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Abstract

We review three vector encodings of Bayesian network structures. The
first one has recently been applied by Jaakkola et al. [4], the other two
use special integral vectors formerly introduced, called imsets [11, 13].
The central topic is the comparison of outer polyhedral approximations of
the corresponding polytopes. We show how to transform the inequalities
suggested by Jaakkola et al. to the framework of imsets. The result of our
comparison is the observation that the implicit polyhedral approximation
of the standard imset polytope suggested in [14] gives a closer approx-
imation than the (transformed) explicit polyhedral approximation from
[4]. Finally, we confirm a conjecture from [14] that the above-mentioned
implicit polyhedral approximation of the standard imset polytope is an
LP relaxation of the polytope.

1 Introduction

Bayesian networks (BNs) are popular graphical statistical models widely used
both in probabilistic reasoning [8] and statistics [5]. They are attributed to
acyclic directed graphs whose nodes correspond to the variables in consideration.
The motivation for this report is learning the BN structure [7] from data by
maximizing a quality (= scoring) criterion. The criterion is a real function of a
BN structure (= of a graph) and of a database; its value says how much the BN
structure given by the graph is good to explain the occurrence of the database.

However, different (acyclic directed) graphs can define the same statistical
model, in which case the graphs are Markov equivalent. Thus, a usual require-
ment on the criterion is that it should be score equivalent, which means, it
ascribes the same value to equivalent graphs. Another traditional technical re-
quirement is that the criterion should be decomposable – for details see [2].
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Since the aim is learning the BN structure (= statistical model) some re-
searchers prefer to have a unique representative for every BN structure and to
understand the criterion as a function of such unique representatives. A tradi-
tional unique graphical representative of the BN structure is the essential graph
of the corresponding Markov equivalence class of acyclic directed graphs, which
is a special graph allowing both directed and undirected edges – for details see
[1].

The basic idea of an algebraic approach to learning, proposed in connection
with conditional independence structures [11], is to represent every BN structure
by a certain integral vector (= a vector with integers as components), called the
standard imset. This is also a unique BN representative. The advantage of this
algebraic approach is that every score equivalent and decomposable criterion
becomes an affine function of the standard imset.

It has been shown in [12] that the standard imsets are vertices of a certain
polytope, called the standard imset polytope. This allows one to re-formulate the
learning task as a linear programming (LP) problem. However, to apply standard
LP methods one needs the polyhedral description of the polytope. In [14], a
conjecture about an implicit polyhedral characterization of the standard imset
polytope has been presented. The weaker version of the conjecture was that the
polyhedron given by those inequalities is an LP relaxation of the polytope.

Suitable transformation of an LP problem often simplifies things. There-
fore, in [13], an alternative algebraic representative for the BN structure, called
the characteristic imset, has been introduced. It is obtained from the standard
imset by an invertible affine transformation; however, unlike the standard im-
set, the characteristic imset is always a zero-one vector. This opens the way to
the application of advanced methods of integer programming (IP) in this area.
Nonetheless, the crucial question of polyhedral characterization of the (trans-
formed) polytope remain to be answered.

Jaakkola et al. [4] have also proposed to apply the methods of linear and
integer programming to learning BN structures. They have used a straightfor-
ward zero-one encoding of acyclic directed graphs and transformed the task of
maximizing the quality criterion to an IP problem. The main difference is that
their vector codes are not unique BN representatives. On the other hand, they
provide an explicit polyhedral LP relaxation of their polytope, which allows one
to use the methods of IP.

In this report, we transform the inequalities suggested by Jaakkola et al. to
the framework of imsets. First, we show that the implicit polyhedral approxima-
tion of the standard imset polytope suggested in [14] gives a closer approxima-
tion than the (transformed) explicit polyhedral approximation from [4]. Second,
we show that the transformed inequalities give an explicit LP relaxation of the
standard/characteristic imset polytope. A consequence of this fact is the proof
of the weaker version of the conjecture from [14].
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2 Notation and terminology

Throughout the paper N is a finite set of variables which has least two elements:
|N | ≥ 2. Its power set, denoted by P(N), is the class of its subsets {A; A ⊆ N}.
For any ℓ = 1, 2, we use a special notation

Pℓ(N) ≡ {A ⊆ N ; |A| ≥ ℓ}

for the class of subsets of N of cardinality at least ℓ. The symbol U ⊂ V will
mean U ⊆ V , U 6= V .

We deal with directed graphs (without loops) having N as the set of nodes
and call them directed graphs over N . Such a graph is specified by a collection
of arrows j → i, where i, j ∈ N , i 6= j; the set paG(i) ≡ {j ∈ N ; j → i} is
(called) the set of parents of node i ∈ N . A directed cycle in G is a sequence
of nodes i1, . . . , in, n ≥ 3 such that ir → ir+1 in G for r = 1, . . . , n − 1 and
in = i1. A directed graph is acyclic if it has no directed cycle. A well-known
equivalent definition is that there exists an ordering i1, . . . i|N | of nodes of G
consistent with the direction of arrows in G, which means ir → is in G implies
r < s. Clearly, every acyclic directed graph G has at least one initial node, that
is, a node i with paG(i) = ∅.

We also deal with real vectors, elements of RM , where M is a non-empty
finite set. By lattice points in R

M we mean integral vectors, that is, vectors whose
components are integers (= elements of ZM ). In this paper, M has additional
structure; typically, it is P(N) or P2(N), in which cases the lattice points are
called imsets. To write formulas for imsets we will use the following notation:
given A ⊆ N , the corresponding basic vector will be denoted by δA:

δA(S) =

{
1 if S = A ,

0 if S ⊆ N, S 6= A .

A special semi-elementary imset u〈A,B|C〉 is associated with any (ordered) triplet
of pairwise disjoint sets A,B,C ⊆ N :

u〈A,B|C〉 ≡ δC − δA∪C − δB∪C + δA∪B∪C ,

which, in the context of [11], encodes the corresponding conditional indepen-
dence statement A ⊥⊥ B |C. The imsets will be denoted using sans serif fonts,
e.g. u or c; general vectors by bold lower-case letters, e.g. b or η. They are
interpreted as column vectors.

Matrices will be denoted by bold capitals, e.g. A or C. The symbol A⊤

denotes the transpose ofA. An invertible matrix A is unimodular if it is integral
(= has integers as entries) and its determinant is +1 or −1 (see § 4.1 in [9]); an
equivalent definition is that both A and its inverse A−1 are integral, that is,
the mappings b 7→ Ab and c 7→ A−1c ascribe lattice points to lattice points.

By a full row rank matrix we mean an m × n-matrix which has m linearly
independent columns (= has rank m). The concept of unimodularity was ex-
tended in § 19.1 of [9] to matrices of this kind. A full row rank m× n matrix A
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is unimodular if every m×m-submatrix has determinant +1, −1 or 0; equiva-
lently, if any of its invertible m ×m-submatrix B is unimodular. A matrix A

is totally unimodular if any of its (square) submatrix has determinant +1, 0 or
−1.

We also deal with special classes of subsets of N . More specifically, we will
consider non-empty classes A of non-empty subsets of N which are closed under
supersets. These are classes ∅ 6= A ⊆ P1(N) satisfying

S ∈ A , S ⊆ T ⊆ N ⇒ T ∈ A .

Every such class A is characterized by the class Amin of its mimimal sets with
respect to inclusion:

Amin ≡ {S ∈ A; ∀T ⊂ S T 6∈ A} .

Of course, I = Amin is a non-empty subclass of P1(N) consisting of incomparable
sets, which means

∀S, T ∈ I, S 6= T ⇒ [S \ T 6= ∅ & T \ S 6= ∅ ] .

Conversely, given a non-empty class I ⊆ P1(N) of incomparable sets the corre-
sponding class A closed under supersets satisfying I = Amin is as follows:

A = {S ⊆ N ; ∃T ∈ I T ⊆ S} .

Finally, in the proofs, we sometimes use Dirac’s delta-symbol to shorten the
notation. Specifically, the notation δ(⋆⋆), where ⋆⋆ is a predicate (= statement),
means a zero-one function whose value is +1 if the statement ⋆⋆ is valid and
whose value is 0 if the statement ⋆⋆ does not hold.

3 Three ways of encoding Bayes nets

3.1 Straightforward zero-one encoding of a directed graph

Jaakkola et al. [4] used a special method for vector encoding (acyclic) directed
graphs over N . Their 0-1-vectors η have components indexed by pairs (i|B),
where i ∈ N and B ⊆ N \ {i}. Although their intention was to encode acyclic
directed graphs only, one can formally encode any directed graph in this way.
Specifically, given a directed graph G over N , the vector ηG encoding G is
defined as follows:

ηG(i|B) = 1 ⇔ B = paG(i), ηG(i|B) = 0 otherwise.

Example 1 Consider N = {a, b, c} and G : a ⇆ b ← c. It is a directed graph,
but not an acyclic one. We have paG(a) = {b}, paG(b) = {a, c}, paG(c) = ∅.
Thus, ηG(a|{b}) = 1, ηG(b|{a, c}) = 1, ηG(c|∅) = 1, and ηG(i|B) = 0 otherwise.

