# EXTENSION OF EULER LAGRANGE IDENTITY BY SUPERQUADRATIC POWER FUNCTIONS 

S. ABRAMOVICH, S. IVELIĆ, AND J. PEČARIĆ


#### Abstract

Using convexity and superquadracity we extend in this paper Euler Lagrange identity, Bohr's inequalitiy and the triangle inequality.


## 1. Generalization of the triangle inequality via convexity

In [3] Theorem 1.1 inequalities related to the Euler Lagrange identity are proved on Banach space. Using the convexity of $x^{p} p \geq 1, x \geq 0$ we prove in this section a generalization of this theorem for complex numbers, for which Bohr's inequality is a special case. This gives us the tools to achieve the main result of Section 2. There we extend the result to the superquadratic functions $x^{p} p \geq 2, x \geq 0$ and obtain the Euler Lagrange identity as a special case.

Theorem 1. Let $x, y, a, b$ be complex numbers and let $\mu, \nu, \lambda \in \mathbb{R} \backslash 0$ then

$$
\frac{|x|^{p}}{\mu}+\frac{|y|^{p}}{\nu} \geq \frac{|a x+b y|^{p}}{\lambda}
$$

holds if
(i) $\mu>0, \nu>0, \lambda>0$ and

$$
|\lambda|^{1 /(p-1)} \geq|\mu|^{1 /(p-1)}|a|^{q}+|\nu|^{1 /(p-1)}|b|^{q}
$$

(ii) $\mu<0, \nu>0, \lambda<0$ and

$$
|\lambda|^{1 /(p-1)} \leq|\mu|^{1 /(p-1)}|a|^{q}-|\nu|^{1 /(p-1)}|b|^{q}
$$

(iii) $\mu>0, \nu<0, \lambda<0$ and

$$
|\lambda|^{1 /(p-1)} \leq-|\mu|^{1 /(p-1)}|a|^{q}+|\nu|^{1 /(p-1)}|b|^{q}
$$

where $p>1$ and $\frac{1}{p}+\frac{1}{q}=1$.
Comment: Bohr's inequality

$$
s x^{p}+t y^{p} \geq \frac{1}{(s-1) s^{p-2}}((s-1) x+y)^{p} \geq \frac{1}{2^{p-2}}((s-1) x+y)^{p}
$$

when $1<s \leq 2, \frac{1}{s}+\frac{1}{t}=1, p>1$ is a special case of Theorem 1 for $a=s-1$, $b=1, \mu=\frac{1}{s}, \nu=\frac{1}{t}, \lambda=(s-1) s^{p-2}$ (see also [2]).

[^0]We first prove a theorem similar Theorem 1.1 in [3] but by dealing with a general integer $n$ instead of $n=2$. Our proof is completely different than the proof in 3. It relies on the convexity of $f(x)=x^{p}, p>1, x \geq 0$.

Theorem 2. Let $x_{i}, a_{i}, i=1, \ldots, n$ be complex numbers and $p>1, \frac{1}{q}+\frac{1}{p}=1$. Case (i): If $\mu_{i}>0, i=1, \ldots, n, \lambda>0$, then

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\left|x_{i}\right|^{p}}{\mu_{i}} \geq \frac{\left|\sum a_{i} x_{i}\right|^{p}}{\lambda} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
|\lambda|^{\frac{1}{p-1}} \geq \sum_{i=1}^{n}\left|\mu_{i}\right|^{\frac{1}{p-1}}\left|a_{i}\right|^{q} \tag{1.2}
\end{equation*}
$$

Case (ii): If $\mu_{1}>0, \mu_{i}<0, i=2, \ldots, n, \lambda>0$, then

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\left|x_{i}\right|^{p}}{\mu_{i}} \leq \frac{\left|\sum a_{i} x_{i}\right|^{p}}{\lambda} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
|\lambda|^{\frac{1}{p-1}} \leq\left|\mu_{1}\right|^{\frac{1}{p-1}}\left|a_{1}\right|^{q}-\sum_{i=2}^{n}\left|\mu_{i}\right|^{\frac{1}{p-1}}\left|a_{i}\right|^{q} \tag{1.4}
\end{equation*}
$$

Case (iii): If $\mu_{1}<0, \mu_{i}>0, i=2, \ldots, n, \lambda<0$, then

$$
\sum_{i=1}^{n} \frac{\left|x_{i}\right|^{p}}{\mu_{i}} \geq \frac{\left|\sum a_{i} x_{i}\right|^{p}}{\lambda}
$$

where $\lambda$ satisfies (1.4)
Proof. Case (i): It is obvious that it is enough to prove this case of the theorem for $a_{i}, x_{i} \geq 0, i=1, \ldots, n$ and show that here

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{x_{i}^{p}}{\mu_{i}} \geq \frac{\sum a_{i} x_{i}^{p}}{\lambda} \tag{1.5}
\end{equation*}
$$

holds if

$$
\begin{equation*}
\lambda^{\frac{1}{p-1}} \geq \sum_{i=1}^{n} \mu_{i}^{\frac{1}{p-1}} a_{i}^{q} \tag{1.6}
\end{equation*}
$$

Let us consider first a more general inequality than (1.5) where instead of the function $f(x)=x^{p}, p>1, x \geq 0$, we deal with a positive strictly increasing convex function $f$ on $(0, \infty)$ which satisfies $f^{-1}(A B) \geq f^{-1}(A) f^{-1}(B), A, B>0$. In this case we write

