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CLASSIFICATION OF IRREDUCIBLE QUASIFINITE MODULES OVER

MAP VIRASORO ALGEBRAS

ALISTAIR SAVAGE

Abstract. We give a complete classification of the irreducible quasifinite modules for al-
gebras of the form Vir ⊗ A, where Vir is the Virasoro algebra and A is a Noetherian com-
mutative associative unital algebra over the complex numbers. It is shown that all such
modules are tensor products of generalized evaluation modules. We also give an explicit
sufficient condition for a Verma module of Vir⊗A to be reducible. In the case that A is an
infinite-dimensional integral domain, this condition is also necessary.
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Introduction

The Witt algebra DerC[t, t−1] has basis dn := tn+1 d
dt
, n ∈ Z, and Lie bracket given by

[dm, dn] = (n − m)dn+m. It is the Lie algebra of polynomial vector fields on S1 (or C∗)
as well as the Lie algebra of the group of diffeomorphisms of S1. The Virasoro algebra
Vir := DerC[t, t−1] ⊕ Cc is the universal central extension of the Witt algebra. It has Lie
bracket

[dn, c] = 0, [dm, dn] = (n−m)dm+n + δm,−n

m3 −m

12
c, m, n ∈ Z.

The Virasoro algebra plays a fundamental role in the theory of vertex operator algebra,
conformal field theory, string theory, and the representation theory of affine Lie algebras.
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An important class of modules for the Virasoro algebra are the so-called quasifinite mod-
ules (or Harish-Chandra modules), which are modules on which the maximal abelian di-
agonalizable subalgebra Cd0 ⊕ Cc acts reductively with finite-dimensional weight spaces.
The irreducible quasifinite Vir-modules were classified by Mathieu in [Mat92], where it was
shown that they are all highest weight modules, lowest weight modules or modules of the
intermediate series (otherwise known as tensor density modules and whose nonzero weight
spaces are all one-dimensional).

Many generalizations of the Virasoro algebra and other closely related algebras have been
considered by several authors. These include, but are not limited to, the higher rank Virasoro
algebras [LZ06, Maz99, Su01, Su03], the Q-Virasoro algebra [Maz00], the generalized Vira-
soro algebras [BZ04, GLZa, HWZ03], the twisted Heisenberg-Virasoro algebra [LZ10], and
the loop-Virasoro algebra [GLZb]. In many cases, classifications of the irreducible quasifinite
modules have been given.

The goal of the current paper is to classify the quasifinite modules for map Virasoro alge-
bras, which are Lie algebras of the form Vir⊗A, where A is a Noetherian commutative asso-
ciative unital algebra. The related problem of classifying the irreducible finite-dimensional
modules for g⊗A, where g is a finite-dimensional Lie algebra, as well as for the fixed point
algebras of g⊗A under certain finite group actions (the equivariant map algebras) was solved
in [CFK10, NSS]. In particular, all irreducible finite-dimensional modules are tensor prod-
ucts of one-dimensional modules and evaluation modules. The main result (Theorem 5.5)
of the current paper is the following (we refer the reader to Section 1 for the definitions of
evaluation and generalized evaluation modules).

Theorem. Any irreducible quasifinite (Vir⊗ A)-module is one of the following:

(a) a single point evaluation module corresponding to a Vir-module of the intermediate
series,

(b) a finite tensor product of single point generalized evaluation modules corresponding to
irreducible highest weight Vir-modules, or

(c) a finite tensor product of single point generalized evaluation modules corresponding to
irreducible lowest weight Vir-modules.

In particular, they are all tensor products of generalized evaluation modules.

We note that the problem of determining which highest and lowest weight irreducible mod-
ules are quasifinite is nontrivial when A is infinite-dimensional (when A is finite-dimensional,
for instance when A = C and V is just the usual Virasoro algebra, all highest and lowest
weight irreducible modules are quasifinite).

We also give an explicit sufficient condition for the Verma modules of Vir ⊗ A to be
reducible. Under the additional assumption that A is an infinite-dimensional integral domain,
the condition is also necessary (Theorem 6.2).

Owing to the fact that the Virasoro algebra is infinite-dimensional, the techniques used in
the current paper are very different than those used in [NSS]. We also see some differences
in the classifications. In particular, we see that the modules of type (a) in the above theorem
can only have support a single point. This is due to the fact that a tensor product of such
modules no longer has finite-dimensional weight spaces.

The Lie algebra Vir⊗A can be thought of as a central extension of the Lie algebra of the
group of diffeomorphisms of (SpecA) × C∗ fixing the first factor. For this reason, we hope
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the results of the current paper will be useful in addressing the important open problem of
classifying the quasifinite modules for the Lie algebra of the group of diffeomorphisms of
more arbitrary varieties (see, for example, [Rao04] for a conjecture related to the case of the
higher dimensional torus). When A = C[t, t−1], the Lie algebra Vir⊗ A = Vir ⊗ C[t, t−1] is
called the loop-Virasoro algebra. In this case, the results of the current paper recover those
of [GLZb]. In fact, many of our arguments are inspired by ones found there.

There remain many interesting open questions related to the representation theory of the
Virasoro algebra and its generalizations. For the map Virasoro algebras, it would be useful to
describe the extensions between irreducible quasifinite modules. This was done for the usual
Virasoro algebra in [MP91a, MP91b, MP92] and for the equivariant map algebras in [NS].
It would also be interesting to see if a classification of the irreducible quasifinite modules for
twisted (or equivariant) versions of map Virasoro algebras is possible. Finally, one might hope
for a classification similar to the one in the current paper (in terms of generalized evaluation
modules) when Vir is replaced by other important infinite-dimensional Lie algebras such as
the Heisenberg algebra or the Lie algebra of all differential operators on the circle (instead
of just those of order one).

The paper is organized as follows. In Section 1 we review some important definitions
and results for map algebras (Lie algebras of the form g ⊗ A). We introduce the Virasoro
algebra and its generalization considered in the current paper in Section 2. In Section 3 we
show that any quasifinite module is either a highest weight module, a lowest weight module,
or a module whose weight space dimensions are uniformly bounded. We then classify the
uniformly bounded modules in Section 4 and the highest/lowest weight modules in Section 5.
Finally, in Section 6 we describe a necessary and sufficient condition for the Verma modules
to be reducible.

Notation. Throughout, A will denote a Noetherian commutative associative unital algebra
over the field C of complex numbers and all tensor products, Lie algebras, vector spaces,
etc. are over C. When we refer to the dimension of A, we are speaking of its dimension as
a complex vector space (as opposed to referring to a geometric dimension). Similarly, when
we say that an ideal J E A has finite codimension in A, we mean that the dimension of A/J
as a complex vector space is finite. We let N be the set of nonnegative integers and N+ be
the set of positive integers. For a Lie algebra L, U(L) will denote its universal enveloping
algebra. This has a natural filtration U0(L) ⊆ U1(L) ⊆ U2(L) ⊆ . . . coming from the grading
on the tensor algebra of L.

Acknowledgements. The author would like to thank the Institut de Mathématiques de
Jussieu and the Département de Mathématiques d’Orsay for their hospitality during his stays
there, when the writing of the current paper took place. He would also like to thank Y. Billig,
E. Neher, O. Schiffmann, G. Smith, and K. Zhao for useful discussions and D. Daigle for
providing proofs of various commutative algebra results used in Section 6.

1. Map algebras

In this section we review some important definitions and results related to map algebras.
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Definition 1.1 (Map algebra). If g is a Lie algebra, then g⊗A is the map algebra associated
to g and A. It is a Lie algebra with bracket defined by

[u1 ⊗ f1, u2 ⊗ f2] = [u1, u2]⊗ f1f2.

We will identify g with the Lie subalgebra g⊗ C ⊆ g⊗ A.

Recall that a Lie algebra g is said to be perfect if [g, g] = g.

Lemma 1.2. Suppose g is a perfect Lie algebra and V is a (g⊗ A)-module. Then

{f ∈ A | (g⊗ f)V = 0}

is an ideal of A.

Proof. Let J = {f ∈ g ⊗ A | (g ⊗ f)V = 0}. Clearly J is a linear subspace of A. Suppose
f ∈ J and g ∈ A. Since g is perfect, for all u ∈ g, we have u =

∑n

i=1[ui, u
′
i] for some

ui, u
′
i ∈ g, i = 1, . . . , n. Then

(u⊗ fg)V =

(

n
∑

i=1

[ui ⊗ f, u′i ⊗ g]

)

V = 0.

Hence J is an ideal of A. �

For the rest of the paper, we assume that g is perfect (later we shall take g to be the
Virasoro algebra, which is perfect).

