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Abstract. Let G be any group and F an algebraically closed field of char-
acteristic zero. We show that any two G-graded finite dimensional G-simple
algebras over F are G-graded isomorphic if and only if the satisfy the same G-
graded polynomial identities. This result was proved by Koshlukov and Zaicev
in case G is abelian.

Introduction

The purpose of this article is to prove that finite dimensional (associative) simple
G-graded algebras over an algebraically closed field F of characteristic zero are
determined up to G-graded isomorphism by their G-graded identities. Here G is
any group. In case G is abelian, the result was established by Koshlukov and Zaicev
[8]. Analogous results were obtained for Lie algebras by Kushkulei and Razmyslov
[7] and for Jordan algebras by Drensky and Racine [6].

The structure theory of finite dimensional G-graded algebras and in particular
of simple G-graded algebras plays a crucial role in the proof of the representability
theorem for G-graded PI algebras and in the solution of the Specht problem (i.e.
the T -ideal of G-graded identities is finitely based) for such algebras (see Aljadeff
and Kanel-Belov [2]).

Recall that the representability theorem for G-graded algebras says in particular,
that ifW is an affineG-graded algebra which is PI as an ordinary algebra, then there
exists a finite dimensional algebra A which satisfies precisely the same G-graded
identities as W .

A fundamental part of the proof of the Representability Theorem is the con-
struction of special finite dimensional G-graded algebras which are called basic.
It turns out that if B is a basic algebra, then B admits G-graded polynomials
which are called Kemer. These are multilinear polynomials, nonidentities, which
are extremal in the sense that for every g in G, there is an alternating set of homo-
geneous elements of degree g of cardinality which is equal to the dimension of the
g-homogeneous component of B. Clearly no nonidentity polynomial of B can have
larger alternating sets.

The key point in the proof of representability is that the finite dimensional
algebra A which satisfies the same G-graded identities as W can be expressed as
the direct sum of basic algebras and hence the T -ideal of G-graded identities of
A is the intersection of the corresponding ideals of identities of the basic algebras
which appear in the decomposition. However, the basic algebras that appear in
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the decomposition of A are not known to be unique. Furthermore, even in the
nongraded case it is not true that basic algebras themselves are determined by their
G-graded identities. This is because the simple components of the semisimple part
of the algebra “interact” via the radical. But if the basic algebra is G-semisimple
it must in fact be G-simple and the main result of the paper says that in that case
the answer is positive.

To state the result precisely we recall some basic definitions. Let k be an arbitrary
field and let G be a group. A k-algebra A is said to be G-graded if for each g ∈ G
there is a k-subspace Ag of A (possibly zero) such that for all g, h ∈ G, we have
AgAh ⊆ Agh. Such a G-graded algebra is said to be a simple G-graded algebra (or
a G-simple algebra) if there are no nontrivial homogeneous ideas, or equivalently if
the ideal generated by each nonzero homogeneous element is the whole algebra.

A G-graded polynomial is a polynomial in the free algebra k〈XG〉 where XG is
the union of sets Xg, g ∈ G and Xg = {x1,g, x2,g, ...}. In other words, XG consists
of countably many variables of degree g for every g ∈ G. We say that a polynomial
p(x1,gi1

, ..., xn,gin
) in k〈XG〉 is a G-graded identity of a G-graded algebra A if p

vanishes upon any graded evaluation on A. The set of G-graded identities of A is
an ideal of k〈XG〉 which we denote by IdG(A). Moreover it is a T -ideal, that is, it
is closed under G-graded endomorphisms of k〈XG〉.

It is known that if k has characteristic zero, the T -ideal of identities is generated
as a T -ideal by multilinear polynomials, that is graded polynomials whose monomi-
als are permutation of each other (up to a scalar from the field). Moreover we may
assume in addition that all of the monomials have the same homogeneous degree.
We can now state the main result of the paper.

Theorem 0.0.1. Let A and B two finite dimensional simple G-graded algebras
over F where F is an algebraically closed field of characteristic zero. Then A and
B are G-graded isomorphic if and only if IdG(A) = IdG(B).

A key ingredient in the proof is the result of Bahturin, Sehgal and Zaicev ([5],
Theorem 1.1) that determines the structure of a simple G-graded algebra as a
combination of a fine graded algebra and an elementary graded algebra. In section
1 we state this result and use it to define the notion of a presentation of the given
G-simple algebra.

Another motivation for studying G-graded polynomial identities of finite dimen-
sional G-simple algebras is the possible existence of a “versal” object. It is well
known that if A is the algebra of n × n-matrices, the corresponding algebra of
generic elements has a suitable central localization into an Azumaya algebra which
is versal with respect to all k-forms (in the sense of Galois descent) of A where
k-is any field of zero characteristic. Furthermore, extending the center to the field
of fractions, one obtains a division algebra, the so called generic division algebra,
which is a form of A. The algebra of generic elements can be constructed in a dif-
ferent way. It is well known that it is isomorphic to the the relatively free algebra
of A, namely, the free algebra on a countable set of variables modulo the T -ideal of
identities.

The same connection exists also in the G-graded case. Given a G-graded finite
dimensional algebra one can construct the corresponding G-graded relatively free
algebra, and it is of interest to know whether there exists a versal object in this
case as well. It turns out that this is so for some specific cases as in [1] and [3] and
[4].
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Clearly, if two nonisomorphic finite dimensional G-simple algebras A and B,
had the same T -ideal of identities , it would discard the possibility to have a versal
object neither for A nor B. So in view of Theorem 0.0.1 it is natural to ask if for
an arbitrary finite dimensional G-simple algebra there exists a corresponding versal
object.

1. Preliminaries

We start by recalling some terminology. Let G be any group and A a finite
dimensional simple G-graded algebra. As mentioned in the introduction, our proof
is based on a result of Bahturin, Sehgal and Zaicev[5] in which they present any
finite dimensional G-graded simple algebra by means of two type of G-gradings,
fine and elementary. Before stating their theorem let us give two examples, one of
each kind.