The polytope studied by Jaakkola et. al. [4] is defined as the convex hull of
the set of vectors ηG, where G runs over all acyclic directed graphs over N .
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3.1.1 Jaakkola et al.’s polyhedral approximation

The (outer) polyhedral approximation J of the above polytope proposed in [4]
is given by the following constraints:

• “simple” non-negativity constraints:

η(i|B) ≥ 0 for every i ∈ N, B ⊆ N \ {i} (1)

(|N | · 2|N |−1 inequality constraints),

• equality constraints:

∑

B⊆N\{j}

η(j|B) = 1 for all j ∈ N (2)

(|N | equality constraints),

• cluster inequalities, which correspond to sets C ⊆ N , |C| ≥ 2:

1 ≤
∑

i∈C

∑

B⊆N\{i}, B∩C=∅

η(i|B) ≡
∑

i∈C

∑

D⊆N\C

η(i|D) (3)

(2|N | − |N | − 1 cluster inequalities).

Taking into account the equality constraints (2) for i ∈ C, (3) takes the form

1 ≤
∑

i∈C



 1−
∑

B⊆N\{i}, B∩C 6=∅

η(i|B)



 .

Remark No cluster inequality for C = ∅ is defined; the cluster inequalities for
|C| = 1 are omitted because they follow trivially from the equality constraints.

Example 2 In case N = {a, b, c} every η-vector has length 12 and its compo-
nents decompose into three blocks that correspond to variables a, b and c. Thus,
one has twelve non-negativity constraints, three equality constraints and four
cluster inequalities of two types:

• 1 ≤ η(a|∅) + η(a|{c}) + η(b|∅) + η(b|{c}), (for C = {a, b})

• 1 ≤ η(a|∅) + η(b|∅) + η(c|∅). (for C = {a, b, c})

The constraints (1) and (2) are clearly valid for any vector ηG of a directed
graph G; the inequalities (3) hold in the acyclic case – see Lemma 4.
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3.1.2 Jaakkola et al.’s approximation is an LP relaxation

The polyhedral approximation from § 3.1.1 is an LP relaxation of the corre-
sponding polytope, by which we mean that the only lattice points in the ap-
proximation are the lattice points in the polytope. First, we observe that the
polyhedron J

′

given by non-negativity and equality constraints is an integral
polytope.

Lemma 3 Let J′ be the polyhedron given by (1) and (2). Then J′ is a polytope
whose vertices are just the codes of (general) directed graphs over N . Moreover,
the only lattice points in J′ are its vertices.

Proof. Let η belong to J′. For every block of components of η corresponding
to i ∈ N , the constraints define a vector in a “probability simplex”. Assuming
η is a vertex of J′, for each i ∈ N , the respective block has to be a vertex of
that simplex, that is, a 0-1-vector having just one component 1. If B(i) is the
set indexing such a component for i ∈ N , we get the corresponding graph G

with η = ηG by drawing arrows from the elements of B(i) to i, for every i ∈ N .
Clearly, this defines a one-to-correspondence between (general) directed graphs
over N and vertices of J′.

Let η be a lattice point in J′. Within the block given by i ∈ N , components
are non-negative integers. Thus, if one of them exceeds 1, the sum exceeds 1.
Hence, η is a 0-1-vector. At most one component in a block is 1 since otherwise
the sum exceeds 1, and at least one is 1 since otherwise the sum is 0. �

Lemma 4 Let J be the polyhedron given by constraints (1)-(3). Then the lattice
points in J are exactly the codes of acyclic directed graphs over N .

Proof. Every lattice point in J is a lattice point in J′, and, therefore, by Lemma
3, encodes a (uniquely determined) directed graph G.

Consider the cluster equality (3) for C ⊆ N , |C| ≥ 2 and the vector ηG

(encoding a directed graph G). For every i ∈ C, the ηG(i|D) term is typically
0 and only once 1, namely in the case D = paG(i). Thus, the inner expression
for i in (3), namely

∑

D⊆N\C ηG(i|D) is either 0 or 1. The latter happens if and

only if paG(i)∩C = ∅. That means, the cluster inequality for C says there exists
at least one i ∈ C with paG(i) ∩ C = ∅. Of course, this is true if G is acyclic.

Now, we are going to show the converse: the cluster inequalities for ηG imply
that G is acyclic. We start with applying the cluster inequality for C = N and
find i1 ∈ N with paG(i1) = ∅. Thus, i1 is an initial node in G and we fix it. If
|N \ {i1}| ≥ 2 we take C = N \ {i1} and apply the cluster inequality for it. It
says there exists i2 ∈ C = N \{i1} with paG(i2)∩C = ∅, that is, paG(i2) ⊆ {i1}
(≡ i2 is the initial node in the induced subgraph GN\{i1}).

Again, if |N \ {i1, i2}| ≥ 2 we continue with C = N \ {i1, i2}, and so on. In
this way, we find iteratively an ordering i1, . . . i|N | consistent with the direction
of arrows in G. This already implies G is acyclic. �
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3.2 Standard imsets

Standard imsets introduced [11] have components indexed by subsets T ⊆ N .
Given an acyclic directed graph G over N , the standard imset uG encoding G

is defined as follows:

uG = δN − δ∅ +
∑

i∈N

[
δpaG(i) − δ{i}∪paG(i)

]
.

A basic property of standard imsets is that they are unique representatives of
Bayesian network structures. This means, one has uG = uH if and only if G
and H are independence equivalent acyclic directed graphs (= define the same
Bayesian network structure) – see Corollary 7.1 in [11]. In [12], it was proposed
to study the standard imset polytope, defined as the convex hull of the set of
vectors uG, where G runs over all acyclic directed graphs with N vertices.

3.2.1 Outer approximation of the standard imset polytope

In [14], an outer approximation of the standard imset polytope in terms of
linear constraints was suggested. More specifically, three types of constraints
were considered (for u = uG):

• equality contraints:
∑

T⊆N

u(T ) = 0, ∀ j ∈ N
∑

T⊆N, j∈T

u(T ) = 0 , (4)

which implies that u-vectors are determined uniquely by their components
u(T ) for T ⊆ N , |T | ≥ 2,

• specific inequality contraints of the form:
∑

T∈A

u(T ) ≤ 1 , (5)

where A is a non-empty class of non-empty subsets of N , closed under
supersets,

• non-specific inequality contraints of the form:

〈m, u〉 ≡
∑

T⊆N

m(T ) · u(T ) ≥ 0 , (6)

where m is a (representative on an extreme standardized) supermodular
function. Here, by a supermodular function is meant a real function m on
the power set P(N) (≡ a vector in R

P(N)) such that

m(E ∪ F ) +m(E ∩ F ) ≥ m(E) +m(F ) for every E,F ⊆ N.

It is standardized if m(T ) = 0 whenever |T | ≤ 1.
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Note that the class of standardized supermodular functions on P(N) is a pointed
rational polyhedral cone, and, therefore, has finitely many extreme rays. Each
extreme ray contains a uniquely determined non-zero lattice point whose com-
ponents have no common prime divisor (this is the representative of the extreme
ray). Therefore, (6) gives in fact finitely many linear inequality constraints on
u = uG. The problem is that one has to compute those representatives of extreme
supermodular functions, which is a difficult computational task. The represen-
tatives were computed for |N | ≤ 5 [10].

Thus, in comparison with the polyhedral approximation (of the η-polytope)
mentioned in § 3.1.1, this polyhedral approximation (of the standard imset poly-
tope) is implicit. This is a disadvantage from the practical point of view because
to apply common methods of linear programming one still needs to explicate
the considered inequality constraints for any |N |.

Example 5 In case N = {a, b, c} every u-vector has the length 8. There are
four equality constraints (4) which break into two types:

• u(∅) = −u(a)− u(b)− u(c)− u({a, b})− u({a, c})− u({b, c})− u({a, b, c}),

• u(a) = −u({a, b})− u({a, c})− u({a, b, c}). (for j = a)

Therefore, the dimension (of the standard imset polytope) is 4 and the u-vectors
are determined by their components for sets {a, b}, {a, c}, {b, c} and {a, b, c}.

As concerns specific inequality constraints, every non-empty class of A of
non-empty subsets of N closed under supersets is uniquely determined by the
class Amin of its minimal sets with respect to inclusion. One has eighteen such
classes which break into eight types. For example, Amin = {ab, ac, bc} gives the
inequality

u({a, b}) + u({a, c}) + u({b, c}) + u({a, b, c}) ≤ 1 .

As concerns non-specific inequality constraints, the cone of standardized super-
modular functions has five extreme rays in case |N | = 3 [10], which leads to five
inequalities breaking into three types:

• u({a, b, c}) ≥ 0,

• u({a, b}) + u({a, b, c}) ≥ 0,

• u({a, b}) + u({a, c}) + u({b, c}) + 2 · u({a, b, c}) ≥ 0.

Note that the described system of inequalities can be reduced; some of the
specific inequalities appear to follow from the non-specific ones in combination
with equality constraints and other specific inequalities. For example, if Amin

consists of one singleton only, then the respective specific inequality (5) is vac-
uous because it trivially follows from the equality constrains (4). Actually, all
specific inequalities with Amin containing a singleton are superfluous in case
|N | = 3. However, this is not true in case |N | ≥ 4.
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The constraints (4)-(6) were conjectured in [14] to completely characterize
the standard imset polytope and this conjecture was verified for |N | ≤ 4. Nev-
ertheless, one perhaps does not need a complete facet description (= polyhedral
characterization) of the polytope. To apply some advanced methods of integer
programming the confirmation of a weaker version of the conjecture might be
enough. The weaker version of the conjecture from [14] is that the polyhedron
given by (4)-(6) is an LP relaxation of the standard imset polytope.