Definition 1.3 (Support). For a (g⊗A)-module V , we define

AnnA V := {f ∈ A | (g⊗ f)V = 0} E A,

SuppX V := {m ∈ maxSpecA | AnnA V ⊆ m}.

The set SuppX V is called the support of V . We say V has finite support if SuppX V is finite.

Definition 1.4 (Evaluation module). Supposem E A is a maximal ideal and V is a g-module
with corresponding representation ρ : g → EndV . Then the composition

g⊗ A։ (g⊗ A)/(g⊗m) ∼= g⊗ (A/m) ∼= g
ρ
−→ EndV,

is called a (single point) evaluation representation of g ⊗ A. The corresponding module is
called a (single point) evaluation module and it denoted evmV .

Definition 1.5 (Generalized evaluation module). Suppose m E A is a maximal ideal, n ∈
N+, and V is a (g ⊗ (A/mn))-module with corresponding representation ρ : g ⊗ (A/mn) →
EndV . Then the composition

g⊗ A։ (g⊗ A)/(g⊗m
n) ∼= g⊗ (A/mn)

ρ
−→ EndV

is called a (single point) generalized evaluation representation of g ⊗ A. The corresponding
module is called a (single point) generalized evaluation module and is denoted evmnV .
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2. Map Virasoro algebras

In this section we define the Virasoro algebra and its generalizations, the map Virasoro
algebras. We also review the classification of irreducible quasifinite modules for the Virasoro
algebra.

Definition 2.1 (Virasoro algebra and map Virasoro algebra V). The Virasoro algebra Vir
is the Lie algebra with basis {c, dn | n ∈ Z} and Lie bracket given by

[dn, c] = 0, [dm, dn] = (n−m)dm+n + δm,−n

m3 −m

12
c, m, n ∈ Z.

We define V = Vir⊗A and call this a map Virasoro algebra.

We have a decomposition

V =
⊕

i∈Z

Vi, V0 = (d0 ⊗ A)⊕ (c⊗ A), Vi = di ⊗ A, i 6= 0,

which is simply the weight decomposition of Vir, that is, the eigenspace decomposition
corresponding to the action of d0. Set

V+ =
⊕

i>0

Vi, V− =
⊕

i<0

Vi, V≥n =
⊕

i≥n

Vi, n ∈ Z.

For a V-module V and λ ∈ C, we let Vλ be the eigenspace (or weight space) corresponding
to the action of d0 with eigenvalue λ. We say V is a weight module if V =

⊕

λ∈C Vλ. We
shall use the following lemma repeatedly without mention.

Lemma 2.2. Any irreducible weight V-module V has a weight decomposition of the form
V =

⊕

i∈Z Vα+i for some α ∈ C.

Proof. This follows immediately from the fact that any nonzero weight vector generates
V . �

Definition 2.3 (Quasifinite module). A V-module is called a quasifinite module (or a Harish-
Chandra module, or an admissible module) if it is a weight module and all weight spaces are
finite-dimensional.

Definition 2.4 (Highest and lowest weight modules). A V-module V is called a highest
weight module (respectively, lowest weight module) if there exists a nonzero v ∈ V with
V+v = 0 (respectively, V−v = 0) and U(V)v = V . Such a vector v is called a highest weight
vector (respectively, lowest weight vector).

Remark 2.5. Via the involution of Vir (hence of V) given by dn 7→ −d−n, n ∈ Z, c 7→ −c,
one can translate between highest weight and lowest weight modules. Thus, we will often
prove results only for highest weight modules, with the corresponding results for lowest
weight modules following from this translation.

By the PBW Theorem, we have a triangular decomposition

U(V) ∼= U(V−)⊗ U(V0)⊗ U(V+).

Note that since V0 is abelian, any one-dimensional representation of V0 (equivalently, of
U(V0)) is simply a linear map from V0 to the ground field C. For such a linear map ϕ, let
Cϕ denote the corresponding module.



6 ALISTAIR SAVAGE

Definition 2.6 (Verma module). Let ϕ ∈ homC(V0,C) be a one-dimensional representation
of V0. Extend Cϕ to a module for V0 ⊕ V+ by defining V+ to act by zero. Then

M(ϕ) := U(V)⊗U(V0⊕V+) Cϕ

is the Verma module corresponding to ϕ. It is a highest weight module of highest weight
ϕ(d0) and M(ϕ) =

⊕

i∈NM(ϕ)ϕ(d0)−i. We define ṽϕ := 1⊗ 1ϕ, where 1ϕ denotes the unit in
Cϕ. Thus ṽϕ is a highest weight vector of M(ϕ).

Definition 2.7 (Irreducible highest weight module). For ϕ ∈ homC(V0,C), let N(ϕ) be the
unique maximal proper submodule of M(ϕ). Then

V (ϕ) :=M(ϕ)/N(ϕ)

is the irreducible highest weight module corresponding to ϕ. It is a highest weight module of
highest weight ϕ(d0) and V (ϕ) =

⊕

i∈N V (ϕ)ϕ(d0)−i. We denote the image of ṽϕ in V (ϕ) by
vϕ. In the case that A ∼= C, so V ∼= Vir, ϕ is uniquely determined by ϕ(c) and ϕ(d0). We
will therefore sometimes write V (ϕ(c), ϕ(d0)) for V (ϕ).

Definition 2.8 (Uniformly bounded module). A weight V-module V is called uniformly
bounded if there exists N ∈ N such that dimVλ < N for all λ ∈ C.

Note that the above definitions apply to the usual Virasoro algebra since Vir ∼= V when
A = C. In this case, they reduce to the definitions appearing in the literature. We now
summarize some known results on quasifinite modules for Vir.

Note that DerC[t, t−1] acts naturally on C[t, t−1] and therefore so does Vir, with c acting
as zero. Twistings of this action yield the following important Vir-modules.

Definition 2.9 (Module of the intermediate series). Fix a, b ∈ C. Define V (a, b) to be the
Vir-module with underlying vector space C[t, t−1], with c acting by zero, and

u · v = (u+ a div(u) + bt−1ut)v, ∀ u ∈ DerC[t, t−1], v ∈ V (a, b),

where div
(

p(t) d
dt

)

= d
dt
p(t) for a polynomial p(t) ∈ C[t]. If b ∈ Z or a 6= 0, 1, then V (a, b)

is irreducible (see, for example, [KR87, Proposition 1.1]). Otherwise, V (a, b) has two ir-
reducible subquotients: the trivial submodule C and V (a, b)/C. The nontrivial irreducible
subquotients of the modules V (a, b) are called modules of the intermediate series (or tensor
density modules).

We record the following result since it will be used several times in the current paper.

Lemma 2.10. If V is a module of the intermediate series for Vir, then V is a weight module
with dimVλ = 1 for all λ 6= 0.

Proof. This follows immediately from Definition 2.9. �

The following result gives a classification of the irreducible quasifinite modules for Vir.

Proposition 2.11 ([Mat92, Theorem 1]). Any irreducible quasifinite module over Vir is a
highest weight module, a lowest weight module, or a module of the intermediate series.

Corollary 2.12. Any nontrivial uniformly bounded irreducible Vir-module is a module of
the intermediate series.

Proof. It is shown in [MP91a, Corollary III.3] that the nontrivial highest and lowest weight
Vir-modules are not uniformly bounded. The result then follows from Proposition 2.11. �



QUASIFINITE MODULES OVER MAP VIRASORO ALGEBRAS 7

3. Dimensions of weight spaces

In this section, we prove an important result about the behavior of dimensions of weight
spaces of quasifinite modules. This is an analogue of [Mat92, Lemma 1.7] for the classical
Virasoro algebra Vir. It was proven in [GLZb, Theorem 3.1] for the case A = C[t, t−1].

Proposition 3.1. Every irreducible quasifinite (Vir⊗A)-module is a highest weight module,
a lowest weight module, or a uniformly bounded module.

Proof. Let V be an irreducible quasifinite V-module that is not uniformly bounded. Let W
be a minimal Vir-submodule of V such that V/W is trivial as a Vir-module, and let T be
the maximal trivial Vir-submodule of W . Set W̄ = W/T . By [MP91b, Theorem 3.4], there
exists a Vir-module decomposition W̄ = W̄+ ⊕ W̄− ⊕ W̄ 0, where the weights of W̄+ are
bounded above, those of W̄− are bounded below, and W̄ 0 is uniformly bounded. Without
loss of generality, we assume W̄+ is nonzero. For any w ∈ W , we denote its image in W̄ by
w̄. To show that V is a highest weight module it suffices, by [Mat92, Lemma 1.6], to show
that there exists a nonzero v ∈ V such that V≥nv = 0 for some n ∈ Z.