Given a finite subgroup H of G we can consider the group algebra FH with
the natural H-grading. Clearly as such, it is H-simple. Moreover we can view the
algebra FH as a G-graded algebra where the g-homogeneous component is set to be
0 if g is not in H . More generally we may consider any twisted group algebra FαH ,
where α is a 2-cocycle ofH with invertible values in F , again as a G-graded algebra.
As in the case where the cocycle is trivial, the algebra FαH is finite dimensional
G-simple. We refer to such grading as fine grading. The second type of grading is
called elementary. Let Mr(F ) be the algebra of r× r matrices over the field F . Fix
an r-tuple (p1, ..., pr) ∈ G(r), and let the elementary matrix ei,j, 1 ≤ i, j ≤ n be

of homogeneous degree p−1
i pj . Note that the product of the elementary matrices

is compatible with their homogeneous degrees and so we obtain a G-grading on
Mr(F ). Furthermore, since Mr(F ) is a simple algebra it is also G-simple.

The result of Bahturin, Sehgal and Zaicev[5] says that any finite dimensional
G-simple algebra is isomorphic to a G-graded algebra which is the tensor product
of two G-simple algebras, one with fine grading and the other with an elementary
grading. Here is the precise result.

Theorem 1.1. [5]Let A be a finite dimensional G-simple algebra over an alge-
braically closed field F of characteristic zero. Then there exists a finite subgroup
H of G, a 2-cocycle α : H × H → F ∗ where the action of H on F is trivial, an
integer r and a r-tuple (p1, p2, . . . , pr) ∈ G(r) such that A is G-graded isomorphic
to C = FαH⊗Mr(F ) where Cg = spanF {uh⊗ ei,j : g = p−1

i hpj}. Here uh ∈ FαH
is a representative of h ∈ H and ei,j ∈ Mr(F ) is the (i, j) elementary matrix.

In particular the idempotents 1 ⊗ ei,j as well as the identity element of A are
homogeneous of degree e ∈ G.

Definition 1.2. Given a finite dimensionalG-simple algebraA, letH , α ∈ Z2(H,F ∗)
and (p1, . . . , pr) ∈ G(r) be as in the theorem above. We denote the triple (H,α, (p1, . . . , pr))
by PA and refer to it as a presentation of the G-graded algebra A.

Clearly, a presentation determines the G-graded structure of A up to a G-graded
isomorphism. On the other hand, a G-graded algebra may admit more than one
presentation and so we need to introduce a suitable equivalence relation on presen-
tations.

We start by establishing some conditions on presentations which yield G-graded
isomorphic algebras.
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Lemma 1.3. Let A be a finite dimensional G-simple algebra with presentation
PA = (H,α, (p1, . . . , pr)). The following “moves” (and their composites) on the
presentation determine G-graded algebras G-graded isomorphic to A.

(1) Permuting the r-th tuple, that is A
′ ∼= FαAHA ⊗F Mr(F ) and the elemen-

tary grading is given by (pπ(1), ..., pπ(r)) where π ∈ Sym(r).
(2) Replacing any entry pi of (p1, ..., pr) by any element h0pi ∈ Hpi (changing

right H-coset representatives).
(3) For an arbitrary g ∈ G,

(a) replacing H with the conjugate Hg = gHg−1,
(b) replacing the cocycle α by g(α) where

g(α)(gh1g
−1, gh1g

−1) = α(h1, h2)

and
(c) shifting the tuple (p1, ..., pr) by g, that is, replacing the tuple (p1, ..., pr)

by (gp1, ..., gpr).

Proof. We describe the isomorphism maps.
(1)

uh ⊗ ek,l 7−→ uh ⊗ eπ(k),π(l)

(2)

uh ⊗ ek,l 7−→ uh ⊗ ek,l

if k 6= i and l 6= i.

uh ⊗ ei,l 7−→ uh0uh ⊗ ei,l

if l 6= i.

uh ⊗ ek,i 7−→ uhu
−1
h0

⊗ ek,i

if k 6= i.
uh ⊗ ei,i 7−→ uh0uhu

−1
h0

⊗ ek,i

(3)

uh ⊗ ek,l 7−→ uguhu
−1
g ⊗ ek,l

We leave the reader the task of showing that these maps are indeed isomorphisms.
�

We will call these isomorphisms basic moves of type (1), (2), or (3). We will
call presentations PA of the G-simple algebra A and PB of the G-simple algebra B
equivalent if one is obtained from the other by a (finite) sequence of basic moves.
This is cleary an equivlence relation on presentations. It follows from the lemma
that algebras with equivalent presentations are G-graded isomorphic.

Let A be G-simple with presentation PA. Our proof requires, in terms of the
given presentation PA, a rather precise understanding of the structure of the subal-
gebraAN =

∑
g∈N Ag (of A) where N is an arbitrary subgroup of G. To this end we

introduce an equivalence relation on the elements of the r-tuple (p1, ..., pr): We will
say i, j ∈ {1, ..., r} are N -related in PA if there exists h ∈ HA such that p−1

i hpj ∈ N .
It is easy to see that this is indeed an equivalence relation. We may assume (after
permuting the elements of the tuple (p1, ..., pr) if needed) that the tuple is decom-
posed into subtuples whose elements are the corresponding equivalence classes. We
denote the classes by (pi1 , pi1+1, ..., pi1+k1−1), (pi2 , pi2+1, ..., pi2+k2−1),..., (pid , pid+1, ..., pid+kd−1).

In order to get a better understanding of the N -elements in the presentation
PA, we focus our attention on one equivalence class, say (pi1 , pi1+1, ..., pi1+k1−1),
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and so, for convenience we change the notation by letting k = k1 and setting
(g1, ...gk) = (pi1 , pi1+1, ..., pi1+k1−1). We let BN1 denote the F -space spanned by
the elements uh ⊗ ei,j where i, j ∈ {1, ..., k}.