Before writing this report, we confirmed computationally the weaker version
for |N | = 5. The extreme rays of the cone of supermodular functions for |N | =
5 were obtained from [10] and independently computed using 4ti2 [17], thus
giving the non-specific inequality constraints (6). Specific inequality constraints
(5) were obtained from [14], where it was also calculated that there are 8, 782
standard imsets for |N | = 5. Since the characteristic imsets (described in § 3.3)
are 0-1-vectors and are in one-to-one correspondence to the standard imsets,

we simply enumerated all vectors in {0, 1}P2(N)
, applied the inverse transform

(11) to get the corresponding u-vectors, and tested whether they satisfied the
above inequalities. By operating over P2(N), and properly modifying the above
inequalities, the equality constraints (4) were satisfied. We verified that there
were exactly 8, 782 integer solutions to the constraints (4)-(6) for |N | = 5.

3.2.2 η to standard imset

Taking into account the definition of ηG, it is easy to see that uG is obtained
from ηG by applying the following mapping η 7→ uη . For any T ⊆ N , we put

uη(T ) = δN (T )− δ∅(T ) +
∑

i∈N

∑

B⊆N\{i}

η(i|B) · {δB(T )− δ{i}∪B(T )} . (7)

This is clearly an affine mapping, ascribing lattice points to lattice points. As-
suming η belongs to the linear subspace specified by equality constraints (2),
we re-write (7) as follows:

u
η(T ) = δN (T )− δ∅(T )

+
∑

i∈N

η(i|∅) · {δ∅(T )− δ{i}(T )}+
∑

i∈N

∑

∅6=B⊆N\{i}

η(i|B) · {δB(T )− δ{i}∪B(T )}

(2)
= δN (T )− δ∅(T ) +

∑

i∈N

{1−
∑

∅6=B⊆N\{i}

η(i|B)} · {δ∅(T )− δ{i}(T )}+ . . .

= δN (T ) + (|N | − 1) · δ∅(T )−
∑

i∈N

δ{i}(T )

︸ ︷︷ ︸

u
∅(T )∈Z

−
∑

i∈N

∑

∅6=B⊆N\{i}

η(i|B) · {δ∅(T )− δ{i}(T )− δB(T ) + δ{i}∪B(T )}
︸ ︷︷ ︸

u〈i,B|∅〉(T )∈{−1,0,+1}

,

where u∅ denotes the standard imset corresponding to the empty graph over N
and u〈i,B|∅〉 the semi-elementary imset encoding i ⊥⊥ B | ∅.

9



Briefly, if η satisfies (2) then

uη = u∅ −
∑

i∈N

∑

∅6=B⊆N\{i}

η(i|B) · u〈i,B|∅〉.

In particular, u = uη belongs to the linear subspace specified by equality con-
straints (4). This is because these equalities hold for both u∅ and any u〈i,B|∅〉.
Note that the converse is true as well (we leave an easy proof to the reader): if
u satisfies (4) then there exists η satisfying (2) such that u = uη. In particular,
(4) is the exact translation of (2) into the framework of standard imsets.

3.3 Characteristic imsets

The characteristic imset (for an acyclic directed graph G), introduced in [13],
is obtained from the standard imset by an affine transformation. More specif-
ically, first, the portrait pG of the standard imset uG is obtained by a linear
transform; second, the portrait is subtracted from the constant 1-vector and the
characteristic imset cG is obtained:

p(S) =
∑

T, S⊆T⊆N

u(T ) for S ⊆ N, (8)

c(S) = 1− p(S) for S ⊆ N. (9)

Clearly, the equality constraints (4) are translated into the following tacit re-
strictions on c-vectors:

c(S) = 1 for S ⊆ N , |S| ≤ 1 . (10)

Therefore, for an acyclic directed graph G over N , the components of the char-
acteristic imset cG for |S| ≤ 1 are ignored and cG is formally considered to be
an element of ZP2(N).

The mapping u 7→ c determined by (8)-(9) is invertible: one can compute
back the standard imset by the formula

u(T ) =
∑

S,T⊆S⊆N

(−1)|S\T | · [ 1− c(S) ]
︸ ︷︷ ︸

p(S)

for T ⊆ N. (11)

Indeed, to see it fix S ⊆ N , substitute (11) (with S replaced by D) into the
expression for the portrait p(S) and change the order of summation:

∑

T, S⊆T⊆N

u(T ) =
∑

T, S⊆T⊆N

∑

D, T⊆D⊆N

(−1)|D\T | · p(D)

=
∑

D,S⊆D⊆N

p(D) ·
∑

T, S⊆T⊆D

(−1)|D\T |

︸ ︷︷ ︸

δS(D)

= p(S) .

Since the transformation is one-to-one, two acyclic directed graph G and H are
independence equivalent if and only if cG = cH . Thus, the characteristic imset
is also a unique Bayesian network structure representative.
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3.3.1 Advantage of characteristic imsets

Since standard and characteristic imsets are in one-to-one correspondence, one
can transform the inequality constraints from § 3.2.1 into the framework of char-
acteristic imsets – see § 4.1.3 and § 4.2 for further details. One important conse-
quence of these transformed constraints are basic inequalities for characteristic
imsets valid in the acyclic case:

Corollary 6 The constraints (4)-(6) on u imply the inequalities 0 ≤ c(S) ≤ 1,
S ⊆ N for the imset c ascribed to u by (8)-(9).

Proof. Because of (9), we show 0 ≤ p(S) ≤ 1 for S ⊆ N . First, (4) says p(S) = 0
for |S| ≤ 1. Given S ⊆ N , |S| ≥ 2 the class of sets A = {T ; S ⊆ T ⊆ N} is
closed under supersets and, by (5), p(S) ≤ 1. On the other hand, in (6), among
the (representatives of extreme) supermodular functions we find the function

mS↑(T ) =

{
1 if S ⊆ T ,
0 otherwise.

In particular, among the non-specific inequality constraints is the inequality
p(S) =

∑

T, S⊆T u(T ) ≡ 〈mS↑, u〉 ≥ 0. �

In particular, every characteristic imset cG (for an acyclic directed graph G)
is a 0-1-vector, which is a fact emphasized already in [13], which is important
from the point of view of (possible future application of) methods of integer
programming.

Another advantage of characteristic imsets is that they are closer to the
graphical description (of Bayesian network structures) than standard imsets.
Specifically, for S ⊆ N , |S| ≥ 2 one has

cG(S) = 1 ⇔ there exists i ∈ S with S \ {i} ⊆ paG(i), (12)

and there exists a polynomial algorithm for transforming the characteristic imset
cG into the respective essential graph, which is a traditional unique graphical
representative of the Bayesian network structure given by G – see [13].

3.3.2 η to characteristic imset

Lemma 7 The characteristic imset cG is a linear function of ηG given by

c(S) =
∑

i∈S

∑

B,S\{i}⊆B⊆N\{i}

η(i|B) where |S| ≥ 1. (13)
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Proof. Given S ⊆ N , substitute (7) into (8) and change the order of summation:

p(S) =
∑

T, S⊆T⊆N

[
δN (T )− δ∅(T ) +

∑

i∈N

∑

B⊆N\{i}

η(i|B) · {δB(T )− δ{i}∪B(T )}
]

=
∑

T, S⊆T⊆N

δN (T )−
∑

T, S⊆T⊆N

δ∅(T )

+
∑

i∈N

∑

B⊆N\{i}

η(i|B) ·
{ ∑

T, S⊆T⊆N

δB(T )−
∑

T, S⊆T⊆N

δ{i}∪B(T )
}

= 1− δ∅(S) +
∑

i∈N

∑

B⊆N\{i}

η(i|B) ·
{
δ(S ⊆ B)− δ(S ⊆ {i} ∪ B)

}
.

Realize that the expression δ(S ⊆ B)− δ(S ⊆ {i}∪B) vanishes if either S ⊆ B

or S \ ({i} ∪B) 6= ∅, otherwise it is −1. Thus, assuming |S| ≥ 1, one has

p(S) = 1 +
∑

i∈N

∑

B⊆N\{i}

η(i|B) · (−1) · δ(i ∈ S, S ⊆ {i} ∪B)

= 1−
∑

i∈S

∑

B⊆N\{i}

η(i|B) · δ(S \ {i} ⊆ B) ,

because, in case i ∈ S, then S ⊆ {i} ∪ B is equivalent to S \ {i} ⊆ B . Taking
(9) into consideration we get (13). �

Let us call the mapping given by (13) the characteristic transformation. It
can formally be applied to any η-vector, in particular, to the code ηG of a
general directed graph G. Thus, we get a formula for the “quasi-characteristic”
imset (= an element of ZP2(N)) ascribed to a graph over N :

cG(S) = number of super-terminal nodes in S for S ⊆ N , |S| ≥ 2. (14)

Here, a super-terminal node (in S) means i ∈ S such that for all j ∈ S \ {i}
one has j → i in G. Indeed, having fixed S, |S| ≥ 2 and i ∈ S, the expression
∑

B,S\{i}⊆B⊆N\{i} ηG(i|B) is either 0 or 1 depending upon S \ {i} ⊆ paG(i).

Observe that (12) is a special case (14) since, in case of an acyclic directed
graph, any set S has at most one super-terminal node.

Example 8 Consider the graph G from Example 1. Then cG({a, c}) = 0,
cG({b, c}) = cG({a, b, c}) = 1 and cG({a, b}) = 2. Observe that cG does not
satisfy the basic constrains 0 ≤ c ≤ 1 valid in acyclic case. This is because G is
not acyclic.