Since V is irreducible, the central element c acts as a constant c′. Note that if c′ 6= 0,
then V can have no trivial subquotients (in particular, W = V and T = 0). Suppose c′ = 0
and the maximum weight of W̄+ is zero. If we let w ∈ W such that w̄ is a nonzero vector of
weight zero, then U(Vir)w/(U(Vir)w∩T ) ⊆ W̄ is a highest weight module of highest weight
zero which is nontrivial by our definition of W̄ . Since its irreducible quotient is the trivial
module, it must contain highest weight vectors of nonzero highest weight. Choose v ∈ W so
that v̄ is such a vector and let λ be its weight. In the other cases (i.e. c′ 6= 0 or the maximum
weight of W̄+ is nonzero), let λ be the maximum weight of W̄+ and let v ∈ W such that v̄
is a nonzero highest weight vector of weight λ.

Let M = U(Vir)v. Then M/(M ∩ T ) ⊆ W̄+ is a nontrivial highest weight Vir-module of
highest weight λ. LetM ′ be the largest Vir-submodule ofM withM ′

λ = 0. ThenM∩T ⊆M ′

and M/M ′ is isomorphic to the nontrivial irreducible Vir-module V (c′, λ). It follows from
[MP91a, Corollary III.3] that V (c′, λ) is not uniformly bounded. Thus there exists k ∈ N
such that dim V (c′, λ)λ−k > dimVλ. For f ∈ A, consider the linear map

dk ⊗ f :M ′′
λ−k → Vλ,

where M ′′
λ−k is a vector space complement to M ′

λ−k in Mλ−k. Since

dimM ′′
λ−k = dimV (c′, λ)λ−k > dimVλ,

this map has nonzero kernel. Thus there exists a nonzero wf ∈M ′′
λ−k such that (dk⊗f)wf =

0.
Let N = max(1,−λ,−2k). Then, for all j > N , we have dk+jwf ∈Mλ+j = 0. Thus

(3.1) (d2k+j ⊗ f)wf = −
1

j
[dk+j, dk ⊗ f ]wf = 0 ∀ j > N.

Since wf ∈ Mλ−k \M
′
λ−k, there exists a ∈ C and i1, . . . , ir ∈ N+ with i1 + · · ·+ ir = k such

that adi1 · · ·dirwf = v. Using (3.1), for j > N we have

(d2k+j ⊗ f)v = (d2k+j ⊗ f)(adi1 · · · dir)wf

= [d2k+j ⊗ f, adi1 · · · dir ]wf
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= a
r
∑

ℓ=1

(iℓ − 2k − j)di1 · · ·diℓ−1
(d2k+j+iℓ ⊗ f)diℓ+1 · · · dirwf .

Continuing to move the terms of the form dm ⊗ f to the right and using (3.1), we see that

(d2k+j ⊗ f)v = 0 ∀ f ∈ A, j > N.

In other words V≥2k+N+1v = 0, completing the proof. �

4. Uniformly bounded modules

In this section, we classify the uniformly bounded V-modules. We show that they are all
single point evaluation modules corresponding to Vir-modules of the intermediate series. In
the case A = C[t, t−1], this was proven in [GLZb, Theorem 5.1].

Proposition 4.1. Suppose V is a uniformly bounded irreducible V-module. Then (Vir ⊗
J)V = 0 for some ideal J E A of finite codimension. In particular, the uniformly bounded
irreducible V-modules have finite support.

Proof. If V is trivial, we simply take J = A. We therefore assume that V is nontrivial. We
have a weight space decomposition V =

⊕

i∈Z Vα+i for some α ∈ C. Since V is uniformly
bounded, we can choose N ∈ N such that dimVα+i ≤ N for all i ∈ Z. Fix i ∈ Z such
Vα+i 6= 0. For j ∈ Z \ {0}, define

Ij = {f ∈ A | (dj ⊗ f)Vα+i = 0}.

Clearly, Ij is a linear subspace of A. For any f ∈ Ij, g ∈ A, and v ∈ Vα+i, we have

j(dj ⊗ gf)v = [d0 ⊗ g, dj ⊗ f ]v = (d0 ⊗ g)(dj ⊗ f)v − (dj ⊗ f)(d0 ⊗ g)v = 0,

where we have used the fact that elements of d0 ⊗A preserve weights. Thus Ij is an ideal of
A for all j ∈ Z \ {0}. Since Ij is the kernel of the linear map

A→ homC(Vα+i, Vα+i+j), f 7→ (v 7→ (dj ⊗ f)v),

we have that dimA/Ij ≤ dim homC(Vα+i, Vα+i+j) ≤ N2 for all j ∈ Z \ {0}.

We claim that Ij1I2 ⊆ Ij+2 for all j ≥ 1. Since

(d3 ⊗ f1f2)Vα+i = [d1 ⊗ f1, d2 ⊗ f2]Vα+i = 0 ∀ f1 ∈ I1, f2 ∈ I2,

the case j = 1 is proved. Assume the result is true for some fixed j ≥ 1. Then

(j + 1)(dj+3 ⊗ f1f)Vα+i = [d1 ⊗ f1, dj+2 ⊗ f ]Vαi
= 0 ∀ f1 ∈ I1, f ∈ Ij1I2,

and the general result follows by induction.
We next claim that IN

2

1 I2 ⊆ Ij for all j ≥ 1. The result is clear for j = 1, 2, so we assume
j ≥ 3. Consider the chain of subspaces

A/Ij ⊇ (I2 + Ij)/Ij ⊇ (I1I2 + Ij)/Ij ⊇ (I21I2 + Ij)/Ij ⊇ . . . .

Since dimA/Ij ≤ N2, this chain must stabilize and so we have Im1 I2 + Ij = Im+1
1 I2 + Ij

for some m ≤ N2. This implies that Iℓ1I2 + Ij = Im1 I2 + Ij for all ℓ ≥ m. Now, by the

above, we have Ij−2
1 I2 ⊆ Ij , which implies that Iℓ1I2 + Ij = Ij for sufficiently large ℓ. Thus

Im1 I2 + Ij = Ij, i.e. I
m
1 I2 ⊆ Ij, and so IN

2

1 I2 ⊆ Ij as desired.
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Arguments analogous to those given above show that IN
2

−1 I−2 ⊆ I−j for all j ≥ 1. It
follows that

(4.1) J := IN
2

−1 I−2I
N2

1 I2 ⊆ Ij ∀ j ∈ Z \ {0}.

Note that J has finite codimension in A since I−1, I−2, I1, I2 do. Now, by definition, any
element f ∈ J can be written as a sum of elements of the form f−1f1 and as a sum of
elements of the form f−2f2 for fj ∈ Ij , j ∈ {±1,±2}. Since

2d0 ⊗ f−1f1 = [d−1 ⊗ f−1, d1 ⊗ f1] and 4d0 ⊗ f−2f2 − (c⊗ f−2f2)/2 = [d−2 ⊗ f−2, d2 ⊗ f2]

act as zero on Vα+i, it follows that d0 ⊗ J and c⊗ J annihilate Vα+i. Combined with (4.1),
this gives that (Vir⊗ J)Vα+i = 0.

Since Vα+i 6= 0 and V is irreducible, we have U(V)Vα+i = V . To show that (Vir⊗J)V = 0,
it therefore suffices to show that (Vir ⊗ J)Un(V)Vα+i = 0 for all n ∈ N. We do this by
induction, the case n = 0 having been proven above. Assume the result is true for k < n.
An arbitrary element of Un(V)Vα+i can be written as a sum of elements of the form

(u1 ⊗ f1) · · · (us ⊗ fs)vα+i, where s ≤ n, vα+i ∈ Vα+i, uj ∈ Vir, fj ∈ A, j = 1, . . . , s.

For u ∈ Vir and f ∈ J , we have

(u⊗ f)(u1 ⊗ f1) · · · (us ⊗ fs)vα+i

=

s
∑

j=1

(u1 ⊗ f1) · · · (uj−1 ⊗ fj−1)([u, uj]⊗ ffj)(uj+1 ⊗ fj+1) · · · (us ⊗ fs)vα+i = 0,

where in the last equality we used the induction hypothesis. It follows that (Vir⊗ J)V = 0
as desired. �

Proposition 4.2. Suppose V is a uniformly bounded irreducible V-module. Then (Vir ⊗
J)V = 0 for some ideal J E A of finite codimension with J supported at a single point (i.e.
rad J is a maximal ideal of A). In other words, the nontrivial uniformly bounded irreducible
V-modules have support a single point.