For i = 1, ..., k we consider the following subgroup of N ,

Ωgi = g−1
i Hgi ∩N

and let di be its order.

Proposition 1.4. With the notation as above, the following hold.

(1) For 1 ≤ i, j ≤ k the subgroups Ωgi and Ωgj are conjugate to each other by
an element of N . In particular di = dj.

(2) For i, j ∈ {1, ..., k} the set

g−1
i Hgj ∩N

is a left Ωgi-coset and a right Ωgj -coset . In particular the order of

g−1
i Hgj ∩N

is di(= dj).
(3) The subalgebra BN,1 is G-simple with presentation

PBN1
= (N ∩ g−1

1 Hg1, g1(α), (n1, ..., nk))

for some elements n1, ..., nk, where nj ∈ N ∩ g−1
1 Hgj.

Proof. This is straightforward. We will prove only the first statement. By the
equivalence condition, there are elements h ∈ H and n ∈ N such that g−1

i hgj = n.
Hence

Ωgi = g−1
i Hgi ∩N =

ng−1
j h−1Hhgjn

−1 ∩N =

n(g−1
j Hgj ∩N)n−1 =

n(Ωgi)n
−1

as desired.
�

Remark 1.5. Based on the presentation of the N -simple algebra above, we see
that the appearance of an N -simple component constitutes of a diagonal block of
the r× r-matrix algebra. We will refer to the number di as the number of pages in
that component. So each N -simple component sits on the diagonal with a certain
matrix size and a certain number of pages.

2. Proofs

Our aim is to show that algebras A and B (finite dimensional and G-simple)
with nonequivalent presentations PA and PB have different T -ideals of G-graded
identities and hence are G-graded nonisomorphic. This will imply

(1) G-graded (finite dimensional) G-simple algebras A and B are G-graded
isomorphic if and only if any two presentations PA and PB are equivalent.

(2) G-graded (finite dimensional) G-simple algebras are characterized (up to
G-graded isomorphism) by their T-ideal of G-graded identities.
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Generally speaking, we proceed step by step where in each step we show that
the presentations PA and PB must coincide on certain “invariants/parameters” up
to applications of basic moves.

Let us start by exhibiting a list of such invariants of a presentation

PA = (HA, α, (p1, . . . , pr))

of an algebra A.

(1) The multiplicities of right H-coset representatives in the r-tuple (p1, ..., pr).
(2) The order of H .
(3) The group H up to conjugation.
(4) The group H.

Based on (4), for the rest of the invariants we will assume the subgroupH
is determined. The next sequence of invariants are determined by the r-th
tuple T = (p1, ..., pr). We decompose the r-tuple (p1, ..., pr) into subtuples
where each subtuple (say of cardinality ν) constitute of all elements in
(p1, ..., pr) of the form a1g, ..., aνg where g is a representative of a left coset
of N(H) in G and the ai’s are coset representatives of H in N(H). Here,
N(H) denotes the normalizer of H in G.

Let us denote the full tuple by T and the subtuples by

T1e, T2g2, ..., Tkgk.

Each Ti is decomposed into representatives ti,j of H in N(H) with mul-
tiplicity di,j .

(5) The vector of multiplicities of representatives in each Ti (in decreasing
order).

(6) The elements of Ti up to left multiplication by a (unique) element bi ∈
N(H).

(7) The elements of T up to left multiplication by an element of N(H). Note
that by the basic moves this determines the presentation up to the two
cocycle on H .

For the rest of the invariants we will assume the subgroup H and the
tuple T are determined.

(8) The 2-cocycle onH is determined up to conjugation by an element ofN(H).
For each element vi,j ∈ Ti we consider the cocycle on H obtained by

conjugation of α by ti,j (Note that conjugating with ti,jgi gives a cocycle
on Hgi). Then each Ti determines a set of cocycles (on H).

(9) The set of cocycles (with multiplicities!) as determined by the elements of
Ti.

We conclude by
(10) The presentation PA of A.

Let A and B be G-graded algebras, finite dimensional G-simple with presenta-
tions

PA = (HA, α, (p1, . . . , pr))

and
PB = (HB , β, (q1, . . . , qs)).
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Suppose A and B satisfy the same G-graded identities. Our task will then be to
add (in each step) an invariant from the list above on which the presentations PA

and PB coincide (up to basic moves). The idea is to establish a suitable connection
between the invariants described above and the structure of some extremal G-
graded nonidentities of A. But more than that. The polynomials we construct will
establish a strong connection between the above invariants and the structure of any
nonzero evaluation of them (with a suitable basis).

Remark 2.1. Given a presentation PA of an algebra A, it is well known that in
order to test whether a G-graded multilinear polynomial is an identity of A it is
sufficient to consider evaluations on any G-graded basis of A and so, for now on,
we always choose the basis consisting of all elements of the form uh⊗ei,j . This will
play a key role in the proof since the connection we make via nonzero evaluations
between the structure of A and structure of the polynomials will be based precisely
on that particular G-graded basis of A. In particular, all subspaces we consider will
be linear spans of subsets of that basis.

We want to be more precise about what we mean by “polynomials that establish
a strong connection between their nonzero evaluations and the G-graded structure
of A”. Let V = ⊕gVg ⊆ ⊕gAg be a G-graded subspace of A. Let dg = dimF (Ag)
and δg = dimF (Vg), g ∈ G. We say that a multilinear G-graded polynomial p
determines the G-graded subspace V of A if the following hold:

(1) p = p(ZG) is obtained from a single multilinear monomial ZG by homoge-
neous multialternation. This means that we choose disjoint sets of homoge-
neous variables in ZG(each set constitute of elements of the same homoge-
neous degree in G) and we alternate the elements of each set successively.