4 Transformation of inequality constraints

In § 3.2.2 and § 3.3.2, we have described mappings which transform the η-vectors
used by Jaakkola et al. [4] to standard/characteristic imsets. The advantage of
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the η-polytope is the existence of a good (= explicit) outer polyhedral approx-
imation (see Lemma 4 in § 3.1.1). In this section, we characterize the image of
that polyhedral approximation (by the above maps) and compare the trans-
formed approximation (of η-polytope) with the approximation of the standard
imset polytope from § 3.2.1. The main technical difficulty we have to tackle is
that the mappings transforming η-vectors to imsets are many-to-one. Another
feature is that the transformation raises the number of linear constraints. To
clarify the reasons for that, in § 4.1 we first deal with the transformation of
elementary constraints (1)-(2) and, later, in § 4.2, with the transformation of
cluster inequalities (3).

4.1 Transformation of elementary η-constraints

Now, the question of our interest is to transform the constraints (1)-(2) only,
that is, to characterize the form of the inequalities of the image of the polyhedron
J′ from Lemma 3. Let us start with an example, illustrating our method.

Example 9 Consider N = {a, b, c}, the polyhedron J′ and the characteristic
transformation η 7→ c given by (13). The idea is to transform each vertex of J′

and take the convex hull R of the images of vertices. Because of linearity of the
map η 7→ c, the polytope R is the image of J′. Thus, it is enough to find the
facet description of R; this is the exact translation of (1)-(2) then.

The vertices of J′ are exactly the codes of general directed graphs (see Lemma
3) and their images are given by (14). Thus, the (permutation type representa-
tives of) images of vertices of J′ were obtained in this way. Here they are (the
order of component is ab, ac, bc, abc):

[0, 0, 0, 0], [1, 0, 0, 0], [2, 0, 0, 0], [2, 1, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0],

[1, 1, 0, 1], [2, 1, 0, 1], [2, 2, 0, 1], [1, 1, 1, 1], [2, 1, 1, 1],

[2, 1, 1, 2], [2, 2, 1, 2], [2, 2, 2, 3].

Remaining images can be obtained by permutation of first 3 components. We
computed the facet-description of their convex hull R by Polymake [3]. The
result had fifteen inequalities. Here, we only recorded the (permutation) types
of obtained inequalities:

• 0 ≤ c(ab),

• 0 ≤ 2− c(ab),

• 0 ≤ 3− c(ab)− c(ac)− c(bc) + c(abc),

• 0 ≤ c(abc),

• 0 ≤ 1 + c(ab)− c(abc),

• 0 ≤ c(ab) + c(ac)− c(abc),
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• 0 ≤ c(ab) + c(ac) + c(bc)− 2c(abc).

To make sure we computed the vertices of the polyhedron given by these in-
equalities. The (permutation) type representatives are as follows:

[0, 0, 0, 0], [2, 0, 0, 0], [2, 1, 0, 0], [1, 1, 0, 1], [2, 1, 0, 1], [2, 2, 0, 1], [2, 1, 1, 2], [2, 2, 2, 3].

We observe that some of images of vertices of J′ are convex combinations of the
others: for example, [1, 0, 0, 0] comes from [0, 0, 0, 0] and [2, 0, 0, 0]. Note that
the original polyhedron J′ was given by twelve inequalities (and three equality
constraints). Since R is given by fifteen inequality (and four implicit equality)
constraints, the transformation to the framework of characteristic imsets raised
the number of inequality constraints.

Another interesting observation is that the obtained fifteen inequalities in
fact coincide with the translation of specific inequality constraints (5) to the
framework of characteristic imsets in case N = {a, b, c} – see Example 14 for
details.

This leads to a natural conjecture that Jaakkola et al.’s elementary con-
straints (1)-(2) are equivalent to our specific constraints for any |N |. We con-
firm this conjecture below, directly by considering the transformation of η 7→ u.
Later, we transform the specific constraints to the framework of characteristic
imsets (see § 4.1.3).

4.1.1 Translation to the framework of standard imsets

Thus, the task is to characterize in terms of u the image (by η 7→ uη) of the
polytope J′ given by non-negativity and equality constraints. More specifically,
we wish to have a finite system of linear inequalities on u which together with
(4) – see § 3.2.2 – characterize those u ∈ R

P(N) for which

∃η satisfying (1),(2) and uη(T ) = u(T ) for any T ⊆ N, |T | ≥ 2 . (15)

This task can equivalently be formulated as follows. Let us put m ≡ 2|N | − 1,
n ≡ |N | · 2|N |−1 and consider a special m× n matrix A, whose

• rows correspond to sets T ⊆ N , |T | ≥ 1,

• columns correspond to pairs (i|B) where i ∈ N , B ⊆ N \ {i}.

More specifically, the entry a [T, (i|B) ] of A is given by

a [T, (i|B) ] = δ{i}∪B(T )− δB(T ) if |T | ≥ 2 ,

a [T, (i|B) ] = δ{i}(T ) if |T | = 1 .
(16)
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Moreover, to any u ∈ R
P2(N), we ascribe a column m-vector bu whose compo-

nents bu [T ] are specified as follows:

bu [T ] = δN (T )− u(T ) if |T | ≥ 2 ,

bu [T ] = 1 if |T | = 1 .

Then (15) is equivalent to the condition

∃η ∈ R
n satisfying η ≥ 0 and Aη = bu. (17)

Indeed, (1) means η ≥ 0, while (2) for j ∈ N is the requirement that the component
of bu for T = {j}, which is 1, coincides with the respective component of Aη:

1 =
∑

(i|B)

a [T, (i|B) ] · η(i|B) =
∑

i∈N

∑

B⊆N\{i}

δ{i}({j}) · η(i|B) =
∑

B⊆N\{j}

η(j|B) .

Analogously, for fixed T ⊆ N , |T | ≥ 2, u(T ) = u
η(T ) has, by (7), the form

u(T ) = δN (T )−
∑

i∈N

∑

B⊆N\{i}

{δ{i}∪B(T )− δB(T )}
︸ ︷︷ ︸

a [T,(i|B) ]

· η(i|B)

and can be expressed equivalently as

∑

i∈N

∑

B⊆N\{i}

a [ T, (i|B) ] · η(i|B) = δN (T )− u(T ) ≡ bu(T ) ,

which means the components of Aη and bu for T coincide.

Now, Farkas’ lemma (see Corollary 7.1d in [9]) applied to A and bu says that
(17) is equivalent to the requirement:

∀ y ∈ R
m A⊤y ≥ 0 ⇒ b⊤

u
y ≥ 0 . (18)

To simplify this requirement we re-write the condition A⊤y ≥ 0 in this form:

∀ i ∈ N y({i}) ≥ 0, (19)

∀S ⊆ N, |S| = 2, ∀ i ∈ S y(S) + y({i}) ≥ 0, (20)

∀S ⊆ N, |S| ≥ 3, ∀ i ∈ S y(S) + y({i})− y(S \ {i}) ≥ 0. (21)

Indeed, the rows of A⊤ correspond to pairs (i|B), i ∈ N , B ⊆ N \ {i}. If i ∈ N and
B = ∅ then the component of A⊤y for (i|∅) is as follows:

∑

∅6=T⊆N

a [T, (i|∅) ] · y(T ) =
∑

|T |=1

δ{i}(T ) · y(T ) = y({i}) ,

because a [T, (i|∅) ] = 0 for |T | ≥ 2. This gives (19). If i ∈ N , B ⊆ N \ {i} with
|B| = 1, then a [ T, (i|B) ] = δ{i}∪B(T ) for |T | ≥ 2 and one can write

∑

∅6=T⊆N

a [T, (i|B) ] · y(T )

=
∑

|T |=1

δ{i}(T ) · y(T ) +
∑

|T |≥2

δ{i}∪B(T ) · y(T ) = y({i}) + y({i} ∪B) ,
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which leads to (20) for S = {i} ∪B. Finally, if i ∈ N , B ⊆ N \ {i} with |B| ≥ 2 then

∑

∅6=T⊆N

a [T, (i|B) ] · y(T )

=
∑

|T |=1

δ{i}(T ) · y(T ) +
∑

|T |≥2

{δ{i}∪B(T )− δB(T )} · y(T )

= y({i}) + y({i} ∪ B)− y(B) ,

which leads to (21) for S = {i} ∪B.

The next step is to show that {y ∈ R
m;A⊤y ≥ 0} is a pointed (rational

polyhedral) cone and characterize its extreme rays. In fact, we show that the
rays correspond to non-empty classes of sets A ⊆ P1(N) closed under supersets.
More specifically, we ascribe a vector yA ∈ R

m to any such class A by:

yA(T ) ≡ δ(T ∈ A)− |{j ∈ N ; {j} ∈ A & {j} ⊂ T }| for T ∈ P1(N) . (22)

Here is the crucial observation:

Lemma 10 A vector y ∈ R
m satisfies (19)-(21) if and only if it is a conic com-

bination (= a linear combination with non-negative real coefficients) of vectors
yA for classes ∅ 6= A ⊆ P1(N) closed under supersets.

Proof. First, we leave to the reader to verify that any such vector yA satisfies
(19)-(21), which implies the sufficiency of the condition.

To verify the converse implication, we ascribe to any y ∈ R
m satisfying

(19)-(21) the class of sets

Ay = {S ∈ P1(N); ∃T ∈ P1(N), T ⊆ S y(T ) 6= 0} ,

which is clearly closed under supersets and non-empty if y 6= 0. The idea is to
prove the converse implication by induction on |Ay|. If |Ay| = 0 then y ≡ 0 and
the claim that y is a conic combination of those vectors is evident. If |Ay| ≥ 1
then it is enough to find some β > 0 such that y′ ≡ y− β · yA satisfies (19)-(21)
and |Ay′ | < |Ay|.