Proof. The result is clear if V is trivial and so we assume it is nontrivial. By Proposition 4.1,
there exists an ideal J E A of finite codimension such that (Vir ⊗ J)V = 0. Since J has
finite codimension, we may write J = J1J2 . . . Jℓ for ideals J1, . . . , Jℓ supported at distinct
points. Now, the action of Vir⊗ A on V factors through

(Vir⊗A)/(Vir⊗ J) ∼= (Vir⊗ A/J) ∼= Vir⊗ ((A/J1)⊕ · · · ⊕ (A/Jℓ)) ∼=

ℓ
⊕

i=1

(Vir⊗A/Ji).

It suffices to show that at most one summand above acts nontrivially on V . Without loss
of generality, assume the first summand L1 := Vir ⊗ A/J1 acts nontrivially. Define L2 =
⊕ℓ

i=2(Vir⊗ A/Ji), L = L1 ⊕ L2, and let

δ1 = (d0 + J1) ∈ L1, δ2 = (0, d0 + J2, . . . , d0 + Jn) ∈ L2, δ = δ1 + δ2.

Note that d0v = δv for all v ∈ V and that the actions of δ1, δ2, δ commute. It follows that, for
i = 1, 2, δi preserves the finite-dimensional d0-eigenspaces. Therefore δi has an eigenvector
v ∈ V . Since the action of δi on L is diagonalizable and v generates V as a module over L,
we see that δi acts diagonalizably on V for i = 1, 2.
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Because the eigenvalues of the action of d0 on L are integers, the above discussions implies
that we have a decomposition

V =
⊕

j,k∈Z

V(j,k), V(j,k) = {v ∈ V | δ1v = (α+ j)v, δ2v = (β + k)v},

for some fixed α, β ∈ C. Since [L1, L2] = 0, for each k ∈ Z we have that V(∗,k) :=
⊕

j∈Z V(j,k)
is an L1-submodule of V . None of these can be a nonzero trivial module since if L1 acts by
zero on any nonzero element v ∈ V , then, since [L1, L2] = 0 and V is irreducible (hence v
generates V as an L-module and thus as an L2-module), L1 would act trivially on all of V
which contradicts our assumption. Thus, since V is uniformly bounded, by Corollary 2.12
and Lemma 2.10 we must have that V(j,k) 6= 0 for all α + j 6= 0 whenever V(∗,k) 6= 0. By
an analogous argument, we can assume that L2 acts nontrivially on all V(j,∗), α + j 6= 0. It
follows that V(j,k) 6= 0 whenever α + j 6= 0 and β + k 6= 0. Now,

Vα+β ⊇
⊕

j∈Z

Vj,−j,

with the right hand space being infinite-dimensional. This contradicts the fact that the
weight spaces of V are finite-dimensional, completing the proof. �

Remark 4.3. Proposition 4.2 shows that the situation for uniformly bounded V-modules is
quite different than for the finite-dimensional modules for g⊗A or its equivariant analogue
(the equivariant map algebras), when g is a finite-dimensional algebra. In the latter case,
irreducible modules can be supported at any finite number of points (see [NSS]). This is
not possible for uniformly bounded V-modules for the simple reason that a tensor product
of two nontrivial uniformly bounded modules will always have infinite-dimensional weight
spaces. However, we will see in Section 5 that the highest weight quasifinite V-modules can
have support at more than one point.

If we have a vector space decomposition g ∼= W ⊕W ′ of a Lie algebra g, we can pick
ordered bases B and B′ of W and W ′ (respectively) and obtain an ordered basis of g by
declaring b ≥ b′ for all b ∈ B, b′ ∈ B′. Then, by the PBW theorem, the set of monomials

{x1 · · ·xny1 · · · ym | n,m ∈ N, x1, . . . , xn ∈ B, x1 ≥ · · · ≥ xn, y1, . . . , ym ∈ B′, y1 ≥ · · · ≥ ym},

forms a basis of U(g). By a slight abuse of terminology, we will denote by Un(W ) the subspace
of U(g) spanned by all monomials of the form x1 · · ·xs, s ∈ N, s ≤ n, x1, . . . , xs ∈ B,
x1 ≥ · · · ≥ xs, and we set U(W ) =

⋃

n Un(W ). We define Un(W
′) and U(W ′) similarly.

Thus U(g) ∼= U(W )⊗U(W ′). Note that when W is actually a subalgebra of g, U(W ) is the
usual enveloping algebra of W (and similarly for W ′).

Lemma 4.4. Suppose a is an abelian ideal of a Lie algebra g and fix a vector space decom-
position g = W ⊕ a so that U(g) ∼= U(W )⊗ U(a). Then, for all n ∈ N+,

[a, Un(W )⊗ U(a)] ⊆ Un−1(W )⊗ U(a), and

a(Un(W )⊗ U(a)) ⊆ Un(W )⊗ U(a).

Proof. Since the second inclusion follows easily from the first, we prove only the first, by
induction on n. The case n = 1 follows immediately from the fact that for all a ∈ a, w ∈ W ,
u ∈ U(a), we have

[a, wu] = [a, w]u+ w[a, u] = [a, w]u ∈ U(a),
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where we have used that U(a) is commutative since a is abelian.
Now suppose n > 1. The space Un(W ) ⊗ U(a) is spanned by elements of the form

w1 · · ·wsu, where s ≤ n, wi ∈ W for i = 1, . . . , s, u ∈ U(a). If a ∈ a, then

[a, w1 · · ·wsu] = [a, w1]w2 · · ·wsu+ w1[a, w2 · · ·wsu]

= [[a, w1], w2 · · ·ws]u+ w2 · · ·ws[a, w1]u+ w1[a, w2 · · ·wsu].

Now, [a, w1] ∈ a since a is an ideal. Therefore [[a, w1], w2 · · ·ws]u ∈ Us−2(W ) ⊗ U(a) ⊆
Un−1(W ) ⊗ U(a) by the induction hypothesis. In addition, w2 · · ·ws[a, w1]u ∈ Us−1(W ) ⊗
U(a) ⊆ Un−1 ⊗U(a). Finally, [a, w2 · · ·wsu] ∈ Us−2(W )⊗U(a) by the induction hypothesis,
and so w1[a, w2 · · ·wsu] ∈ Us−1(W )⊗U(a) ⊆ Un−1(W )⊗U(a). This completes the proof. �

Proposition 4.5. Suppose V is a uniformly bounded irreducible V-module, with A finite-
dimensional. Then (Vir⊗ J)V = 0 for any ideal J E A satisfying J2 = 0.

Proof. We may assume that V is nontrivial since otherwise the statement is clear. Let J be
a ideal of A such that J2 = 0. We have a weight decomposition V =

⊕

i∈Z Vα+i for some
α ∈ C. Fix i ∈ Z such that Vα+i 6= 0 and let f ∈ J . Since the operator d0 ⊗ f fixes the
finite-dimensional vector space Vα+i, it has an eigenvector. In other words, there exists a
nonzero v ∈ Vα+i and a ∈ C such that (d0 ⊗ f)v = av.

We claim that (d0⊗ f)− a acts locally nilpotently on V . Pick a vector space complement
B to J in A. So A = B ⊕ J as vector spaces. Then we have the vector space decomposition
V = (Vir′ ⊗B)⊕ (Cc⊗B)⊕ (Vir⊗ J), where Vir′ :=

⊕

m∈Z dm. We therefore have, by the
PBW Theorem,

U(Vir⊗A) ∼= U(Vir′ ⊗B)⊗ U((Cc⊗B)⊕ (Vir⊗ J)).

Note that since J2 = 0 and c is central in Vir, Ũ := U((Cc⊗B)⊕(Vir⊗J)) is a commutative
associative algebra. Since V is irreducible, we have V = U(V)v. Thus our claim is equivalent
to proving that ((d0 ⊗ f)− a)n+1 acts by zero on Un(Vir

′ ⊗ B)Ũv for all n ∈ N. We prove

this by induction. The case n = 0 follows immediately from the commutativity of Ũ and the
fact that (d0 ⊗ f)− a annihilates v. Now consider n ≥ 1. For s ≤ n, u1, . . . , us ∈ Vir′ ⊗ B,

and u ∈ Ũ , we have

((d0 ⊗ f)− a)n+1u1 · · ·usuv = ((d0 ⊗ f)− a)n[(d0 ⊗ f)− a, u1 · · ·usu]v

= ((d0 ⊗ f)− a)n[(d0 ⊗ f), u1 · · ·usu]v.