(2) For every g ∈ G with Vg 6= 0, we have a subset Tg of g-variables in ZG of
cardinality dg, and a subset Sg of Tg of cardinality δg such that the set Tg

is alternating on p(ZG).
(3) p(ZG) is a G-graded nonidentity of A.
(4) If φ is any nonzero evaluation of p(ZG) on A (with elements of the form

uh⊗ei,j !), then all monomials but one vanish and for the unique monomial
of p(ZG) which does not vanish, say ZG, the elements of the set Sg assume
precisely all basis elements of Vg.

Roughly speaking we construct alternating polynomials which are not only non-
identities of A, but also have the property that by means of any nonvanishing
evaluation we are able to “allocate” the elements of Vg, g ∈ G. The upshot of
this is that since A and B satisfy the same G-graded identities, we will be able to
allocate elements of B in terms of the presentation PB .

In what follows we will show how to construct such polynomials for certain G-
graded subspaces V of A which correspond to the invariants mentioned above.

Before we do it let us generalize (twice) the allocation property just described.
Assume the algebra A contains the direct sum of k subspaces V1, . . . , Vk which
are G-graded isomorphic. We say that a multilinear polynomial p determines the
G-graded spaces V1, . . . , Vk if the following hold:

(1) p = p(ZG) is obtained from a single multilinear monomial ZG by homoge-
neous multialternation as above.
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(2) For every g ∈ G with Vg 6= 0, we have a subsets Tg of g-variables in ZG of
cardinality dg, and subsets S1,g, . . . , Sk,g of Tg, each of cardinality δg, such
that the set Tg is alternating on p(ZG).

(3) p(ZG) is a G-graded nonidentity of A.
(4) If φ is any nonzero evaluation of p(ZG) on A, then all monomials but one

vanish and for the unique monomial of p(ZG) which does not vanish, say ZG,
the elements of the sets S1,g, . . . , Sk,g assume precisely all basis elements
of V1, . . . , Vk such that up to a permutation of the spaces Vi, the set Si

assumes the basis elements of Vi.

Let us generalize once more the allocation property. Assume that the algebra
A contains the direct sum of r subspaces V1, . . . , Vr and each one is the direct sum
of G-graded isomorphic subspaces Vi,t, t = 1, ..., id. We say that a multilinear
polynomial p determines the G-graded spaces Vi,j if the following hold:

(1) p is obtained from a single multilinear monomial ZG by homogeneous mul-
tialternation.

(2) For every g ∈ G with Vi,j,g 6= 0 (some (i, j)), we have a subsets Tg of g-
variables in ZG, of cardinality dg and subsets Si,j,g of Tg each of appropriate
cardinality such that the set Tg is alternating on p(ZG).

(3) p(ZG) is a G-graded nonidentity of A.
(4) If φ is any nonzero evaluation of p(ZG) on A, then all monomials but one

vanish and for the unique monomial of p(ZG) which does not vanish, say
ZG, the elements of the sets Si,j,g assume precisely all basis elements of
Vi,j,g up to a permutation on the second index.

In order to construct the polynomials (roughly speaking) we proceed as follows.
We identify in the algebra A (say) the spaces (Vi,j,g) as well as the full g-component
of A for any g which appears as a homogeneous degree in the Vi,j,g ’s (no damage if
we add a homogeneous degree g for which Vg = 0). We write a nonzero monomial
with the basis elements uh⊗ei,j where we pay special attention to the spaces Vi,j,g ’s.
We border the elements of the sets which are about to alternate with idempotents in
the e-component (of the form 1⊗ ei,i). Next we consider the homogeneous degrees
of the basis elements and we construct a (long!) multilinear monomial, denoted
by ZG, with homogeneous variables whose homogeneous degrees are as prescribed
by the just constructed homogeneous monomial in A. Finally we alternate the
homogeneous sets (of cardinality equal to the full dimension of the g-homogeneous
component in A).

We start with the following case. Consider the e-component ofA. By Proposition
1.4 and Remark 1.5, it is isomorphic to the direct sum of simple algebras which
can be realized in blocks along the diagonal. By permuting the tuple elements we
can order them in such a way the e-blocks are in decreasing order. Construct a
monomial ZG with segments which pass through each one of the e-blocks, bridged
by an element (necessarily) outside the e-component. We border the elements of
the e-blocks by idempotents. The prescribed sets V here are determined as follows.
For the maximal size (say d1) of e-blocks, we have r1 blocks, for the second size
(d2) we have r2 blocks and so on. So we have r1 e-spaces of the largest dimension
(d1)

2, and so on. We produce the alternating polynomial as above.

Proposition 2.2. The polynomial above allocates the e-blocks, where the e-blocks
of the same dimension are determined up to permutation.
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Proof. First note that the polynomial p is a nonidentity of A. To see this let us
show that the evaluation (which determined the monomial ZG) is indeed a nonzero
evaluation. Clearly the monomial ZG does not vanish by construction. On the
other hand in any nontrivial alternation, elements of the e-blocks will meet the
wrong idempotent borderings and so we get 0.

Next let us show that for any nonzero evaluation of the polynomial (with basis
elements uh ⊗ ei,j) we have that all monomials but one vanish and for the one
that does not vanish, the evaluation allocates the e-blocks as prescribed. By the
alternation property we are forced to evaluate the full e-alternating set by a full
basis of the e-component (for otherwise we get zero) so taking a basis of e-elements
of the form uh ⊗ ei,j we are forced to use all of them and each exactly once.

Now, lets analyze the evaluation of any monomial whose value is nonzero. El-
ements of the e-component that substitute variables in the same segment must
belong to the same block for otherwise we obtain zero. So elements of segments
must be evaluated only by elements of the same e-block. Consider a segment of
largest size. Since it must be evaluated by elements of one single block, it must
exhaust the block (since we don’t have blocks of larger size). We continue in this
way until we exhaust all e-elements. This demonstrates the allocation property.