Since now we fix y ∈ R
m, y 6= 0 satisfying (19)-(21) and put:

A ≡ Ay, y∗ ≡ yA, Y ≡ {i ∈ N ; y({i}) 6= 0} .

Observe a few basic facts:

y(S) = 0 for S ∈ P1(N) \ A, y(S) > 0 for S ∈ Amin .

Indeed, assuming S ∈ Amin one has y(S) 6= 0. If |S| = 1 then (19) implies y(S) > 0.

If |S| = 2 then {i} 6∈ A for both i ∈ S. Hence, y({i}) = 0 and (20) gives y(S) > 0. If

|S| ≥ 3 and i ∈ S, then both {i} 6∈ A and S \ {i} 6∈ A and (21) gives y(S) > 0.
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In particular, since {j} ∈ Amin for j ∈ Y , and {i} 6∈ A for i 6∈ Y ,

β ≡ min {y(T ); T ∈ Amin} > 0, and y({j}) ≥ β > 0 for j ∈ Y , (23)

y({i}) = 0 for i ∈ N \ Y . (24)

Further, we observe that y is non-decreasing set function on subsets of N \ Y .
Indeed, it is enough to show T ⊆ S ⊆ N \ Y, |S \ T | = 1 ⇒ y(S) ≥ y(T ). Take

S \ T = {i}; then i 6∈ Y and y({i}) = 0. If |S| = 2 then T = {j} with j 6∈ Y and

y(S) = y(S) + y({i}) ≥ 0 = y(T ) follows from (20) and (24). If |S| ≥ 3 then (21) says

y(S) + 0− y(T ) ≥ 0.

This implies:
S ∈ A , S ∩ Y = ∅ ⇒ y(S) ≥ β . (25)

Indeed, it is enough to find T ∈ Amin, T ⊆ S (of course, T ∩ Y = ∅) and combine

y(S) ≥ y(T ) with y(T ) ≥ β, which follows from the definition of β in (23).

Finally, also have:

S ∈ P1(N), |S ∩ Y | ≤ 1 ⇒ y(S) ≥ 0 . (26)

Indeed, this was verified in cases |S| = 1 and |S ∩ Y | = 0 in (23)-(25). Assume |S| ≥ 2

and |S ∩ Y | = 1 and use the induction on |S|. If |S| = 2 then S = {i, j} with i 6∈ Y

and j ∈ Y and (20)+(24) give y(S) ≥ −y({i}) = 0. If |S| ≥ 3 then choose i ∈ S \ Y

and write by (21)+(24) y(S) ≥ y(S \ {i}) − y({i}) = y(S \ {i}). Now, y(S \ {i}) ≥ 0

follows from the induction premise.

To smooth later considerations let us gather the observations about y∗ = yA
defined in (22). For singletons we have:

y∗({i}) = 1 for i ∈ Y , y∗({i}) = 0 for i 6∈ Y .

Given S ⊆ N , |S| = 2 we have:

y∗(S) = 1 if S ∩ Y = ∅, S ∈ A.

y∗(S) = 0 if either [S ∩ Y = ∅ & S 6∈ A ] or |S ∩ Y | = 1.

y∗(S) = −1 if S ⊆ Y .

For S ⊆ N , |S| ≥ 3 we have:

y∗(S) = 1 if S ∩ Y = ∅, S ∈ A.

y∗(S) = 0 if S ∩ Y = ∅, S 6∈ A.

y∗(S) = 1− |S ∩ Y | if S ∩ Y 6= ∅.

To show that
y′ ≡ y − β · y∗

satisfies (19), that is, y′({i}) ≥ 0 for i ∈ N , we distinguish two cases.

• If i 6∈ Y then y∗({i}) = 0 and (19) for y implies the same equality for y′.
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• If i ∈ Y then y′({i}) = y({i})−β ·y∗({i}) = y({i})−β ·1 = y({i})−β ≥ 0
owing to (23).

To show that y′ satisfies (20), that is, y′(S)+ y′({i}) ≥ 0 for S ⊆ N , |S| = 2
and i ∈ S we distinguish five cases.

• If S ⊆ Y then i ∈ Y and y∗(S) + y∗({i}) = (−1) + 1 = 0 and (20) for y

implies the same equality for y′, no matter what β is.

• If |S ∩ Y | = 1, i 6∈ Y then y∗(S) + y∗({i}) = 0 + 0 = 0 and (20) for y

implies what is desired, for the same reason.

• If |S ∩ Y | = 1, i ∈ Y then y′(S) + y′({i}) = y(S) − β · y∗(S) + y({i})−
β · y∗({i}) = y(S) − β · 0 + y({i})− β · 1 = y(S) + y({i}) − β. However,
y({i})−β ≥ 0 by (23) and y(S) ≥ 0 by (26), which implies what is desired.

• If S ∩ Y = ∅, S 6∈ A then i 6∈ Y and y∗(S) + y∗({i}) = 0 + 0 = 0 and (20)
for y implies what is desired,

• If S ∩ Y = ∅, S ∈ A then i 6∈ Y and by (24) y′(S) + y′({i}) = y(S) −
β · y∗(S) + y({i})− β · y∗({i}) = y(S)− β · 1 + 0− β · 0 = y(S)− β. The
desired inequality follows from (25).

To show that y′ satisfies (21), that is, y′(S) + y′({i}) − y′(S \ {i}) ≥ 0 for
S ⊆ N , |S| ≥ 3 and i ∈ S we distinguish seven cases.

• If S ∩ Y = ∅, S \ {i} ∈ A then S ∈ A and i 6∈ Y . Thus, y∗(S) + y∗({i})−
y∗(S\{i}) = (+1)+0−(+1) = 0 and (21) for y implies the same inequality
for y′.

• If S ∩ Y = ∅, S 6∈ A (which implies S \ {i} 6∈ A) then y∗(S) + y∗({i})−
y∗(S \ {i}) = 0 + 0− 0 = 0 and (21) for y implies what is desired.

• If S ∩ Y = ∅, S ∈ A, S \ {i} 6∈ A then y({i}) = 0 = y(S \ {i}) and we can
write y′(S)+y′({i})−y′(S \{i}) = y(S)−β ·y∗(S)+y({i})−β ·y∗({i})−
y(S \ {i})+ β · y∗(S \ {i}) = y(S)− β · 1+ 0− β · 0− 0+ β · 0 = y(S)− β,
which is non-negative by (25).

• If S ∩ Y 6= ∅, i 6∈ Y then S ∩ Y = (S \ {i}) ∩ Y and y∗(S) + y∗({i}) −
y∗(S \ {i}) = (+1− |S ∩ Y |) + 0− (+1− |(S \ {i}) ∩ Y |) = 0. Thus, (21)
for y implies what is desired.

• If S∩Y 6= ∅, i ∈ Y , (S \{i})∩Y 6= ∅ then |S∩Y | = 1+ |(S \{i})∩Y | and
y∗(S)+y∗({i})−y∗(S\{i}) = (+1−|S∩Y |)+(+1)−(+1−|(S\{i})∩Y |) =
0. Thus, (21) for y implies what is desired.

• If S ∩ Y 6= ∅, i ∈ Y , (S \ {i}) ∩ Y = ∅, S \ {i} ∈ A then |S ∩ Y | = 1 and
y∗(S) + y∗({i})− y∗(S \ {i}) = (+1 − 1) + (+1)− (+1) = 0 and (21) for
y implies what is desired.
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• If S ∩ Y 6= ∅, i ∈ Y , (S \ {i}) ∩ Y = ∅, S \ {i} 6∈ A then also |S ∩ Y | = 1
and y(S \ {i}) = 0, which allows us to write y′(S)+ y′({i})− y′(S \ {i}) =
y(S) − β · y∗(S) + y({i}) − β · y∗({i}) − y(S \ {i}) + β · y∗(S \ {i}) =
y(S)− β · (1− 1)+ y({i})− β · 1− 0+ β · 0 = y(S) + y({i})− β. However,
y({i})−β ≥ 0 by (23) and y(S) ≥ 0 by (26), which implies what is desired.

Thus, y′ satisfies (19)-(21) and, because of the choice of β, y′(T ) = 0 for
at least one T ∈ Amin and |Ay′ | < |Ay|, which concludes the induction step.
Indeed, realize that, by (22), y∗(T ) ≡ yA(T ) = 0 for T ∈ P1(N) \ A. �

Now, Lemma 10 allows us to re-formulate the requirement (18) in the form
of finitely many conditions on u:

∀ ∅ 6= A ⊆ P1(N) closed under supersets b⊤
u
yA ≥ 0 . (27)

Indeed, if y ∈ R
m is such that A⊤y ≥ 0 and y =

∑
λA · yA, λA ≥ 0, then b⊤u y =

∑
λA · b⊤

u
yA ≥ 0.

It remains to reformulate, given such an A, the condition b⊤
u
yA ≥ 0. Assum-

ing |N | ≥ 2, denote for this purpose A ≡ {i ∈ N ; {i} ∈ A} and write using the
definition of bu and yA from (22):

0 ≤ b
⊤
u yA =

∑

|T |≥1

bu(T ) · yA(T ) =
∑

|T |=1

yA(T ) +
∑

|T |≥2

{δN (T )− u(T )} · yA(T )

=
∑

|T |=1

yA(T ) + yA(N)−
∑

|T |≥2

u(T ) · yA(T )

= |A|+ (1− |A|)
︸ ︷︷ ︸

yA(N)

−
∑

|T |≥2

u(T ) · yA(T ) = 1−
∑

|T |≥2

u(T ) · yA(T ) .