By Lemma 4.4,

[(d0 ⊗ f), u1 · · ·usu] ∈ Us−1(Vir
′ ⊗B)Ũ ⊆ Un−1(Vir

′ ⊗ B)Ũ ,

and so ((d0⊗ f)− a)n[(d0⊗ f), u1 · · ·usu]v = 0 by the induction hypothesis. This completes
the proof that (d0 ⊗ f)− a acts locally nilpotently on V .

Since V is uniformly bounded, we can choose N ∈ N such that dimVα+i ≤ N for all i ∈ Z.
Thus (d0⊗ f)−a acts nilpotently on Vα+i and, in fact, ((d0⊗ f)−a)NVα+i = 0 for all i ∈ Z.
Therefore

(4.2) ((d0 ⊗ f)− a)NV = 0.

Since Vir⊗ J is abelian, we have

[dj, ((d0 ⊗ f)− a)m] = m((d0 ⊗ f)− a)m−1[dj , (d0 ⊗ f)− a] ∀ m ∈ N+,
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and so

(4.3) [dj , ((d0 ⊗ f)− a)m] = −jm(dj ⊗ f)((d0 ⊗ f)− a)m−1 ∀ m ∈ N+.

From (4.2) and (4.3), it follow by an easy induction that

(4.4) (dj ⊗ f)r(d0 ⊗ f − a)N−rV = 0 for all j ∈ Z \ {0}, 0 ≤ r ≤ N.

Since c ⊗ f is central, it acts by some scalar c′ ∈ C on the irreducible module V . We
claim that a = c′ = 0. Suppose, on the contrary, that a 6= 0 or c′ 6= 0. Then we can choose
j ∈ Z \ {0} such that

(4.5) 2ja−
j3 − j

12
c′ 6= 0.

Taking r = N in (4.4), we see that (dj ⊗ f)NV = 0. Let m be the minimal element of N
such that (dj ⊗ f)mV = 0 (so, clearly, 1 ≤ m ≤ N). Since Vir⊗ J is abelian, we have

0 = [d−j, (dj ⊗ f)m]V

= m(dj ⊗ f)m−1[d−j, dj ⊗ f ]V

= m(dj ⊗ f)m−1

(

2jd0 ⊗ f −
j3 − j

12
c⊗ f

)

V.

For each i ∈ Z, by (4.5), (2jd0 ⊗ f − j3−j

12
c⊗ f) acts invertibly on the generalized (d0 ⊗ f)-

eigenspace of Vα+i corresponding to the eigenvalue a. Thus, we see from the above that
(dj⊗f)

m−1 acts by zero on such generalized eigenspaces. On other hand, we have from (4.4)
that

(dj ⊗ f)m−1((d0 ⊗ f)− a)N−m+1V = 0,

which implies that (dj ⊗ f)m−1 also acts by zero on all the generalized eigenspaces of Vα+i,
i ∈ Z, corresponding to any eigenvalue not equal to a. It follows that (dj ⊗ V )m−1V = 0,
contradicting the choice of m. Therefore a = c′ = 0.

Since the above arguments hold for arbitrary f ∈ J , we have (d0 ⊗ J)NV = 0. We next
claim that

(4.6) (di1 ⊗ f) · · · (dir ⊗ f)(d0 ⊗ f)N−rV = 0 ∀ 0 ≤ r ≤ N, i1, . . . , ir ∈ Z \ {0}, f ∈ J.

We have already proved the base case r = 0. Now assume the result holds for some 0 ≤ r <
N . Then, for i1, . . . , ir+1 ∈ Z \ {0}, f ∈ J ,

0 = (di1 ⊗ f) · · · (dir ⊗ f)(d0 ⊗ f)N−rV

= dir+1
(di1 ⊗ f) · · · (dir ⊗ f)(d0 ⊗ f)N−rV

=
r
∑

k=1

[dir+1
, dik ⊗ f ](di1 ⊗ f) · · · (dik−1

⊗ f)(dik+1
⊗ f) · · · (dir ⊗ f)(d0 ⊗ f)N−rV

+ (N − r)[dir+1
, d0 ⊗ f ](di1 ⊗ f) · · · (dir ⊗ f)(d0 ⊗ f)N−r−1V

+ (di1 ⊗ f) · · · (dir ⊗ f)(d0 ⊗ f)N−rdir+1
V

= (ik − ir+1)

r
∑

k=1

(dir+1+ik ⊗ f)(di1 ⊗ f) · · · (dik−1
⊗ f)(dik+1

⊗ f) · · · (dir ⊗ f)(d0 ⊗ f)N−rV

− ir+1(N − r)(dir+1
⊗ f)(di1 ⊗ f) · · · (dir ⊗ f)(d0 ⊗ f)N−r−1V



QUASIFINITE MODULES OVER MAP VIRASORO ALGEBRAS 13

= −ir+1(N − r)(di1 ⊗ f) · · · (dir+1
⊗ f)(d0 ⊗ f)N−r−1V,

where in the fourth equality we have used the fact that c ⊗ J acts by zero on V . This
completes the inductive step. Now, (4.6) immediately implies that

(4.7) (di1 ⊗ f) · · · (diN ⊗ f)V = 0 for all i1, . . . , iN ∈ Z, f ∈ J.

By assumption, A is finite-dimensional. Let M = (dimA)(N − 1) + 1. By expanding in a
basis for A and using (4.7), we see that

(di1 ⊗ f1) · · · (diM ⊗ fM)V = 0 for all i1, . . . , iM ∈ Z, f1, . . . , fM ∈ J.

In other words, (Vir⊗ J)MV = 0, where the M-th power here is interpreted as taking place
inside U(Vir ⊗ J). Thus U(V)(Vir ⊗ J)MU(V)V = 0. It is easy to see that

(

U(V)(Vir ⊗

J)U(V)
)M

= U(V)(Vir ⊗ J)MU(V). Thus
(

U(V)(Vir ⊗ J)U(V)
)M
V = 0. This implies

that
(

U(V)(Vir ⊗ J)U(V)
)

V 6= V . Since V is irreducible and
(

U(V)(Vir ⊗ J)U(V)
)

V is a

submodule of V , this implies that
(

U(V)(Vir ⊗ J)U(V)
)

V = 0, which in turn implies that
(Vir⊗ J)V = 0 as desired. �

Corollary 4.6. Suppose V is a uniformly bounded irreducible V-module, with A finite-
dimensional. Then (Vir⊗ J)V = 0 for any nilpotent ideal J of A.

Proof. We may assume that V is nontrivial since otherwise the statement is clear. Let J
be a nilpotent ideal of A, so that Jr = 0 for some r ∈ N+. Choose the minimal n ∈ N+

with the property that (Vir ⊗ Jn)V = 0. Suppose n > 1. The action of V factors through
V/(Vir⊗Jn) ∼= Vir⊗ (J/Jn), and so we can consider V as a module for this quotient. Then,
by Proposition 4.5, we have that (Vir⊗ (Jn−1/Jn))V = 0. This implies (Vir⊗ Jn−1)V = 0,
contradicting the choice of n. It follows that n = 1 and so (Vir⊗ J)V = 0. �

Theorem 4.7. Any uniformly bounded irreducible V-module is a single point evaluation
module evmV for some maximal ideal m E A and Vir-module V of the intermediate series.

Proof. It suffices to show that V is annihilated by Vir⊗ m for some maximal ideal m E A.
By Proposition 4.2, there exists an ideal J E A of finite codimension, with m := rad J
a maximal ideal, such that (Vir ⊗ J)V = 0. We can consider V as a module for (Vir ⊗
A)/(Vir⊗ J) ∼= Vir⊗ (A/J), where the algebra A/J is finite-dimensional. Since every ideal
in a Noetherian ring contains a power of its radical (see, for example, [AM69, Prop. 7.14]),
we have mr ⊆ J for some r ∈ N+. Then (m/J)r = 0 in A/J , and it follows from Corollary 4.6
that (Vir⊗m)V = 0. �

5. Highest weight modules

In this section we give a classification of the irreducible highest weight quasifinite V-
modules. We show that they are all tensor products of generalized single point evaluation
modules. In the case A = C[t, t−1], this was proved in [GLZb, Theorem 6.4].