�

Having constructed the polynomial p, we would like to see what can be deduced
from the fact that p is also a nonidentity of the G-graded algebra B. Without loss
of generality let us assume the the configuration of the multiplicities (i.e. the sizes
of the e-blocks) for A is larger than for B (with the lexicographic order). It follows
that in the largest e-segment we must put a full e-block and so we must have an
e-block of the corresponding size. We continue in this way and we obtain that the
multiplicities in B must be the same as in A.

Corollary 2.3. The matrix size of the presentations PA and PB coincide. Conse-
quently, the subgroups HA and HB have the same order.

Proof. Clearly, the size of the matrix part in PA (resp. PB) is the sum of the
sizes of the e-blocks of PA (resp. PB) and so they must be equal. For the second
part we know that the dimensions if the homogeneous components of A and B are
equal: Indeed, for the G-graded algebra A, there exists a nonidentity polynomial
which is multilinear and alternates on sets of variables with homogeneous degree
g of cardinality which is equal to the dimension of Ag (see [2]: The authors there
considered the case where G is finite. The same proof holds in case the group G
is arbitrary). Clearly, any polynomial with larger alternating sets of g-variables is
necessary an identity of A. It follows that since A and B have the same identities,
the dimensions of Ag and Bg must coincide. In particular A and B have the same
dimension. We can now conclude that the subgroups HA and HB have the same
order.

�

The next step is to show that the subgroups HA and HB are conjugate in G. By
shifting the tuple of the elementary grading (basic move (3)) we may assume that
e is an element in the tuple (p1, ..., pr) and that e is the representative with highest
multiplicity.

Let H = HA. In view of the Proposition 1.4 and Remark 1.5, the subalgebra AH

decomposes into a direct sum of H-simple subalgebras where each H-simple is a
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diagonal block with a certain number of pages. Note that at least one of the blocks
(for example any block coming from the representative e) is “full” in the sense that
it has the maximal possible number of pages (namely, |H |). In fact we get this
maximal number precisely when the coset representative is in the normalizer N(H)
of H . We produce a product of basis elements uh ⊗ ei,j where one of the segments
corresponds to an H-simple algebra with a full number of pages. We can produce
such a product where we visit all basis elements of the H-simple algebra and such
that all bridges between basis elements are H-elements. Specifically, we know we
can form a nonzero product of all d2 elementary matrices of a d× d-matrix algebra
(any d) which starts with e1,1 and ends with ei,1, some i. In particular the product
is e1,1. We produce a copy of such a product, one for each element h of H (that
is we replace the d2 elementary matrices ei,j by uh ⊗ ei,j , h ∈ H). Putting these
together we obtain a product of the form λuh0 ⊗ e1,1. Finally, multiplying with a
suitable h0-element we may assume the value of the product is 1⊗e1,1. This can be
done for each block with a full number of pages. In addition we introduce borders
between the basis elements which are idempotents of the form 1⊗ ei,i.

Now for the H-simple components which appear in blocks where the H-coset
representatives are outsideN(H), we know that the correspondingH-simple algebra
will not have a full number of pages. It follows that if k is the position of a
representative in that block, then there exists h ∈ H such that the homogeneous
degree of uh⊗ ek,k in not in H . The point of this analysis is that we may use these
elements as bridges of the basis elements in that H-block. Following these rules we
construct a product of basis elements that passes through all H-elements of A.

Now we produce the monomial which corresponds to that product, namely a
multilinear monomial ZG where each variable (with the corresponding homogeneous
degree) replaces basis elements. In terms of the discussion above, the designated
segments Sh are those which correspond to blocks with full number of pages and
the Th are the variables which correspond to any block. The different bridges,
either with homogeneous degrees in H or outside H , are variables in a set which
we denote by YG. Next we alternate the homogeneous elements of Th.

We claim that the polynomial p(ZG) is a G-graded nonidentity of A. Indeed,
replacing the monomial ZG with the original basis elements we obtain a nonzero
product. Let us show now that for any nontrivial alternation, an h-element of Th

(some h ∈ H) will be bordered by elements which annihilate it. To see this note that
two basis elements with the same (i, j) position cannot have the same homogeneous
degree. This shows that elements with equal homogeneous degrees are bordered by
basis elements of the form uh1 ⊗ei,i, uh2 ⊗ej,j and uh3 ⊗ei′ ,i′ , uh4 ⊗ej′ ,j′ where the

pairs (i, j) and (i
′

, j
′

) are different. It follows easily that any nontrivial alternation
yields a zero value. This proves the claim.

Let us show now that any nonzero evaluation of the polynomial p(ZG) on A
(with basis elements uh ⊗ ei,j) has the property that only one monomial does not
vanish and the designated variables from Sh get values from the blocks with the full
number of pages. Furthermore, the evaluations are such that H-simple components
(with full number of pages) substitute entire designated segments. Without loss of
generality we may assume that the monomial ZG is nonzero (upon the evaluation).
Because of the alternation on elements of Th we must use precisely a basis of the
h-component. Next, we must replace designated segments by block elements with
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full number of pages for otherwise they must admit bridges outside H and this is
not possible.

Now suppose HB is not conjugate to H = HA. In that case the nonidentity
polynomial corresponding to H in B (produced as in the preceding paragraph) will
have all its segments with bridges outside H . We claim that this polynomial is an
identity for A. All elements of H are in segments bridged by homogeneous elements
of degree not in H . But the elements of any block in A with a full number of pages
cannot be bridged by elements outside H . Since it is the largest (we can make it
the largest from both algebras) we get a contradiction. Note that we needed to
know that the order of the groups were the same since otherwise, the group HB

could be a subgroup of HA and in both cases we could get the full number of pages.
So we are now in the situation where the groups H are the same (applying

a basic move if necessary) and the two r-tuples for the elementary grading have
the same configuration of multiplicities. As before we take the same left H-coset
representative in case the elements represent that same left H-coset.

We can now decompose the r-tuples into blocks which determine the same left
coset of N(H) in G. We want to show that the multiplicities inside each block
coming from any N(H)-coset representative are the same in A and B. To this
end we produce alternating sets for H , for g−1

2 Hg2, and so on. We see that each
designated segment must be evaluated within the same N(H)-block and so the
multiplicities there must coincide. We obtain that the tuple of the elementary
grading for B is obtained from the tuple of A multiplied by (possibly different)
elements from N(H).

