
\left|\left\{\left(a_{1}, a_{4}, b\right) \in A^{\prime} \times A^{\prime} \times B^{\prime}: a_{1}-a_{3}^{0}=b\left(a_{4}-a_{2}^{0}\right)\right\}\right|>\frac{\left|A^{\prime}\right|^{2}\left|B^{\prime}\right|}{K} \tag{29}
\end{equation*}
$$

We denote

$$
\begin{gathered}
f(s)=\left|\left\{(a, b) \in A^{\prime} \times B^{\prime}: b\left(a-a_{2}^{0}\right)=s\right\}\right|, \\
g(s)= \begin{cases}1, & \text { if } s \in A^{\prime}-a_{3}^{0} ; \\
0, & \text { otherwise } .\end{cases}
\end{gathered}
$$

Clearly,

$$
\begin{gather*}
\left|\left\{\left(a_{1}, a_{4}, b\right) \in A^{\prime} \times A^{\prime} \times B^{\prime}: a_{1}-a_{3}^{0}=b\left(a_{4}-a_{2}^{0}\right)\right\}\right|=\sum_{s \in \mathbb{F}_{p}} f(s) g(s) \tag{30}\\
\sum_{s \in \mathbb{F}_{p}} f^{2}(s)=E_{\times}\left(A^{\prime}-a_{2}^{0}, B^{\prime}\right) \tag{31}
\end{gather*}
$$

Now, by Cauchy-Schwartz,

$$
\left(\sum_{s \in \mathbb{F}_{p}} f(s) g(s)\right)^{2} \leqslant \sum_{s \in \mathbb{F}_{p}} f^{2}(s) \sum_{s \in \mathbb{F}_{p}} g^{2}(s)
$$

and, by (30) and (31), one can deduce

$$
E_{\times}\left(A^{\prime}-a_{2}^{0}, B^{\prime}\right)>\frac{\left|A^{\prime}\right|^{3}\left|B^{\prime}\right|}{K^{2}} .
$$

Consider two cases.
Case 1. Assume that $\left|A^{\prime}\right|\left|B^{\prime}\right| \leqslant p$. Applying Theorem 5 one obtains

$$
\frac{K^{4}}{\left|A^{\prime}\right|}>\left|A^{\prime}-A^{\prime}\right|^{2} \cdot \frac{\left|A^{\prime}\right|^{2}\left|B^{\prime}\right|^{2}}{E_{\times}\left(A^{\prime}-a_{2}^{0}, B^{\prime}\right)} \geqslant C_{1} \frac{\left|A^{\prime}\right|^{3}\left|B^{\prime}\right|^{\frac{1}{9}}}{\log _{2}\left(\left|B^{\prime}\right|\right)}
$$

Using (26), (27) and (28) we deduce

$$
\begin{gather*}
\frac{C_{1} C^{\frac{43}{9}}|B|^{\frac{1}{9}-\frac{43}{9} \delta}|A|^{4}}{2^{\frac{188}{9}} \ln ^{\frac{2}{9}}(e|A|) \log _{2}(|B|)}<\frac{2^{878} \ln ^{64}(e|A|)}{C^{244}}|B|^{244 \delta}|A|^{4} \Rightarrow \\
|B|^{\frac{1}{9}}<\frac{2^{\frac{8090}{9}} \ln ^{\frac{578}{9}}(e|A|) \log _{2}(|B|)}{C_{1} C^{\frac{2239}{9}}}|B|^{\frac{2339}{9} \delta} . \tag{32}
\end{gather*}
$$

Defining $C=\frac{2^{\frac{8090}{2239}}}{C_{1}^{2239}}$, we observe that for sufficiently large p from (32) follows the inequality

$$
|B|^{\frac{1}{9}}<|B|^{\frac{2240}{9} \delta}
$$

which gives a contradiction when $\delta=\frac{1}{2240}$. This completes proof of the Theorem 4 in this case.