Proposition 5.1. The irreducible highest weight module V (ϕ), ϕ ∈ homC(V0,C), is a
quasifinite module if and only if there exists an ideal J E A of finite codimension such
that ϕ(Vir0 ⊗ J) = 0 and, in this case, (Vir ⊗ J)V (ϕ) = 0. In particular, an irreducible
highest weight module is a quasifinite module if and only if it has finite support.
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Proof. Consider the linear map

A→ V (ϕ)ϕ(d0)−2, f 7→ (d−2 ⊗ f)vϕ, f ∈ A,

and let J denote the kernel of this map. We claim J is an ideal of A. Clearly J is a linear
subspace of A. For f ∈ J , g ∈ A, we have

0 = [d0 ⊗ g, d−2 ⊗ f ]vϕ = −2(d−2 ⊗ gf)vϕ,

which implies gf ∈ J . In the above, we have used the fact that d0 ⊗ g preserves the weight
space Vϕ(d0), which is spanned by vϕ. Next we claim that ϕ(Vir0 ⊗ J) = 0. Fix f ∈ J . Then

0 = (d2 ⊗ 1)(d−2 ⊗ f)vϕ = [d2 ⊗ 1, d−2 ⊗ f ]vϕ =

((

−4d0 +
1

2
c

)

⊗ f

)

vϕ,

and

0 = (d1 ⊗ 1)(d1 ⊗ 1)(d−2 ⊗ f)vϕ = (d1 ⊗ 1)[d1 ⊗ 1, d−2 ⊗ f ]vϕ

= −3(d1 ⊗ g)(d−1 ⊗ f)vϕ = −3[d1 ⊗ 1, d−1 ⊗ f ] = 6(d0 ⊗ f)vϕ.

Thus ϕ(d0⊗f)vϕ = (d0⊗f)vϕ = 0 and ϕ(c⊗f)vϕ = (c⊗f)vϕ = 0 for all f ∈ J , proving our
claim. If V (ϕ) is a quasifinite module, the weight space V (ϕ)ϕ(d0)−2 is finite-dimensional,
and so J has finite-codimension in A. This completes the proof of the reverse implication
asserted in the proposition.

Now assume that there exists an ideal J E A of finite codimension such that ϕ(Vir0⊗J) =
0. We first show that (Vir ⊗ J)vϕ = 0. It suffices to show that (dn ⊗ J)vϕ for all n ∈ Z,
which we show by induction. The result holds by definition of V (ϕ) for n > 0 and by the
assumption on J for n = 0. Now assume the result holds for all n > k for some k ∈ Z. Then
for all f ∈ J and g ∈ A, we have

(d1 ⊗ g)(dk ⊗ f)vϕ = [d1 ⊗ g, dk ⊗ f ]vϕ = (k − 1)(dk+1 ⊗ gf)vϕ = 0,

(d2 ⊗ g)(dk ⊗ f)vϕ = [d2 ⊗ g, dk ⊗ f ]vϕ = (k − 2)

((

dk+2 + δk,−2
1

2
c

)

⊗ gf

)

vϕ = 0.

Suppose (dk ⊗ f)vϕ 6= 0. Since elements of the form d1 ⊗ g, d2 ⊗ g, g ∈ A, generate V+, this
would imply that (dk ⊗ f)vϕ is a highest weight vector, contradicting the irreducibility of
V (ϕ). Therefore (dk ⊗ f)vϕ = 0, completing the inductive step.

Next we show that (Vir⊗ J)V (ϕ) = 0. Let λ = ϕ(d0). Since c⊗ J commutes with V and
annihilates vϕ, it follows that c ⊗ J acts as zero on all of V , since V is irreducible. It thus
suffices to show (dn ⊗ J)V (ϕ)λ−ℓ = 0 for all n ∈ Z, ℓ ∈ N, which we show by induction on ℓ.
The case ℓ = 0 was proved above since V (ϕ)λ is spanned by the vector vϕ. Now assume the
result is true for all ℓ < k for some k ∈ N+. It follows from the fact that V (ϕ) = U(V−)vϕ
that V (ϕ)λ−k is spanned by elements of the form

(d−i ⊗ g)v, i ∈ N+, g ∈ A, v ∈ V (ϕ)λ−k+i.

Now, for such an element (d−i ⊗ g)v and for j ∈ Z and f ∈ J , we have

(dj ⊗ f)(d−i ⊗ g)v =

(((

(−i− j)dj−i + δi,j
j3 − j

12
c

)

⊗ fg

)

+ (d−i ⊗ g)(dj ⊗ f)

)

v = 0,

by the induction hypothesis. This proves the inductive step and hence (Vir⊗ J)V (ϕ) = 0.
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It follows from the above that V (ϕ) can be considered as a module over V/(Vir ⊗ J) ∼=
Vir⊗ (A/J) and that V (ϕ) = U(Vir− ⊗ (A/J))vϕ. Since J has finite codimension in A, the
weight spaces of U(Vir−⊗ (A/J)) are finite-dimensional. Hence the same property holds for
V (ϕ), which is thus a quasifinite module. �

Corollary 5.2. If A is finite-dimensional, then all highest or lowest weight V-modules are
quasifinite modules.

Proof. This follows from the reasoning in the last paragraph of the proof of Proposition 5.1.
�

Theorem 5.3. Any irreducible highest weight quasifinite V-module is a tensor product of
irreducible (generalized evaluation) highest weight quasifinite modules supported at single
points.

Proof. Suppose V (ϕ) is an irreducible highest weight quasifinite module. Then, by Propo-
sition 5.1, J := AnnA V has finite support. Therefore radJ = m1 · · ·mr for some distinct
maximal ideals m1 · · ·mr E A. Since every ideal in a Noetherian ring contains a power of its
radical (see, for example, [AM69, Prop. 7.14]), there exists N ∈ N+ such that mN

1 · · ·mN
r ⊆ J .

Then ϕ(Vir0 ⊗m
N
1 · · ·mN

r ) = 0, and so ϕ corresponds to a unique element

ϕ̄ ∈
(

Vir0 ⊗A/mN
1 · · ·mN

r

)∗ ∼=

r
⊕

i=1

(Vir0 ⊗ A/mN
i )

∗.

Let (ϕ̄1, . . . , ϕ̄r) ∈
⊕r

i=1(Vir0 ⊗A/mN
i )

∗ be the element corresponding to ϕ̄ under the above
isomorphism. For each 1 ≤ i ≤ r, let ϕi be the unique element of (V0)

∗ corresponding
to (0, . . . , 0, ϕ̄i, 0, . . . , 0) (with the term ϕ̄i occurring in the i-th position). We thus have
ϕ =

∑r

i=1 ϕi and V (ϕi) has support in the single point corresponding to the maximal ideal
mi. Now, the tensor product

⊗r

i=1 V (ϕi) is a weight module with a highest weight vector
v := vϕ1

⊗ · · · ⊗ vϕr
and uv = ϕ(u)v for all u ∈ V0. Since each V (ϕi) is absolutely reducible

(being irreducible of countable dimension), so is
⊗r

i=1 V (ϕi) (see, for example, [Bou58, §7.4,
Theorem 2] or [Li04, Lemma 2.7]). It follows that

⊗r

i=1 V (ϕi) ∼= V (ϕ). �

Corollary 5.4. If V (ϕ1), . . . , V (ϕr) are irreducible highest weight quasifinite modules with
pairwise distinct supports, then

⊗r
i=1 V (ϕi) = V (ϕ1 + · · ·+ ϕr).

Proof. This follows from the proof of Theorem 5.3. �

Combining Proposition 3.1 and Theorems 4.7 and 5.3 yields the following.

Theorem 5.5. Any irreducible quasifinite V-module is one of the following:

(a) a single point evaluation module corresponding to a Vir-module of the intermediate
series (or tensor density module),

(b) a finite tensor product of single point generalized evaluation modules corresponding to
irreducible highest weight Vir-modules, or

(c) a finite tensor product of single point generalized evaluation modules corresponding to
irreducible lowest weight Vir-modules.

In particular, they are all tensor products of generalized evaluation modules.
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6. Reducibility of Verma modules

In this section, we give a sufficient condition for a Verma module for V to be reducible.
This condition is also necessary if A is an infinite-dimensional integral domain. In the case
that A = C[t, t−1], the condition reduces to the one in [GLZb, Theorem 6.5].

Choose a basis BA of A along with an order ≻ on BA. We then have an ordered basis of
V− given by

{d−n ⊗ f | n ∈ N, f ∈ BA}, d−n1
⊗ f1 ≻ d−n2

⊗ f2 ⇐⇒ (n1, f1) ≻ (n2, f2),

where on the right hand side we use the usual ordering on N and the lexicographic ordering on
pairs. This induces a PBW basis B of U(V−). We have a natural decomposition B =

⊔∞

n=0 B
n,

where

Bn = {(d−i1 ⊗ f1) · · · (d−in ⊗ fn) | i1, . . . , in ∈ N+, f1, . . . , fn ∈ BA, (i1, f1) ≻ · · · ≻ (in, fn)}.