Remark 2.4. Note that if H is e then all we have so far is that the size of the
matrix algebra is the same (for A and B).

Our next step is to show that the tuples of the elementary grading in A and in
B are obtained one from the other by multiplication on the left by an element of
N(H). This will lead to the situation where the groups HA and HB are the same
and the tuples are the same. Then the only parameter we’ll need to deal with is
the 2-cocycle on the group H .

Lets consider a (very) special case of the statement above, namely where H is
e. We have the tuple for A and based on it we can construct a monomial for the
e-component of the algebra. Let us recall what does it mean. We consider the
e-blocks arising from the multiple representatives. We produce e-segments for each
block bridged by non-e-elements. We know that the monomial is a nonidentity of
A and if we put frames we know that any nontrivial permutation of the designated
e-elements gives a zero product of basis elements. It follows that if we construct
a monomial out of the product above and alternate the designated variables we
obtain a nonidentity of A with the properties described above. By assumption, we
know that the polynomial is also a nonidentity of B.

We denote by σ1, ..., σn the distinct coset representatives in the tuple for A and
by τ1, ..., τn the distinct coset representatives in the tuple for B. Note that here,
since H = {e}, distinct coset representatives just means distinct elements. Also, we
remind the reader that by previous steps, the vector of multiplicities of σ1, ..., σn

and τ1, ..., τn is the same. Let d1, ..., dn be the vector of multiplicities (in decreasing
order). A nonzero evaluation on B gives rise to a permutation π on {τ1, ..., τn}
so that the segment for σi is being evaluated by the elements in the τπ(i) block.
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In particular for every pair i, j ∈ {1, 2, . . . , n} the corresponding bridging elements
must have the same weight and so we obtain the relations σ−1

i σj = τ−1
π(i)τπ(j).

Remark 2.5. Note that not every permutation is allowed. For instance, a permu-
tation that exchanges elements with different multiplicities would lead to a contra-
diction. In other words we cannot substitute an e-block of size di with an e-block
of size dj 6= di. It is important to note (as mentioned above) that if a segment was
determined by a block of size di, arising from an element σi (say) (with multiplicity
di) then in any nonzero evaluation on B (or on A) the segment will assume values
precisely of one block arising from τj where necessarily dj = di. Nevertheless, for
the proof, we only need to know the existence of a permutation π as above.

So we now have that for all i, j ∈ {1, 2, . . . , n}, i 6= j, σj = (σiτ
−1
π(i))τπ(j).

Moreover, rewriting these equations, we see that for all i, j ∈ {1, 2, . . . , n}, i 6= j,
σjτ

−1
π(j) = σiτ

−1
π(i) and so all the multipliers σiτ

−1
π(i) are the same. We see then that

for all i > 1, σi = (σ1τ
−1
π(1))τπ(i). We are missing only σ1. But clearly σ1 =

(σ1τ
−1
π(1))τπ(1), and we are done.

The same argument applies when H is normal in G.
We can now consider the general case where the group H is not necessarily

normal in G. Then we decompose the tuple into subtuples coming from different
N(H)-representatives in G. We will refer to these subtuples as “big blocks”. We
know that the multiplicities in each subtuple coincide. We construct a monomial
which corresponds to that configuration: We start with a monomial for H (full
number of pages) coming from the representatives in N(H). Then for Hg2 (again,
for that group with full number of pages!) and so on. At the end of the monomial
we append monomials which will take care of all H elements that appear outside
the block N(H), all elements of Hg2 that appear in blocks outside the N(H)-coset
representative g2 and so on. We know that the appearance of these elements is in
blocks with fewer pages and so we bridge them (as we can) by elements outside
H , Hg2 , etc. This forces any nonzero evaluation on B to determine a permutation
π which is not arbitrary but respects the N(H)-representatives in G and also the
multiplicities. We can then obtain equations similar to those given above in the
case where H = {e}: we denote by σigs the representatives of the cosets of H in
G which are contained in N(H)gs (here σi ∈ N(H)) then we must have that the
permutation π permutes representatives within the same N(H)-coset in G (and
also with the same multiplicity). It follows that once again the bridges must have
the same weights and so

g−1
s σ−1

i σi+1gt = g−1
s τ−1

π(i)τπ(i+1)gt

This leads to equations as in the normal case and the result follows.
So by applying basic moves, we may now assume that the fine gradings of A and

B are determined by the same group H and the elementary grading is determined
by the same r-tuple (p1, ..., pr) ∈ G(r). We proceed now to show that the cocycles
α and β may be assumed to be the same. Let us be more precise. Assume we can
find an element b of N(H) such that left multiplication of the r-tuple (p1, ..., pr)
permutes the representatives in each big block in such a way that it preserves
multiplicities. That means that a representative σi will be moved to σj = bσi (up
to left multiplication with elements of H) where σi and σj belong to the same
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N(H)-coset and have the same multiplicity. So assume we have such an element
b which also conjugates α to β. Then by our basic moves, the presentations PA

and PB are equivalent. So our task is to show that if A and B satisfy the same
identities then there is such element b in N(H).

We start with the case where the grading is fine, that is, A and B are twisted
group algebras. Before stating the lemma recall (Aljadeff, Haile and Natapov[1])
that the T -ideal of H-graded identities of a twisted group algebra FαH is spanned
over F by binomial identities of the form

B(α) = xh1xh2 · · ·xhs
− λ((h1,...,hs),π)xhπ(1)

xhπ(2)
· · ·xhπ(s)

,

where hi ∈ H , i = 1, ..., s, π ∈ Sym(s) and λ is a suitable nonzero element (root of
unity) ∈ F .

Proposition 2.6. Given twisted group algebras FαH and F βH, then the cocycles
are cohomologous if and only if the algebras satisfy the same identities.