Thus, b⊤
u
yA ≥ 0 is equivalent to

∑

|T |≥2 u(T ) · yA(T ) ≤ 1. To get even more

elegant form of it, assume u satisfies (4) and observe
∑

|T |≥2

u(T ) · |T ∩ A| =
∑

|T |≥2

u(T ) ·
∑

i∈A

δ(i ∈ T ) =
∑

|T |≥2

∑

i∈A

u(T ) · δ(i ∈ T )

=
∑

i∈A

∑

|T |≥2

u(T ) · δ(i ∈ T ) =
∑

i∈A

∑

|T |≥2, i∈T

u(T )
(4)
=

∑

i∈A

−u({i}) .

Therefore, we can write by (22):
∑

|T |≥2

u(T ) · yA(T ) =
∑

|T |≥2

u(T ) · δ(T ∈ A)−
∑

|T |≥2

u(T ) · |T ∩ A|

=
∑

|T |≥2

u(T ) · δ(T ∈ A) +
∑

i∈A

u({i}) =
∑

|T |≥1

u(T ) · δ(T ∈ A) =
∑

T∈A

u(T ) ,

which means that b⊤
u
yA ≥ 0 is equivalent to

∑

T∈A u(T ) ≤ 1. Thus, under
validity of (4), (27) is equivalent to (5) and we have:

Corollary 11 Provided |N | ≥ 2, the condition (15) for u ∈ R
P(N) is equivalent

to the simultaneous validity of (4) and (5).
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4.1.2 Remarks on the matrix A

Consider again the m×n matrix A defined in (16); recall that m = 2|N |−1 and
n = |N | · 2|N |−1. We have observed in § 4.1.1 that A plays a central role in the
transition from η-vectors to standard imsets. Now, we show that A has full row
rank by deriving its its Hermite normal form (see § 4.1 in [9] for this concept).

Proposition 12 The matrix A has Hermite normal form [I 0], where I is the
m×m identity matrix and 0 the m× (n−m) zero matrix.

Proof. The columns of A are indexed by pairs (i|B) and given by

A(i|∅) = δ{i} for i ∈ N,

A(i|j) = δ{i} + δ{i,j} for i, j ∈ N , i 6= j

A(i|B) = δ{i} − δB + δ{i}∪B for i ∈ N , B ⊆ N \ {i}, |B| ≥ 2.

Thus, δ{i} = A(i|∅) and δ{i,j} = A(i|j)−A(i|∅). To show by induction on |T | ≥ 1
that δT can be written as an integer combination of columns of A, assume
|T | ≥ 3 and choose a pair (i|B) with T = {i} ∪B, |B| ≥ 2. Then

δT = δ{i}∪B = A(i|B) − δ{i} + δB,

where, by the induction hypothesis, the terms δ{i} and δB can be written as
integer combination of the columns of A.

Thus, using elementary columns operations, A can be transformed such
that it contains all m elementary column vectors δT . Using additional column
operations, all other columns can be zeroed out. Therefore, using elementary
column operations, A can be transformed to the form [I 0]. �

Before writing this report, we verified computationally that A is unimod-
ular, strongly unimodular, strongly k-modular, however not totally unimodu-
lar for 3 ≤ |N | ≤ 6 using software written by Matthias Walther available at
https://github.com/xammy/unimodularity-test. This led us to a hypothe-
sis that A is unimodular for any |N |. In § 4.1.4, we confirm this hypothesis.

4.1.3 Translation to the framework of characteristic imsets

We observed in § 4.1.1 that Jaakkola et al.’s elementary constraints (1)-(2) are
transformed into u-constraints as (4)-(5). Transforming (4)-(5) into c-constraints
is a simpler task because of the one-to-one correspondence u↔ c (see § 3.3). We
already know that (4) takes the form of tacit restrictions on c-vectors (10). As
concerns the specific inequality constraints (5), we show below that every such
inequality, for ∅ 6= A ⊆ P1(N) closed under supersets, is transformed into the
framework of c-vectors as follows:

0 ≤
∑

S⊆N

κA(S) · c(S) , (28)
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where the coefficients κA(−) are given by

κA(S) ≡
∑

T∈A, T⊆S

(−1)|S\T | for S ⊆ N . (29)

However, the formula (29) is not suitable to compute the coefficients. It is more
appropriate to introduce them equivalently in terms of the class Amin ≡ I of
minimal sets in A. More specifically, let us introduce the class C(I) of possible
unions of sets from a non-empty class I ⊆ P1(N) of incomparable sets:

C(I) ≡ {S ⊆ N ; ∃ ∅ 6= K ⊆ I such that S =
⋃

T∈K T}.

Then can can compute the coefficients κA(−) recursively as follows:

κA(S) = 0 if S ⊆ N , S 6∈ C(I),

κA(S) = 1−
∑

T∈C(I), T⊂S

κA(T ) for S ∈ C(I) . (30)

This implies that κA(S) = 1 for S ∈ Amin = I and that κA has the more zeros
the smaller |Amin| is. Therefore, in the framework of characteristic imsets, it
is more convenient to ascribe the (transformed) specific inequality constraints
directly to classes ∅ 6= I ⊆ P1(N) of incomparable sets.

Lemma 13 Let u and c be imsets related by (8)-(9) and ∅ 6= A ⊆ P1(N) a
class of sets closed under supersets. Then the inequality (5) corresponding to A
has the form (28), where the coeficients κA(−) are given by (30).

Proof. The first observation is that the coefficients given by (29) satisfy

κA(S) = 0 for S ⊆ N , S 6∈ A, and
∑

S⊆N

κA(S) =
∑

S∈A

κA(S) = 1 . (31)

To verify it realize that A ⊆ P(N) is closed under supersets and write:

∑

S∈A

κA(S) =
∑

S∈A

∑

T∈A, T⊆S

(−1)|S\T | =
∑

T∈A

∑

S∈A, T⊆S

(−1)|S\T |

=
∑

T∈A

∑

S, T⊆S⊆N

(−1)|S\T | =
∑

T∈A

δN (T ) = 1 .

To see that (5) is transformed into (28) we substitute the inverse formula (11)
into it and use the fact A is closed under supersets:

1 ≥
∑

T∈A

u(T ) =
∑

T∈A

∑

S,T⊆S⊆N

(−1)|S\T | · p(S)

=
∑

S∈A

∑

T∈A, T⊆S

p(S) · (−1)|S\T | =
∑

S∈A

p(S) ·
∑

T∈A, T⊆S

(−1)|S\T |

︸ ︷︷ ︸

κA(S)

.
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Thus, substitute (31) in that inequality and get

0 ≤ 1−
∑

S∈A

p(S)·κA(S)
(31)
=

∑

S∈A

κA(S)−
∑

S∈A

κA(S)·p(S) =
∑

S∈A

κA(S)·[1 − p(S)]
︸ ︷︷ ︸

c(S)

,

which is, owing to (9) and (31), nothing but (28).

It remains to show that (29) takes the form (30). An auxiliary fact is

∀S ∈ A
∑

T⊆S

κA(T ) = 1 . (32)

Indeed, to see it, consider the class AS ≡ {T ⊆ S; T ∈ A}, which is a class
of subsets of S, closed under supersets. Moreoever, for any T ∈ AS , one has
κA(T ) = κAS

(T ), which implies by (31) applied to AS and S in place of N that

1 =
∑

T∈AS

κAS
(T ) =

∑

T∈A, T⊆S

κA(T ) =
∑

T⊆S

κA(T ) .

In the rest of the proof we write I in place of Amin and omit the index in κA(−)
and write κ(−) only. For every K ⊆ I we introduce the class of sets whose only
subsets in I are elements of K:

BK ≡ {S ⊆ N ; K ⊆ S for K ∈ K & L \ S 6= ∅ for L ∈ I \ K }.

Of course, it may happen that BK is empty for some K ⊆ I. Nevertheless,
the collection of classes BK, where K runs over subsets of I, form a partition
of P(N). Moreover, every non-empty class BK has the least set (in sense of
inclusion), namely SK ≡

⋃

T∈K T . Observe that K = ∅ leads to a non-empty
class B∅ = P(N) \ A with S∅ = ∅. Since I consists of incomparable sets, every
S ∈ I belongs to just one BK with |K| = 1, namely K = {S}. The class C(I)
defined above (30) then coincides with {SK; ∅ 6= K ⊆ I with BK 6= ∅ }.

An easy consequence of (29) is that κ(S) = 0 for S ∈ B∅ (= S 6∈ A) and
κ(S) = 1 for S ∈ I. To verify (30) it is enough to show by induction on |K| the
following two statements:

(i) κ(S) = 0 for S ∈ BK, S 6= SK,

(ii) ∀ |K| ≥ 1 with BK 6= ∅ 1 =
∑

L⊆K,BL 6=∅ κ(SL).