Case 2. Assume that $\left|A^{\prime}\right|\left|B^{\prime}\right|>p$. Again, applying Theorem 5 we obtain

$$
\frac{K^{4}}{\left|A^{\prime}\right|}>\left|A^{\prime}-A^{\prime}\right|^{2} \cdot \frac{\left|A^{\prime}\right|^{2}\left|B^{\prime}\right|^{2}}{E_{\times}\left(A^{\prime}-a_{2}^{0}, B^{\prime}\right)} \geqslant C_{1} \frac{\left|A^{\prime}\right|^{\frac{26}{9}} p^{\frac{1}{9}}}{\log _{2} p}
$$

Using (26) and (28) we deduce

$$
\begin{align*}
& \frac{C_{1} C^{\frac{35}{9}}|A|^{\frac{35}{9}} p^{\frac{1}{9}}}{2^{\frac{35}{2}}|B|^{\frac{35}{9}} \log _{2} p}<\frac{2^{878} \ln ^{64}(e|A|)}{C^{244}}|B|^{244 \delta}|A|^{4} \Rightarrow \\
& \quad \Rightarrow \frac{2^{\frac{1791}{2}} \ln ^{64}(e|A|) \log _{2} p}{C^{\frac{2231}{9}} C_{1}}|A|^{\frac{1}{9}}|B|^{\frac{2331}{9} \delta}>p^{\frac{1}{9}} \tag{33}
\end{align*}
$$

Defining $C=\frac{2 \frac{1919}{4462}}{C_{1}^{2231}}$, we observe that for sufficiently large p from (33) follows the inequality

$$
p^{\frac{1}{9}}<|B|^{\frac{2232}{9} \delta}|A|^{\frac{1}{9}} .
$$

which gives a contradiction when $\delta=\frac{1-\alpha}{2232}$. Theorem 4 is proved.

References

[1] J. Bourgain, Multilinear exponential sums in prime fields under optimal entropy condition on the sources, Geometric and Functional Analysis, vol. 18, N 5, 2009, pp. 1477 - 1502.
[2] J. Bourgain, A. Glibichuk, Exponential sum estimate over subgroup in an arbitrary finite field, accepted for publication in Journal de Analyze Mathématiques.
[3] J. Bourgain, S. J. Dilworth, K. Ford, S. Konyagin, D. Kutzarova, Explicit constructions of RIP matrices, Proc. 43rd ACM Symposium of the Theory of Computing (STOC), pp. 637-644 (2011).
[4] H. Helfgott, M. Rudnev, An explicit incidence theorem in \mathbb{F}_{p}, preprint, arXiv:1001.1980v2.
[5] I. Z. Ruzsa, An application of graph theory to additive number theory, Scientia, Ser. A, 3 (1989), 97 - 109.
[6] I. Z. Ruzsa, Sums of finite sets, Number theory (New York, 1991 - 1995), 281 - 293, Springer, New York, 1996.
[7] J. Bourgain and M. Z. Garaev, On a variant of sum-product estimates and explicit exponential sums bounds in prime fields, Mathematical proceedings of the Cambridge Philosophical Society, vol. 146 (2009), part 1, pp. $1-21$.
[8] T. Tao and V. Vu, Additive combinatorics, Cambridge University Press, Cambridge, 2006.
[9] J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields and their applications, Geom and Funct. Anal., 14 (2004), 27-57.
[10] J. Bourgain, S. Konyagin, Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order, C.R. Acad. Sci. Paris, Ser. I, 337 (2003), 75-80.
[11] Chun-Yen Shen, Quantitative sum product estimates on different sets, Electron. J. Combin., 15 (2008), no. 1.
[12] M. Z. Garaev, Sums and products of sets and estimates of rational trigonometric sums in fields of prime order, Russian Mathematical Surveys, 2010, vol. 65, no. 4, pp. 599-658

[^0]: *Technion, Israel Institute of Technology, Haifa, Israel.
 E-mail:glibichu@tx.technion.ac.il.