Proof. The idea of the proof appeared already in [1]. There, for the particular
case where the group H is of central type and the twisted group algebra FαH
is the algebra of k × k-matrices over F where ord(H) = k2. However, the same
construction holds in general. For the reader convenience, let us recall here the
construction.

It is well known, by the Universal Coefficient Theorem, that the cohomology
group H2(H,F ∗) is naturally isomorphic to Hom(M(H), F ∗) where M(H) de-
notes the Schur multiplier of H . It is also well known that M(H) can be de-
scribed by means of presentations of H , namely the Hopf formula. Indeed, let
Γ = Γ〈xh1 , . . . , xhs

〉 be the free group on the variables xhi
’s whereH = {h1, . . . , hs}.

Consider the presentation

{1} → R → Γ → H → {1}

where the epimorphism is given by xhi
−→ hi.

One knows that the Schur multiplier M(H) is isomorphic to

R ∩ [Γ,Γ]/[R,Γ].

Given a 2-cocycle α on H (representing [α] ∈ H2(H,F ∗)) it determines an
element of Hom(M(H), F ∗) as follows: Let [z] be an element in M(H) where z is
a representing word in R ∩ [Γ,Γ]. For each variable xh consider the element uh in
the twisted group algebra FαH representing h. Then the value of α on z is the
root of unity which is the product in FαH of the elements uh (which correspond
to the variables xh of z). One knows that the value [α]([z]) depends on the classes
[α] ∈ H2(H,F ∗) and [z] ∈ M(H) and not on their representatives. Note that
by the isomorphism of H2(H,F ∗)) with Hom(M(H), F ∗) we have that for two
noncohomologous 2-cocycles α and β there is z ∈ R ∩ [Γ,Γ] with α(z) 6= β(z). Let
us show now how H-graded polynomial identities come into play.

Let

z = xǫ1
hi1

xǫ2
hi2

· · ·xǫr
hir

where ǫi = {±1}. Being z in R implies that hǫ1
i1
hǫ2
i2
· · ·hǫr

ir
= e whereas being in

[Γ,Γ] says that the sum of the exponents ǫi which decorate any variable xh which
appears in z, is zero.
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Our task is to “produce” out of z and the value α(z) ∈ F ∗ an H-graded binomial
identity of the twisted group algebra FαH . Pick any variable xh in z and let n
be the order of h (in H). Clearly the commutator [xn

h , y], y ∈ Γ, is in [R,Γ] and

so multiplying z (say on the left) with elements xn
h and x−n

h , and moving them
(to the right) successively along z by means of the relation [xn

h , y], we obtain a
representative of [z] in M(H) of the form

z1z
−1
2

where the variables in z1 and z2 appear only with positive exponents.
The binomial identity which corresponds to z and α(z) is given by

Z1 − α(z)Z2

where Zi is the monomial in the free H-graded algebra whose variables are in one to
one correspondence with the variables of zi. We leave the reader the task to show
that indeed Z1 − α(z)Z2 is a G-graded identity. Clearly, from the construction
it follows that twisted group algebras FαH and F βH satisfy the same G-graded
identities if and only if the cocycles α and β are cohomologous. This completes the
proof of the proposition. �

Remark 2.7. (1) The binomial identity obtained above, say for α, may not
be multilinear. In order to obtain a mulilinear binomial identity assume xh

appears k-times in each monomial Zi, i = 1, 2. Then replacing the vari-
ables by k different variables x1,h, . . . , xk,h in each monomial (any order!)
we obtain an H-graded (binomial) identity which is on variables whose ho-
mogeneous degree is h. Repeating this process for every h ∈ H gives a
multilinear (binomial) identity.

(2) It follows that any two noncohomologous cocycles can be separated by
suitable binomial identities in the sense that for any ordered pair, (α, β)
(where (α 6= β)) there is a binomial B(α̂, β) which is an identity of β (abuse
of language) and not an identity of α.

(3) Assume β1, . . . , βk are cocycles on H which are different from α (nonco-
homologous to α). Then by the previous Proposition there is a binomial
identity B(α̂, βi) of βi which is a nonidentity of α. Then if we take the
product of these binomials (with different variables), we see that the prod-
uct is a multilinear identity of any of the βi’s and not an identity of α.
To see the last statement note that the value of any evaluation of B(α̂, βi)
on FαH is an invertible element (homogeneous) and hence the product is
nonzero.

We now come to an important lemma which is due to Yaakov Karasik, in which
we extend the preceding lemma to algebras which have a presentation PA where
the tuple that determines the elementary grading is trivial, that is,, (σ1, ..., σk) =
(e, ..., e).

Lemma 2.8. Let A and B be finite dimensional G-simple algebras with presenta-
tions PA and PB respectively. Suppose PA and PB are given by FαH ⊗Mr(F ) and
F βH ⊗ Mr(F ) respectively, both with trivial elementary grading on Mr(F ). If α
and β are noncohomologous, then there is an identity of A (resp. B) which is a
nonidentity of B (resp. A).
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Remark 2.9. In case the group G is abelian, this was proved by Koshlukov and
Zaicev [8] using certain modifications of the standard polynomial. However this
approach (at least in its straightforward generalization) seems to fail for nonabelian
groups.

Proof. As above let B(α̂, β) denote a binomial identity of F βH which is a noniden-
tity of FαH . Then B(α̂, β) has the form

B(α̂, β) = zh1zh2 · · · zhs
− λ(α̂,β,(h1,...,hs),π)zhπ(1)

zhπ(2)
· · · zhπ(s)

.

Next, consider the Regev polynomial p(X,Y ) on 2r2 variables (each of the sets
X and Y consists of r2 variables). It is multilinear (of degree 2r2) and central on
Mr(F ). Any evaluation of X or Y on a proper subset of the r2 elementary matrices
ei,j yields zero whereas in case X and Y assume the full set of elementary matrices
the value is central, nonzero (and hence invertible) matrix.

