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EXTENSION OF EULER LAGRANGE IDENTITY BY

SUPERQUADRATIC POWER FUNCTIONS

S. ABRAMOVICH, S. IVELIĆ, AND J. PEČARIĆ

Abstract. Using convexity and superquadracity we extend in this paper Eu-
ler Lagrange identity, Bohr’s inequalitiy and the triangle inequality.

1. Generalization of the triangle inequality via convexity

In [3] Theorem 1.1 inequalities related to the Euler Lagrange identity are proved
on Banach space. Using the convexity of xp p ≥ 1, x ≥ 0 we prove in this section
a generalization of this theorem for complex numbers, for which Bohr’s inequality
is a special case. This gives us the tools to achieve the main result of Section 2.
There we extend the result to the superquadratic functions xp p ≥ 2, x ≥ 0 and
obtain the Euler Lagrange identity as a special case.

Theorem 1. Let x, y, a, b be complex numbers and let µ, ν, λ ∈ R\0 then

|x|
p

µ
+

|y|
p

ν
≥

|ax+ by|
p

λ

holds if

(i) µ > 0, ν > 0, λ > 0 and

|λ|
1/(p−1)

≥ |µ|
1/(p−1)

|a|
q
+ |ν|

1/(p−1)
|b|

q
,

(ii) µ < 0, ν > 0, λ < 0 and

|λ|
1/(p−1)

≤ |µ|
1/(p−1)

|a|
q
− |ν|

1/(p−1)
|b|

q
,

(iii) µ > 0, ν < 0, λ < 0 and

|λ|
1/(p−1)

≤ − |µ|
1/(p−1)

|a|
q
+ |ν|

1/(p−1)
|b|

q
,

where p > 1 and 1
p + 1

q = 1.

Comment: Bohr’s inequality

sxp + typ ≥
1

(s− 1) sp−2
((s− 1)x+ y)

p
≥

1

2p−2
((s− 1)x+ y)

p
,

when 1 < s ≤ 2, 1
s + 1

t = 1, p > 1 is a special case of Theorem 1 for a = s − 1,

b = 1, µ = 1
s , ν = 1

t , λ = (s− 1) sp−2 (see also [2]).
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We first prove a theorem similar Theorem 1.1 in [3] but by dealing with a general
integer n instead of n = 2. Our proof is completely different than the proof in [3].
It relies on the convexity of f (x) = xp, p > 1, x ≥ 0.

Theorem 2. Let xi, ai, i = 1, ..., n be complex numbers and p > 1, 1
q + 1

p = 1.

Case (i): If µi > 0, i = 1, ..., n, λ > 0, then

(1.1)

n
∑

i=1

|xi|
p

µi

≥
|
∑

aixi|
p

λ

where

(1.2) |λ|
1

p−1 ≥

n
∑

i=1

|µi|
1

p−1 |ai|
q
.

Case (ii): If µ1 > 0, µi < 0, i = 2, ..., n, λ > 0, then

(1.3)

n
∑

i=1

|xi|
p

µi

≤
|
∑

aixi|
p

λ

where

(1.4) |λ|
1

p−1 ≤ |µ1|
1

p−1 |a1|
q
−

n
∑

i=2

|µi|
1

p−1 |ai|
q
.

Case (iii): If µ1 < 0, µi > 0, i = 2, ..., n, λ < 0, then

n
∑

i=1

|xi|
p

µi

≥
|
∑

aixi|
p

λ

where λ satisfies (1.4)

Proof. Case (i): It is obvious that it is enough to prove this case of the theorem for
ai, xi ≥ 0, i = 1, ..., n and show that here

(1.5)

n
∑

i=1

x
p
i

µi

≥

∑

aix
p
i

λ

holds if

(1.6) λ
1

p−1 ≥
n
∑

i=1

µ
1

p−1

i a
q
i .

Let us consider first a more general inequality than (1.5) where instead of the
function f(x) = xp, p > 1, x ≥ 0, we deal with a positive strictly increasing convex
function f on (0,∞) which satisfies f−1 (AB) ≥ f−1 (A) f−1 (B) , A, B > 0. In this
case we write

(1.7)

n
∑

i=1

f(xi)

µi

=

n
∑

i=1

Qif

(

f−1

(

f (xi)

µiQi

))

,
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and then by the convexity of f we get
n
∑

i=1

Qif

(

f−1

(

f (xi)

µiQi

))

(1.8)

≥





n
∑

j=1

Qj



 f





∑n
i=1 Qif

−1
(

f(xi)
µiQi

)

∑n
j=1 Qj



 .

As f−1 (AB) ≥ f−1 (A) f−1 (B) and f is increasing we get that




n
∑

j=1

Qj



 f





∑n
i=1 Qif

−1
(

f(xi)
µiQi

)

∑n
j=1 Qj



(1.9)

≥





n
∑

j=1

Qj



 f





∑n
i=1 xiQif

−1
(

1
µiQi

)

∑n
j=1 Qj



 .