Note that, here and in what follows, we always write elements of B with the factors in
decreasing order. We write htX = n for X ∈ Bn. Define an ordering on B by setting

(d−i1 ⊗ f1) · · · (d−ir ⊗ fr) ≻ (d−j1 ⊗ g1) · · · (d−js ⊗ gs)

⇐⇒ (r, i1, . . . , ir, f1, . . . , fr) ≻ (s, j1, . . . , js, g1, . . . , gs),

where we again use the lexicographic ordering on tuples.
For n,m ∈ Z, set Un

−m = Un(V−)−m, where we remind the reader that here n refers to the
natural filtration on the enveloping algebra and −m denotes the weight (corresponding to
the eigenvalue of the action of d0). Thus

Un1

−m1
Un2

−m2
⊆ Un1+n2

−(m1+m2)
for all n1, n2, m1, m2 ∈ N.

In particular,

(d−i1 ⊗ f1) · · · (d−in ⊗ fn) ∈ Un
−(i1+···+in) for all n, i1, . . . , in ∈ N+, f1, . . . , fn ∈ A.

Any element X ∈ U(V−) can be written as
∑n

i=1 aiXi for ai ∈ C and X1, . . . , Xn ∈ B with
X1 ≻ · · · ≻ Xn. We define

htX = htX1, hmX = a1X1

(here hm stands for highest term). By convention, we set ht 0 = −1 and hm0 = 0. By
definition, Bvϕ := {bvϕ | v ∈ B} is a basis for M(ϕ). For elements of this basis we define

ht(Xvϕ) = htX, hm(Xvϕ) = (hmX)vϕ.

We thank D. Daigle for the statement and proof of the following lemma, which will be
used in the proof of Theorem 6.2.

Lemma 6.1. Suppose R = k[X ] is a polynomial algebra over a field k, where X is an
infinite set of indeterminates. Write R =

⊕

d∈NRd, where Rd is the space of homogeneous
polynomials of degree d. Let M1, . . . ,Mp be pairwise distinct monomials in R, all of the same
degree. Then the subspace

U =

{

(L1, . . . , Lp) ∈ Rp
1

∣

∣

∣

∣

∣

p
∑

i=1

LiMi = 0

}

of Rp
1 is finite-dimensional over k.
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Proof. Choose a finite subset X ′ of X such that M1, . . . ,Mp ∈ k[X ′], and let X ′′ = X \X ′.
Define R′ = k[X ′] =

⊕

d∈NR
′
d and R′′ = k[X ′′] =

⊕

d∈NR
′′
d, where R

′
d and R′′

d are the spaces
of homogeneous polynomials of degree d. Then R1 = R′

1 ⊕ R′′
1 .

To prove the lemma, it is enough to show that U ⊆ (R′
1)

p. Assume the contrary, and
consider (L1, . . . , Lp) ∈ U such that (L1, . . . , Lp) /∈ (R′

1)
p. For each i ∈ {1, . . . , p}, write

Li = L′
i + L′′

i with L′
i ∈ R′

1 and L′′
i ∈ R′′

1. Then

(6.1)

p
∑

i=1

L′
iMi +

p
∑

i=1

L′′
iMi = 0,

and moreover L′′
i0
6= 0 for some i0 ∈ {1, . . . , p}.

Let ϕ : R → R′ be the k-algebra homomorphism that maps each element of X ′ to itself
and each element of X ′′ to zero. Applying ϕ to (6.1) yields

∑p
i=1 L

′
iMi = 0, hence

(6.2)

p
∑

i=1

L′′
iMi = 0.

Now choose a k-algebra homomorphism ψ : R → R′ that maps each element of X ′ to itself
and each element of X ′′ to an element of k, in such a way that ψ(L′′

i0
) 6= 0. Applying ψ to

(6.2) yields
∑p

i=1 λiMi = 0 for some λ1, . . . , λp not all zero. Since M1, . . . ,Mp are pairwise
distinct, this is a contradiction. �

Theorem 6.2. The Verma module M(ϕ), ϕ ∈ homC(V0,C), is reducible if there exists a
nontrivial ideal J E A such that ϕ(d0 ⊗ J) = 0. If A is an infinite-dimensional integral
domain, the reverse implication also holds.

Proof. First suppose there exists a nontrivial ideal J E A such that ϕ(d0 ⊗ J) = 0. For
f ∈ J and g ∈ A, we have

(d1 ⊗ g)(d−1 ⊗ f)ṽϕ = [d1 ⊗ g, d−1 ⊗ f ]ṽϕ = −2(d0 ⊗ gf)ṽϕ = 0.

Furthermore, for m ≥ 2, we have

(dm ⊗ g)(d−1 ⊗ f)ṽϕ = [dm ⊗ g, d−1 ⊗ f ]ṽϕ = (−1 −m)(dm−1 ⊗ gf)ṽϕ = 0.

This implies that (d−1 ⊗ f)ṽϕ is a highest weight vector and hence M(ϕ) is reducible.
Now suppose A is an infinite-dimensional integral domain and there is no ideal J E A such

that ϕ(d0 ⊗ J) = 0. To prove that M(ϕ) is irreducible, it suffices to show that M(ϕ)−n =
V (ϕ)−n for all n ∈ N. We prove this by induction, the case n = 0 being trivial.

SupposeM(ϕ)−1 6= V (ϕ)−1. Then there exists a nonzero f ∈ A such that (d−1⊗f)vϕ = 0.
Then, for all g ∈ A, we have

−2ϕ(d0 ⊗ gf)vϕ = −2(d0 ⊗ gf)vϕ = [d1 ⊗ g, d−1 ⊗ f ]vϕ = 0.

This implies that ϕ(d0⊗J) = 0, where J = Af is the ideal generated by f . This contradiction
implies that M(ϕ)−1 = V (ϕ)−1.

Now suppose n > 1 and M(ϕ)−k = V (ϕ)−k for all 0 ≤ k < n. It suffices to show
that Xvϕ 6= 0 for all X ∈ U(V−)−n. Towards a contradiction, suppose Xvϕ = 0 for some

X ∈ U(V−)−n, and write X =
∑ℓ

i=1 aiXi for a1, . . . , aℓ ∈ C and X1, . . . , Xℓ ∈ B with
X1 ≻ · · · ≻ Xℓ. First suppose that htX < n. Then

X1 = (d−i1 ⊗ f1) · · · (d−ir ⊗ fr)(d−1 ⊗ g1) · · · (d−1 ⊗ gs)
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for some r > 0 and i1 ≥ 2. Then

hm((d1 ⊗ 1)Xvϕ) = hm([d1 ⊗ 1, X ]vϕ)

= (−ir − 1)m(d−i1+1 ⊗ f1) · · · (d−ir−1
⊗ fr−1)(d−ir ⊗ fr)(d−1 ⊗ g1) · · · (d−1 ⊗ gs)vϕ

6= 0,

where m is the number of (ik, fk), 1 ≤ k ≤ r, equal to (i1, f1) and the fact that the term is
nonzero follows from the induction hypothesis. Thus Xvϕ 6= 0 as desired.

It remains to consider the case htX = n. Then there exists 1 ≤ r ≤ s ≤ ℓ such that

htXi = n for 1 ≤ i ≤ r, htXi = n− 1 for r + 1 ≤ i ≤ s,

htXi ≤ n− 2 for s+ 1 ≤ r ≤ ℓ.

For 1 ≤ i ≤ r, we have

Xi = (d−1 ⊗ fi,1) · · · (d−1 ⊗ fi,n)

for some fi,1, . . . , fi,n ∈ BA. Now, for g ∈ A, we have

(d1 ⊗ g)Xivϕ = [d1 ⊗ g, (d−1 ⊗ fi,1) · · · (d−1 ⊗ fi,n)]vϕ

= −2
n
∑

j=1

(d−1 ⊗ fi,1) · · · (d−1 ⊗ fi,j−1)(d0 ⊗ fi,jg)(d−1 ⊗ fi,j+1) · · · (d−1 ⊗ fi,n)vϕ

= −2

n
∑

j=1

(d−1 ⊗ fi,1) · · · ̂(d−1 ⊗ fi,j) · · · (d−1 ⊗ fi,n)(d0 ⊗ fi,jg)vϕ

+2
n
∑

j=1

n
∑

k=j+1

(d−1 ⊗ fi,1) · · · ̂(d−1 ⊗ fi,j) · · · (d−1 ⊗ fi,k−1)(d−1 ⊗ fi,jfi,kg)(d−1 ⊗ fi,k+1) · · · (d−1 ⊗ fi,n)vϕ

= −2
n
∑

j=1

ϕ(d0 ⊗ fi,jg)(d−1 ⊗ fi,1) · · · ̂(d−1 ⊗ fi,j) · · · (d−1 ⊗ fi,n)vϕ

+2

n
∑

j=1

n
∑

k=j+1

(d−1 ⊗ fi,jfi,kg)(d−1 ⊗ fi,1) · · · ̂(d−1 ⊗ fi,j) · · · ̂(d−1 ⊗ fi,k) · · · (d−1 ⊗ fi,n)vϕ,

where the ˆ above a term means that term is omitted and we use the fact that d−1 ⊗A is an
abelian subalgebra of V.