Now, for each variable zh of B(α̂, β) we construct a Regev polynomial on 2r2

variables where we pick one variable from X (no matter which) and we determine
its homogeneous degree to be h. The rest of the x’s and all the y’s in Y are
determined as variables of homogeneous degree e. We denote the corresponding
Regev polynomial by ph(Xr2 , Yr2). Now, we consider a basis of the algebra FαH ⊗
Mk(F ) consisting of elements of the form uh ⊗ ei,j . Note that there are precisely
r2 basis elements of degree e and r2 basis elements of degree h. We see that if we
evaluate the polynomial ph(Xr2 , Yr2) with elements in {1⊗ei,j, uh⊗ei,j}i,j we’ll get
zero as long as the elementary matrix constituent of the basis elements is not the
full set of r2 matrices (either for X or for Y ) and uh⊗λ Id otherwise. It follows that
if we replace every variable zh in B(α̂, β) by the Regev polynomial ph(Xr2 , Yr2) we
obtain a polynomial

R(α̂, β, r)

which is an identity of B and a nonidentity of A. �

Before we continue, recall that a big block of Mr(F ) is any block which is deter-
mined by elements of the tuple {p1, ..., pr} which belong to the same N(H)-coset
of G. A subblock of a big block is called “basic” if it is determined by elements of
the tuple {p1, ..., pr} which belong to the same N(H)-coset of G and have the same
multiplicity.

Consider the cocycles that appear along the diagonal blocks of the algebra A.
For each big block, we consider the representatives of H in N(H) (multiplied by
a coset representative of N(H) in G). Each one of these representatives, say σg ∈
N(H)g, conjugates the cocycle α into a cocycle ασg of the group Hg. Now, for
the coset representatives of each basic block, (i.e. in the same big block and the
same multiplicity) we consider the different representatives of H in N(H) and the
corresponding cocycles obtained by conjugation of α by these representatives. We
claim that the set of cocycles obtained, in A and in B are the same, where we
take multiplicities into account. To see this we consider representatives of one
basic block σ1g, ..., σrg, where g is a representative of N(H) in G and σ1, ..., σr are
representatives of H in N(H). Assume the multiplicity is d. For simplicity, let us
assume g = e. We consider the conjugation of α by the σ’s and the conjugation of
β by the σ’s. We want to show these two sets are the same. For any pair ασi , βσj

we consider the corresponding polynomial R(α̂σi , βσj , d). Now we produce as above
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a long monomial arising from the algebra A, with segments that correspond to
H-blocks, then to Hg-blocks for the second g and so on. These are the special
segments, and in the “back” part of the monomial we complete the homogeneous
sets (again for H , Hg,...) with bridges outside the corresponding group. Now, in

the special segments we insert the polynomials of the form R(α̂σi , βσj , d).
Take a cocycle τ which appears in a basic block of A. Assume the cocycle appears

with multiplicity t. On the other hand assume it appears in B with multiplicity
t
′

where t
′

> t. Let us consider the cocycles γi which appear in the same basic
block and are different from τ . Their number is r − t in A and r − t

′

in B. In the
monomial built for the algebra A we insert in the last r− t segments a polynomial

R(γ̂i, τ, d)

(in the first t segments we don’t insert any polynomial). Since our nonzero eval-
uation is such that the blocks with cocycle τ may “go” to the first segments, we
obtain a nonidentity of A. It is therefore a nonidentity of B. But by the pigeon-
hole principle, one of the blocks with cocycle τ will meet a polynomial of the form
R(γ̂i, τ, d) and so we get zero. This shows the multiplicities must coincide. We could
argue more generally. In the algebra B we can insert products of R(γ̂i, τ, d) which
are identities for all cocycles in the Schur multiplier of H but not for the cocycle
which appear in the block. It is a nonidentity for A and therefore a nonidentity for
B. Assume a certain cocycle in B has larger multiplicity than the multiplicity it
appears in A. Then we get zero. What happens if there is a cocycle in B which
does not appear in A? We can fix it by inserting products of polynomials for all
cocycles but τ . Note that there is a finite number since the Schur multiplier is a
finite group.

The argument above leads to the situation where the multiplicities of the cocycles
appearing in each basic block for the algebras A and B coincide. In particular we
know that the cocycles α and β are conjugate by an element of N(H).

Our final step is to show that the presentations PA and PB are equivalent. The
polynomial we construct here will be based on the same polynomial we used above.
We have the algebras A and B with presentations PA and PB where HA = HB,
same tuple (which determines the elementary grading) and the cocycles in each
basic block are the same with multiplicities. We produce a polynomial for A with
special segments as above. Recall there is a correspondence between segments of the
polynomial and basic blocks of A. Each basic block is determined by representatives
σ1g, ..., σ1g where σi ∈ N(H). It follows that the cocycles on that basic block
is ασig. Let us assume again for simplicity that g = e. Consider polynomials
R(α̂σ, γ, d) where γ is any cocycle of the Schur multiplier M(H) different from ασg

and d is the size of the block determined by σ. Let Rσ be the product of these
polynomials. We insert in each segment such a polynomial. We note that this is a
nonidentity for the algebra A and hence a nonidentity for the algebra B.

A nonzero evaluation on B determines a permutation of the H-coset representa-
tives inside a basic block. But more than that, a nonzero evaluation onB determines
a permutation among the H-representatives of a basic block which determine the
same cocycle. We want to show that this determines an element in N(H) such that
multiplication on the left (of the tuple) leaves the basic blocks invariant and also,
it conjugates the cocycle α to β. Indeed, denote the permutation on the H-coset
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representative by π. We obtain equations

σ−1
i σi+1 = σ−1

π(i)σπ(i+1).

We know that the shifting element is

σiσ
−1
π(i)

and so we would be done if we show that

α
σiσ

−1
π(i) = β.

But, by the evaluation on B we know that

ασ = βσπ(i)

and we are done.
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