Therefore, from (1.7), (1.8) and (1.9) it is enough to solve the equality




n
∑

j=1

Qj



 f





∑n
i=1 xiQif

−1
(

1
µiQi

)

∑n
j=1 Qj



 =
f (
∑n

i=1 aixi)

λ
,

in other words to solve

(1.10)
Qif

−1
(

1
µiQi

)

∑n
j=1 Qj

= ai, i = 1, ..., n

and then insert

(1.11) λ =





n
∑

j=1

Qj





−1

in order for λ to satisfy for given µi > 0 and ai ≥ 0, i = 1, ..., n the inequality

(1.12)

n
∑

i=1

f (xi)

µi

≥
f (
∑n

i=1 aixi)

λ
.

Replacing λ by

(1.13) λ > λ =





n
∑

j=1

Qj





−1

inequality (1.12) holds too.
Now we return to deal with our function f (x) = xp, p > 1, x ≥ 0. This is

a nonnegative increasing convex function for x ≥ 0 and it satisfies f−1 (AB) =
f−1 (A) f−1 (B) for A,B > 0.

Returning to the proof of (1.5) under the condition (1.6) we obtain from (1.10)
that

(1.14) Qi (µiQi)
−

1

p





n
∑

j=1

Qj





−1

= ai, i = 1, ..., n.
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Solving (1.14) we get that

(1.15) Qi =
µ

1

p−1

i a
q
i

(

∑n
j=1 µ

1

p−1

j a
q
j

)p , i = 1, ..., n,

and from (1.11) that

(1.16) λ =

(

n
∑

i=1

Qi

)

−1

=

(

n
∑

i=1

µ
1

p−1

i a
q
i

)p−1

.

Hence from (1.13), (1.5) and (1.6) are proved when ai, xi ≥ 0, i = 1, ..., n and
therefore (1.1) and (1.2) are proved for the complex numbers xi, ai, i = 1, ...n.

Case (ii): If µ1 > 0, µi < 0, i = 2, ..., n and λ > 0 we rewrite (1.3) as

(1.17)
|
∑n

i=2 aixi|
p

|λ|
+

n
∑

i=1

|xi|
p

|µi|
≥

|x1|
p

|µ1|
.

Let us make the substitutions

|µi| = νi, i = 2, ..., n, |µi| = Λ, |λ| = ν,

z1 =

n
∑

i=1

aixi, zi = xi, i = 2, ..., n,

and

x1 =
1

a1
z1 +

n
∑

i=2

(

−ai

a1

)

zi =

n
∑

i=1

Cizi.

Inequality (1.17) becomes

n
∑

i=1

|zi|
p

νi
≥

|
∑n

i=1 Cizi|
p

Λ
.

Therefore from Case (i) we get that

Λ
1

p−1 ≥

n
∑

i=1

ν
1

p−1

i |Ci|
q
.

In other words (1.3) holds when

|µ1|
1

p−1 ≥
|λ|

1

p−1

|a1|
q +

n
∑

i=2

|µi|
1

p−1

∣

∣

∣

∣

ai

a1

∣

∣

∣

∣

q

,

which is the same as (1.4).
The proof of Case (iii) follows immediately from Case (ii).
This completes the proof of the theorem. �

Corollary 1. For n = 2 we get Theorem 1 which is Theorem 1.1 in [3] for complex
numbers xi, ai, i = 1, ...n.
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2. Extension of Euler Lagrange type identity

Now we extend the Euler Lagrange type inequalities by introducing the set of
superquadratic functions and its basic properties. Euler Lagrange identity is a
special case of this extension.

A function f :[0, b) → R is superquadratic provided that for all x ∈ [0, b) there
exists a constant Cf (x) ∈ R such that the inequality

(2.1) f(y) ≥ f(x) + Cf (x)(y − x) + f(|y − x)| ,

holds for all y ∈ [0, b), ([1, Definition 2.1]). The function f : [0, b) → R is sub-
quadratic if −f is supequadratic.

According to [1, Theorem 2.2] the inequality

f

(∫

h(s)dµ(s)

)

(2.2)

≤

∫

f(h(s))− f

(∣

∣

∣

∣

h(s)−

∫

h(s)dµ(s)

∣

∣

∣

∣

)

dµ(s)

holds for all probability measures µ and all nonnegative µ-integrable h, if and only
if f is superquadratic.

The discrete version of (2.2) is

(2.3) f

(

n
∑

i=1

αixi

)

≤

n
∑

i=1

αi



f (xi)− f





∣

∣

∣

∣

∣

∣

xi −

n
∑

j=1

αjxj

∣

∣

∣

∣

∣

∣







 ,

xi ∈ [0, b), αi ≥ 0, 1 = i, ..., n,
∑n

i=1 αi = 1.
The power functions f (x) = xp, x ≥ 0, are convex and superquadratic for p ≥ 2,

and convex and subquadratic for 1 ≤ p ≤ 2. Inequalities (2.1), (2.2) and (2.3)
reduce to inequalities for the function f (x) = x2.