Indeed, this is because for L,K ⊆ I with BL 6= ∅ 6= BK one has L ⊆ K if and
only if SL ⊆ SK. We already know this is true in case |K| = 0. Now assume
|K| ≥ 1 and the statements hold for any L ⊂ K. Consider arbitrary S ∈ BK and
write using (32) and the fact that subsets of S must belong to BL for L ⊆ K:

1
(32)
=

∑

T⊆S

κ(T ) =
∑

L⊆K,BL 6=∅

∑

T⊆S,T∈BL

κ(T )

=
∑

T⊆S, T∈BK

κ(T ) +
∑

L⊂K,BL 6=∅

∑

T⊆S, T∈BL

κ(T ) . (33)
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Now, observe that the induction premise (i) applied to any L ⊂ K, BL 6= ∅
says that κ vanishes in BL except for SL. In particular, for any D ⊆ BL with
SL ∈ D one has

∑

T∈D κ(T ) = κ(SL). This implies that the second term in (33)
is
∑

L⊂K,BL 6=∅ κ(SL) and we have observed that

∀S ∈ BK
∑

T⊆S,T∈BK

κ(T ) = 1−
∑

L⊂K,BL 6=∅

κ(SL), (34)

which means the function S 7→
∑

T⊆S,T∈BK
κ(T ) is constant on BK. This allows

one to derive (i) for K, for instance, by induction on |S| for S ∈ BK. If we apply
(34) to S = SK we get (ii) for K. �

Example 14 Take N = {a, b, c} and classify types of considered classes A,
specified by Amin. Using (30) we get the corresponding inequalities (28):

• Amin = {abc} leads to κA(abc) = 1 and κA(S) = 0 otherwise. This gives
the constraint 0 ≤ c(abc),

• Amin = {ab} leads to κA(ab) = 1 (and κA(S) = 0 otherwise), which gives
the constraint 0 ≤ c(ab),

• Amin = {ab, ac} leads to κA(ab) = κA(ac) = 1 and κA(abc) = −1, which
gives the constraint 0 ≤ c(ab) + c(ac)− c(abc),

• Amin = {ab, ac, bc} leads to κA(ab) = κA(ac) = κA(bc) = 1 and κA(abc) =
−2, which gives the constraint 0 ≤ c(ab) + c(ac) + c(bc)− 2c(abc),

• Amin = {c} leads to κA(c) = 1 which gives 0 ≤ c(c), which is a vacuous
constraint because of c(c) = 1 implied by (10),

• Amin = {c, ab} leads to κA(c) = κA(ab) = 1 and κA(abc) = −1, and then
to 0 ≤ c(c) + c(ab)− c(abc), which leads after the substitution c(c) = 1 to
0 ≤ 1 + c(ab)− c(abc),

• Amin = {a, b} leads to κA(a) = κA(b) = 1 and κA(ab) = −1, and then,
after substituing c(i) = 1, to 0 ≤ 2− c(ab),

• Amin = {a, b, c} leads to κA(a) = κA(b) = κA(c) = 1, κA(ab) = κA(ac) =
κA(bc) = −1 and κA(abc) = 1, which gives, after the substitution c(i) = 1,
0 ≤ 3− c(ab)− c(ac)− c(bc) + c(abc).

Thus, we see that the non-vacuous constraints are identical with the transformed
elementary η-constraints – see Example 9.
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4.1.4 Remarks on the characteristic transformation

Let us consider the characteristic transformation given by (13) – see § 3.3.2. It
can be viewed as a mapping η 7→ Bη, where B is an m × n matrix, whose
entries b [S, (i|B) ] are specifed as follows: for |S| ≥ 1, i ∈ N , B ⊆ N \ {i},

b [S, (i|B) ] = δ( i ∈ S & S \ {i} ⊆ B ) ≡ δ(S ⊆ {i} ∪B )− δ(S ⊆ B ) . (35)

There is a close relation to the matrix A introduced in (16). Indeed, there exists
an invertible unimodular m×m matrix C such that B = CA. More specifically,
the entries c [S, T ] of C for non-empty sets S, T ⊆ N are given by

c [S, T ] =

{
δ(S ⊆ T ) if |S| ≥ 2,
δ(S = T ) if |S| = 1.

To see it write for fixed S ⊆ N , |S| ≥ 2 and a pair (i|B) with help of (16):

∑

T 6=∅

c [S, T ] · a [T, (i|B) ] =
∑

T⊇S

a [T, (i|B) ] =
∑

T⊇S

[ δ{i}∪B(T )− δB(T ) ]

=
∑

T⊇S

δ{i}∪B(T )−
∑

T⊇S

δB(T )

= δ(S ⊆ {i} ∪B)− δ(S ⊆ B) = b [S, (i|B) ] .

Analogously, for S ⊆ N , |S| = 1 one has
∑

T 6=∅

c [S, T ] · a [T, (i|B) ] =
∑

T=S

a [T, (i|B) ] = a [S, (i|B) ] = δ{i}(S) = b [S, (i|B) ] .

We leave to the reader to verify that the m×m-matrix D with entries d [T,R ]
for non-empty T,R ⊆ N given by

d [T,R ] =

{
δ(T ⊆ R ) · (−1)|R\T | if |T | ≥ 2,
δ(T = R ) if |T | = 1.

is an inverse matrix to C. Since both C and its inverse D are integral matrices,
they are both unimodular. The following observation appears to be important.

Lemma 15 Both the matrix A given by (16) and the matrix B given by (35)
are full row rank unimodular matrices.

Proof. Since A = DB where D is an invertible unimodular m×m-matrix, it
is enough to show that B is unimodular. By Proposition 12 and B = CA we
already know that B has full row rank.

To show it is unimodular we re-label its columns and add some new ones.
The original columns of B corresponding to pairs (i|B) with B 6= ∅ are re-
labelled by pairs (C : B) of sets ∅ 6= B ⊆ C ⊆ N with |C \B| = 1; that is, (i|B)
is replaced by (C : B) where C = {i} ∪B. The formula (35) implies

b [S, (C : B) ] = δ(S ⊆ C )− δ(S ⊆ B ) for S ⊆ N , |S| ≥ 1.
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The original column corresponding to a pair (i|∅), i ∈ N is re-labelled by a
singleton set R = {i}. Note that the column has the form δR. The newly added
columns are labelled by sets R ⊆ N , |R| ≥ 2 and defined as follows:

b [S,R ] = δ(S ⊆ R ) for S ⊆ N , |S| ≥ 1.

Observe that this formula also holds in case |R| = 1. Now, it is enough to show
that the extended matrix B is unimodular.

Let B̄ denote the m×m-submatrix of B corresponding to columns labelled
by sets ∅ 6= R ⊆ N . It follows from the above description of columns in B that
B = B̄E where the matrix E has the entries e [T,R ] for ∅ 6= T,R ⊆ N and
e [T, (C : B) ] for ∅ 6= T ⊆ N , ∅ 6= B ⊆ C ⊆ N , |C \B| = 1 specified as follows:

e [T,R ] = δ(T = R ) ,
e [T, (C : B) ] = δ(T = C )− δ(T = B ) .

Therefore, it is enough to show that B̄ is invertible unimodular matrix and E

totally unimodular (cf. Theorem 21.6 in [9]). We leave to the reader to verify
that the inverse matrix F to B̄ has the entries

f [R,U ] = δ(R ⊆ U ) · (−1)|U\R| for ∅ 6= R,U ⊆ N.

Since B̄ has integral inverse F , it is unimodular. The matrix E is totally uni-
modular because it is the restriction of a network matrix (cf. § 19.3 of [9]).
More specifically, one can add one dummy row to E, labelled by S = ∅: put
e [ ∅, R ] = −1 for ∅ 6= R ⊆ N and e [ ∅, (C : B) ] = 0 for any pair (C : B).
We obtain a matrix with entries in {−1, 0,+1} such that each of its columns
contains exactly once +1 and exactly once −1. As mentioned in the statement
(18) of § 19.3 in [9], such a matrix is totally unimodular. Of course, it remains
totally unimodular if the row corresponding to S = ∅ is again removed. �

4.2 Transformation of cluster inequalities

Luckily, these inequalites transform nicely to the framework of imsets.

Lemma 16 Provided η satisfies (2), the cluster inequality (3) for C ⊆ N ,
|C| ≥ 2 can be re-written either in terms of u-vectors as

∑

T⊆N, |C∩T |≥2

u(T ) · (|C ∩ T | − 1) ≥ 0 , (36)

or in terms of c-vectors as

|C| − 1−
∑

S⊆C, |S|≥2

c(S) · (−1)|S| ≥ 0 . (37)
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Proof. By (3), it is enough to show that the following equalities hold

|C| −
∑

S⊆C, |S|≥2

c(S) · (−1)|S|

︸ ︷︷ ︸

≡(∗)

= 1 +
∑

T⊆N, |C∩T |≥2

u(T ) · (|C ∩ T | − 1)

=
∑

i∈C

∑

B⊆N\{i}, B∩C=∅

η(i|B) .

Let (∗) denote the first expression there and write by (9)-(8):

(∗) = |C| −
∑

S⊆C, |S|≥2

(−1)|S| · [ 1−
∑

T⊇S

u(T ) ]

= |C| −
∑

S⊆C, |S|≥2

(−1)|S|

︸ ︷︷ ︸

|C|−1

+
∑

S⊆C, |S|≥2

(−1)|S| ·
∑

T⊇S

u(T )

= 1 +
∑

S⊆C, |S|≥2

∑

T⊇S

u(T ) · (−1)|S| = 1 +
∑

T, |C∩T |≥2

u(T ) ·
∑

S⊆C∩T, |S|≥2

(−1)|S|

︸ ︷︷ ︸

|C∩T |−1

.