Now, for r + 1 ≤ i ≤ s, we have

Xi = (d−2 ⊗ fi,1)(d−1 ⊗ fi,2) · · · (d−1 ⊗ fi,n−1)

for some fi,1, . . . , fi,n−1 ∈ BA. Then, for g ∈ A, we have

(d1 ⊗ g)Xivϕ = [d1 ⊗ g,Xi]vϕ

≡ −3(d−1 ⊗ fi,1g)(d−1 ⊗ fi,2) · · · (d−1 ⊗ fi,n−1) mod (Un−2
−n+1vϕ).

Combining the above computations and using the fact that (d1 ⊗ g)Xivϕ ∈ Un−2
−n+1vϕ for

s+ 1 ≤ i ≤ ℓ and g ∈ A, we have

0 = (d1 ⊗ g)Xvϕ = [d1 ⊗ g,X ]vϕ
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≡ −2
r
∑

i=1

ai

n
∑

j=1

ϕ(d0 ⊗ fi,jg)(d−1 ⊗ fi,1) · · · ̂(d−1 ⊗ fi,j) · · · (d−1 ⊗ fi,n)vϕ

+ 2

r
∑

i=1

ai

n
∑

j=1

n
∑

k=j+1

(d−1 ⊗ fi,jfi,kg)(d−1 ⊗ fi,1) · · · ̂(d−1 ⊗ fi,j) · · · ̂(d−1 ⊗ fi,k) · · · (d−1 ⊗ fi,n)vϕ

− 3

s
∑

i=r+1

ai(d−1 ⊗ fi,1g)(d−1 ⊗ fi,2) · · · (d−1 ⊗ fi,n−1)vϕ mod (Un−2
−n+1vϕ)

≡ −2
r
∑

i=1

ai

n
∑

j=1

ϕ(d0 ⊗ fi,jg)(d−1 ⊗ fi,1) · · · ̂(d−1 ⊗ fi,j) · · · (d−1 ⊗ fi,n)vϕ

+

m
∑

i=1

γi(d−1 ⊗ qi,1g)(d−1 ⊗ qi,2) · · · (d−1 ⊗ qi,n−1)vϕ mod (Un−2
−n+1vϕ),

for some γ1, . . . , γm ∈ C and pairwise distinct (qi,1, . . . , qi,n−1) ∈ (BA)
n−1, i = 1, . . . , m. By

the induction hypothesis, we actually have equality:

(6.3) 0 = −2

r
∑

i=1

ai

n
∑

j=1

ϕ(d0 ⊗ fi,jg)(d−1 ⊗ fi,1) · · · ̂(d−1 ⊗ fi,j) · · · (d−1 ⊗ fi,n)vϕ

+
m
∑

i=1

γi(d−1 ⊗ qi,1g)(d−1 ⊗ qi,2) · · · (d−1 ⊗ qi,n−1)vϕ.

We claim that, in fact, the γi are all zero. (We thank D. Daigle for the following proof
of this fact.) Let M1, . . . ,Mp be the distinct elements of the set {(d−1 ⊗ qi,2) · · · (d−1 ⊗
qi,n−1) | 1 ≤ i ≤ m}. Consider the partition {E1, . . . , Ep} of {1, . . . , m} obtained by setting
Et = {i | (d−1 ⊗ qi,2) · · · (d−1 ⊗ qi,n−1) =Mt} for t = 1, . . . , p. Then

m
∑

i=1

γi(d−1 ⊗ qi,1g)(d−1 ⊗ qi,2) · · · (d−1 ⊗ qi,n−1)vϕ

=

p
∑

t=1

∑

i∈Et

γi(d−1 ⊗ qi,1g)(d−1 ⊗ qi,2) · · · (d−1 ⊗ qi,n−1)vϕ

=

p
∑

t=1

∑

i∈Et

γi(d−1 ⊗ qi,1g)Mtvϕ

=

p
∑

t=1

(

∑

i∈Et

γi(d−1 ⊗ qi,1g)

)

Mtvϕ

=

p
∑

t=1

(d−1 ⊗ βtg)Mtvϕ,

where βt =
∑

i∈Et
γiqi,1 in A.
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Now let Φ : A → Crn be the linear map that sends g ∈ A to the r × n matrix (ϕ(d0 ⊗
fi,jg))1≤i≤r,1≤j≤n. Then W := ker Φ is a subspace of A with the property that A/W is finite-
dimensional. For each g ∈ W , we have

∑m

i=1 γi(d−1⊗qi,1g)(d−1⊗qi,2) · · · (d−1⊗qi,n−1)vϕ = 0
by (6.3), so

p
∑

t=1

(d−1 ⊗ βtg)Mtvϕ = 0, for all g ∈ W.

Since
∑p

t=1(d−1 ⊗ βtg)Mt ∈ Un−1
−n+1, it follows from the inductive hypothesis that

p
∑

t=1

(d−1 ⊗ βtg)Mt = 0, for all g ∈ W.

Now, if we view U(d−1⊗A) as the polynomial algebra C[d−1⊗BA], then eachMt is a monomial
of degree n − 2 and each d−1 ⊗ βtg is a polynomial of degree one. Thus, by Lemma 6.1,
{d−1 ⊗ β1g, . . . , d−1 ⊗ βpg | g ∈ W} is a finite-dimensional subspace of (d−1 ⊗ A)p. Hence
{(β1g, . . . , βpg) | g ∈ W} is a finite-dimensional subspace of Ap. Let t ∈ {1, . . . , p}. Then
{βtg | g ∈ W} is a finite-dimensional subspace of A. Since A/W is finite-dimensional, it
follows that the principal ideal βtA of A is finite-dimensional. Since A is an integral domain,
this implies that βt = 0. Since the (qi,1, . . . , qi,n−1) ∈ (BA)

n−1, i = 1, . . . , m, are pairwise
distinct, the map i 7→ qi,1, from Et to BA, is injective. Consequently, the family (qi,1)i∈Et

is linearly independent. Since
∑

i∈Et
γiqi,1 = 0, it follows that γi = 0 for all i ∈ Et. Thus

γi = 0 for all i = 1, . . . , m as claimed.
It now follows from (6.3) that

0 = −2
r
∑

i=1

ai

n
∑

j=1

ϕ(d0 ⊗ fi,jg)(d−1 ⊗ fi,1) · · · ̂(d−1 ⊗ fi,j) · · · (d−1 ⊗ fi,n)vϕ.

The coefficient of (d−1⊗f1,1) · · · (d−1⊗f1,n−1)vϕ in the above expression, which must therefore
be equal to zero, is

−2
∑

i∈I

kiaiϕ(d0 ⊗ fi,ng) = ϕ

(

d0 ⊗ g

(

−2
∑

i∈I

kiaifi,n

))

,

where I = {i | 1 ≤ i ≤ r, (fi,1, . . . , fi,n−1) = (f1,1, . . . , f1,n−1)}, k1 is the number of q such
that f1,n = f1,q, and ki = 1 for i 6= 1. Note that fi,n 6= fj,n for i, j ∈ I, i 6= j. Thus
F :=

∑

i∈I kiaifi,n 6= 0. It follows that ϕ(d0 ⊗ J) = 0, where J is the nontrivial ideal of A
generated by F . This contradiction completes the proof. �

Remark 6.3. The condition that A is infinite-dimensional cannot be removed from the
reverse implication in Theorem 6.2. Indeed, consider the case A = C, so that V = Vir. If
Theorem 6.2 were true more generally, it would assert that M(ϕ) is reducible if and only
ϕ(d0) = 0. However, this is not true. For example, when ϕ(c) = 1, M(ϕ) is reducible if and
only if ϕ(d0) = m2/4 for some m ∈ Z (see [KR87, Proposition 8.3]).

References

[AM69] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley Publish-
ing Co., Reading, Mass.-London-Don Mills, Ont., 1969.



QUASIFINITE MODULES OVER MAP VIRASORO ALGEBRAS 21
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