Now we use (2.3) in order to get the Euler Lagrange type inequality.

Theorem 3. Let xi ≥ 0, ai ≥ 0, µi > 0, i = 1, ..., n, p ≥ 2, 1
p + 1

q = 1. Then

(2.4)
n
∑

i=1

x
p
i

µi

≥
(
∑

aixi)
p

(

∑n
j=1 µ

1

p−1

j a
q
j

)p−1

+

∑n
i=1 µ

1

p−1

i a
q
i

(

∑n
j=1 µ

1

p−1

j a
q
j

)p





∣

∣

∣

∣

∣

∣

(

1

aiµi

)
1

p−1





n
∑

j=1

µ
1

p−1

j a
q
j



 xi −

n
∑

j=1

ajxj

∣

∣

∣

∣

∣

∣





p

.

If 1 < p ≤ 2 the inverse of (2.4) holds.

Proof. In Theorem 2 we showed that for xi ≥ 0, ai ≥ 0, µi > 0, i = 1, ..., n.
inequalities (1.5) and (1.6) hold. There

(2.5)

n
∑

i=1

Qi (Ai)
p
=

n
∑

i=1

|xi|
p

µi
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where

(2.6) Qi =
µ

1

p−1

i a
q
i

(

∑n
j=1 µ

1

p−1

j a
q
j

)p , i = 1, ..., n,

(2.7) Ai =
1

(aiµi)
1

p−1





n
∑

j=1

µ
1

p−1

j a
q
j



 xi, i = 1, , ..., n

and

(2.8)

∑n
i=1 QiAi
∑n

j=1 Qj
=

n
∑

i=1

aixi.

Therefore, as f (x) = xp, p ≥ 2, x ≥ 0 is superquadratic, (2.3) becomes by inserting
(2.6)-(2.8)

n
∑

i=1

Qi (Ai)
p

(2.9)

=

∑n
i=1 µ

1

p−1

i a
q
i

(

(

1
aiµi

)
1

p−1

(

∑n
j=1 µ

1

p−1

j a
q
j

)

xi

)p

(

∑n
j=1 µ

1

p−1

j a
q
j

)p

≥
(
∑n

i=1 aixi)
p

(

∑n
j=1 µ

1

p−1

j a
q
j

)p−1

+

∑n
i=1 µ

1

p−1

i a
q
i

(

∑n
j=1 µ

1

p−1

j a
q
j

)p





∣

∣

∣

∣

∣

∣

(

1

aiµi

)
1

p−1





n
∑

j=1

µ
1

p−1

j a
q
j



xi −

n
∑

i=1

ajxj

∣

∣

∣

∣

∣

∣





p

.

Hence from (2.5) and (2.9) we get that (2.4) holds.
If 1 < p ≤ 2 then f (x) = xp, x ≥ 0 is a subquadratic function, therefore the

reverse of (2.4) holds. �

Corollary 2. In case n=2 we get that

xp

µ
+

yp

ν
≥

(ax+ by)
p

(

µ
1

p−1 aq + ν
1

p−1 bq
)p−1(2.10)

+µ
1

p−1 aq

(∣

∣

∣

∣

∣

(

1

aµ

)
1

p−1

x−
ax+ by

µ
1

p−1 aq + ν
1

p−1 bq

∣

∣

∣

∣

∣

)p

+ν
1

p−1 bq

(∣

∣

∣

∣

∣

(

1

νb

)
1

p−1

y −
ax+ by

µ
1

p−1 aq + ν
1

p−1 bq

∣

∣

∣

∣

∣

)p

In particular if f(x) = x2, n = 2 as Inequality (2.4) reduces to equality we get from
(2.10) that

x2

µ
+

y2

ν
=

(ax+ by)
2

µa2 + νb2
+

(νbx− aµy)
2

µν (µa2 + νb2)
,
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which is Euler Lagrange type identity.

Corollary 3. From Theorem 3 as f (x) = xp, 1 < p ≤ 2 is both subquadratic and
convex, we get that

0 ≤

n
∑

i=1

x
p
i

µi

−
(
∑

aixi)
p

(

∑n
i=1 µ

1

p−1

i a
q
i

)p−1

≤

∑n
i=1 µ

1

p−1

i a
q
i

(

∑n
j=1 µ

1

p−1

j a
q
j

)p





∣

∣

∣

∣

∣

∣

(

1

aiµi

)
1

p−1





n
∑

j=1

µ
1

p−1

j a
q
j



xi −

n
∑

j=1

ajxj

∣

∣

∣

∣

∣

∣





p

.
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