This already proves the first equality. Now, we substitute (7) in the last expres-
sion (note |T | ≥ 2 for T here) and change the order of summation:

(∗) = 1 +
∑

T, |C∩T |≥2

u(T ) · (|C ∩ T | − 1)

= 1 +

|C|−1
︷ ︸︸ ︷

∑

T, |C∩T |≥2

δN (T ) · (|C ∩ T | − 1)+
∑

i∈N

∑

B⊆N\{i}

η(i|B) ·

{ ∑

T, |C∩T |≥2

δB(T ) · (|C ∩ T | − 1)−
∑

T, |C∩T |≥2

δ{i}∪B(T ) · (|C ∩ T | − 1)
}

= |C|+
∑

i∈N

∑

B⊆N\{i}

η(i|B) ·

{ δ( |C ∩ B| ≥ 2 ) · (|C ∩ B| − 1)− δ( |C ∩ ({i} ∪B)| ≥ 2 ) · (|C ∩ ({i} ∪B)| − 1) } .

Now, we realize the that the inner expression in braces vanishes for i 6∈ C

because then C ∩ B = C ∩ ({i} ∪ B). Analogously, it vanishes if i ∈ C but
C ∩ B = ∅. However, in case i ∈ C and C ∩ B 6= ∅ it equals to −1. Thus, we
write using (2) for i ∈ C:

(∗) = |C|+
∑

i∈N

∑

B⊆N\{i}

η(i|B) · δ( i ∈ C & C ∩B 6= ∅ ) · (−1)

= |C| −
∑

i∈C

∑

B⊆N\{i}

η(i|B) · δ(C ∩B 6= ∅ )

(2)
=

∑

i∈C

∑

B⊆N\{i}

η(i|B)−
∑

i∈C

∑

B⊆N\{i}, B∩C 6=∅

η(i|B)

=
∑

i∈C

∑

B⊆N\{i}, B∩C=∅

η(i|B) ,
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which gives the third required equality. �

Example 17 Take N = {a, b, c}. By (36), there are four transformed cluster
inequalities for |C| ≥ 2 breaking into two types:

• u({a, b}) + u({a, b, c}) ≥ 0, (for C = {a, b})

• u({a, b}) + u({a, c}) + u({b, c}) + 2 · u({a, b, c}) ≥ 0. (for C = {a, b, c})

We observe they coincide with two types of non-specific inequality constraints
mentioned in Example 5 (see § 3.2.1). Nevertheless, the remaining non-specific
constrain mentioned there, namely u({a, b, c}) ≥ 0, is not implied by the trans-
formed cluster inequalities. For instance, the u-vector given by u(T ) = (−1)|T |

for T ⊆ {a, b, c} shows that.

The above example suggests that the transformed cluster inequalities are
implied by the non-specific ones, which is indeed the case.

Corollary 18 The cluster inequalities transformed to the framework of u-vectors
(36) follow from non-specific inequality constraints (6).

Proof. By (36), the cluster inequality for C ⊆ N , |C| ≥ 2 has the form

〈mC , u〉 =
∑

T⊆N

mC(T )·u(T ) ≥ 0, withmC(T ) = max {0, |C∩T |−1} for T ⊆ N.

The function mC is a special (standardized extreme) supermodular function,
and, therefore, the inequality for C follows from (6). �

Thus, we can summarize. The exact translation of the equality constraints
(2) to the framework of u-vectors are the equality constraints (4) – see § 3.2.2.
Provided (2) is valid, the exact translation of non-negativity constraints (1) are
specific inequality constraints (5) (see Corollary 11 in § 4.1.1), and by Corollary
18, the cluster inequalities (3) translate to some of the non-specific inequality
constraints (6). In particular, we have

Corollary 19 The u-polyhedron specified by (4)-(6) is contained in the image
of the η-polyhedron specified by (1)-(3) by the mapping η 7→ uη defined in (7),
which is the polyhedron specified by (4), (5) and (36).

5 LP relaxation

To motivate the next result consider the case of three variables and transform
Jaakkola et al.’s polyhedron J (§ 3.1.1) to the framework of c-vectors.
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Example 20 In Example 9 (see § 4.1), we transformed the elementary con-
straints (1)-(2) to the framework of characteristic imsets in case N = {a, b, c}.
The result was a polyhedron given by fifteen inequalities and four equality con-
straints. One can add the transformed cluster inequalities (37) to those con-
straints. There are four such inequalities breaking into two types:

• 0 ≤ 1− c(ab), (for C = {a, b})

• 0 ≤ 2− c(ab)− c(ac)− c(bc) + c(abc). (for C = {a, b, c})

We computed (again by Polymake [3]) the vertices of the resulting polyhedron
(= the image of J) and got 12 vertices. The type representatives are as follows:

[0, 0, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 0, 1], [1, 1, 1, 1], [1, 1, 1,
3

2
].

All the eleven lattice points here are characteristic imsets (for acyclic directed
graphs), while the fractional vertex [1, 1, 1, 32 ] is not. However, it is a convex
combination of vertices of the bigger polyhedron (= of the image of J′), namely
of [2, 2, 2, 3] and [0, 0, 0, 0] – see Example 9.

To get the exact polyhedral characterization of the characteristic imset poly-
tope (= of the convex hull of the set of characteristic imsets) in this case
N = {a, b, c} one has to add the translation of the non-specific inequality con-
strain u({a, b, c}) ≥ 0 – see Example 17. By (8)-(9), it leads to

• c(abc) ≤ 1,

which clearly cuts off the fractional vertex and the result is just the polytope
spanned by the remaining eleven lattice points. Thus, the example shows that
the basic inequalities for characteristic imsets mentioned in § 3.3.1 (Corollary 6)
are not implied by the transformed Jaakkola et al.’s inequalities (1)-(3).

Nevertheless, we have observed that in case |N | = 3 the only lattice points
within the transformed polyhedron are the characteristic imsets. This leads to a
hypothesis that this holds for any |N |. We confirm this conjecture now using the
observation from Lemma 15. Thus, by transforming Jaakkola et al.’s polyhedron
J we get an explicit LP relaxation of the characteristic imset polytope.

Corollary 21 The only lattice points within the polyhedron of c-vectors given
by (10), (28) and (37) are characteristic imsets (for acyclic directed graphs).

Proof. Let us interpret any c-vector as an element of RP1(N) ≡ R
m, that is,

c(∅) = 1 by a convention. We have already observed that the polyhedron given
by (10), (28) and (37) is the image of the polyhedron J specified by (1)-(3) by
the transformation η 7→ Bη = c defined in (13) – see § 4.1.3 and § 4.2.

Assume c is a lattice point in the considered polyhedron. Thus, c has a pre-
image x ∈ J, which implies that the polyhedron {x ≥ 0; Bx = c} in R

n is
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non-empty. By Lemma 15, B is unimodular, which allows us to use Theorem
19.2 in [9] saying that a full row rank m×n-matrix B is unimodular if and only
if the polyhedron {x ≥ 0; Bx = c} is integral for any c ∈ Z

m. That means, it
is the convex hull of its lattice points. In particular, since it is non-empty, it has
at least one lattice point. Let us fix one such lattice point η ∈ Z

n, η ≥ 0 with
Bη = c. It automatically satisfies (1); (2) holds because c(S) = 1 for |S| = 1 and
Bη = c. As (37) holds for c, η satisfies all cluster inequalities (3) (by Lemma
16). That means, η is a lattice point in J.

By Lemma 4, η is necessarily the code ηG of an acyclic directed graph G

over N . By Lemma 7, its image c by the characteristic transformation is the
characteristic imset cG corresponding to G. �

Remark In the proof of Corollary 21, we have shown that if c is a lattice
point in the cone generated by columns of B then it is a non-negative integer
combination of columns of B. That means, in terms of § 16.4 of [9], the columns
of B form the minimal integral Hilbert basis of the cone generated by them.
Following the terminology from commutative algebra, the semigroup generated
by columns of B is normal [6, 15, 16].

Nevertheless, because of the one-to-one correspondence between u-vectors
and c-vectors, we have an analogous result in the framework of standard imsets.

Corollary 22 The polyhedron of u-vectors given by (4), (5) and (36) is an LP
relaxation of the standard imset polytope.

Proof. As explained in § 3.3 the mapping u 7→ c given by (8)-(9) is invertible
and maps lattice points to lattice points. Moreover, (4) is transformed to (10),
(5) to (28) by Lemma 13 and (36) to (37) by Lemma 16. Thus, the image of the
polyhedron is the polyhedron of c-vectors from Corollary 21. The pre-images of
characteristic imsets are standard imsets. �

Note that one can also prove Corollary 22 directly, by the method Corollary
21 was proved. Indeed, one can use an analogous consideration where the matrix
B is replaced by A and the vector c by bu for an u-vector – see the relation (17)
mentioned in § 4.1.1.

Thus, we have an explicit LP relaxation of the standard imset polytope and
the conjecture from [14] is confirmed:

Corollary 23 The polyhedron of u-vectors given by (4)-(6) is an LP relaxation
of the standard imset polytope.

Proof. This follows from Corollaries 22 and 19. �
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Conclusions

Corollary 21 gives an explicit LP relaxation of the characteristic imset polytope.
Nevertheless, some of the inequalities (28) are superfluous because they follow
from the remaining inequalities. Moreover, perhaps adding the basic inequalities
from Corollary 6 allows one further reduction of the number of inequalities.

Another research direction is to look for even more loose LP relaxation of
the standard/characteristic imset polytope, which however, has a less number
of inequalities.
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