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{f\left(x_{i}\right)}{\mu_{i}}=\sum_{i=1}^{n} Q_{i} f\left(f^{-1}\left(\frac{f\left(x_{i}\right)}{\mu_{i} Q_{i}}\right)\right) \tag{1.7}
\end{equation*}
$$

and then by the convexity of $f$ we get

$$
\begin{align*}
& \sum_{i=1}^{n} Q_{i} f\left(f^{-1}\left(\frac{f\left(x_{i}\right)}{\mu_{i} Q_{i}}\right)\right)  \tag{1.8}\\
\geq & \left(\sum_{j=1}^{n} Q_{j}\right) f\left(\frac{\sum_{i=1}^{n} Q_{i} f^{-1}\left(\frac{f\left(x_{i}\right)}{\mu_{i} Q_{i}}\right)}{\sum_{j=1}^{n} Q_{j}}\right) .
\end{align*}
$$

As $f^{-1}(A B) \geq f^{-1}(A) f^{-1}(B)$ and $f$ is increasing we get that

$$
\begin{align*}
& \left(\sum_{j=1}^{n} Q_{j}\right) f\left(\frac{\sum_{i=1}^{n} Q_{i} f^{-1}\left(\frac{f\left(x_{i}\right)}{\mu_{i} Q_{i}}\right)}{\sum_{j=1}^{n} Q_{j}}\right)  \tag{1.9}\\
\geq & \left(\sum_{j=1}^{n} Q_{j}\right) f\left(\frac{\sum_{i=1}^{n} x_{i} Q_{i} f^{-1}\left(\frac{1}{\mu_{i} Q_{i}}\right)}{\sum_{j=1}^{n} Q_{j}}\right) .
\end{align*}
$$

Therefore, from (1.7), (1.8) and (1.9) it is enough to solve the equality

$$
\left(\sum_{j=1}^{n} Q_{j}\right) f\left(\frac{\sum_{i=1}^{n} x_{i} Q_{i} f^{-1}\left(\frac{1}{\mu_{i} Q_{i}}\right)}{\sum_{j=1}^{n} Q_{j}}\right)=\frac{f\left(\sum_{i=1}^{n} a_{i} x_{i}\right)}{\bar{\lambda}}
$$

in other words to solve

$$
\begin{equation*}
\frac{Q_{i} f^{-1}\left(\frac{1}{\mu_{i} Q_{i}}\right)}{\sum_{j=1}^{n} Q_{j}}=a_{i}, \quad i=1, \ldots, n \tag{1.10}
\end{equation*}
$$

and then insert

$$
\begin{equation*}
\bar{\lambda}=\left(\sum_{j=1}^{n} Q_{j}\right)^{-1} \tag{1.11}
\end{equation*}
$$

in order for $\bar{\lambda}$ to satisfy for given $\mu_{i}>0$ and $a_{i} \geq 0, i=1, \ldots, n$ the inequality

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{f\left(x_{i}\right)}{\mu_{i}} \geq \frac{f\left(\sum_{i=1}^{n} a_{i} x_{i}\right)}{\bar{\lambda}} \tag{1.12}
\end{equation*}
$$

Replacing $\bar{\lambda}$ by

$$
\begin{equation*}
\lambda>\bar{\lambda}=\left(\sum_{j=1}^{n} Q_{j}\right)^{-1} \tag{1.13}
\end{equation*}
$$

inequality (1.12) holds too.
Now we return to deal with our function $f(x)=x^{p}, p>1, x \geq 0$. This is a nonnegative increasing convex function for $x \geq 0$ and it satisfies $f^{-1}(A B)=$ $f^{-1}(A) f^{-1}(B)$ for $A, B>0$.

Returning to the proof of (1.5) under the condition (1.6) we obtain from (1.10) that

$$
\begin{equation*}
Q_{i}\left(\mu_{i} Q_{i}\right)^{-\frac{1}{p}}\left(\sum_{j=1}^{n} Q_{j}\right)^{-1}=a_{i}, \quad i=1, \ldots, n \tag{1.14}
\end{equation*}
$$

Solving (1.14) we get that

$$
\begin{equation*}
Q_{i}=\frac{\mu_{i}^{\frac{1}{p-1}} a_{i}^{q}}{\left(\sum_{j=1}^{n} \mu_{j}^{\frac{1}{p-1}} a_{j}^{q}\right)^{p}}, \quad i=1, \ldots, n \tag{1.15}
\end{equation*}
$$

and from (1.11) that

$$
\begin{equation*}
\bar{\lambda}=\left(\sum_{i=1}^{n} Q_{i}\right)^{-1}=\left(\sum_{i=1}^{n} \mu_{i}^{\frac{1}{p-1}} a_{i}^{q}\right)^{p-1} \tag{1.16}
\end{equation*}
$$

Hence from (1.13), (1.5) and (1.6) are proved when $a_{i}, x_{i} \geq 0, i=1, \ldots, n$ and therefore (1.1) and (1.2) are proved for the complex numbers $x_{i}, a_{i}, i=1, \ldots n$.

Case (ii): If $\mu_{1}>0, \mu_{i}<0, i=2, \ldots, n$ and $\lambda>0$ we rewrite (1.3) as

$$
\begin{equation*}
\frac{\left|\sum_{i=2}^{n} a_{i} x_{i}\right|^{p}}{|\lambda|}+\sum_{i=1}^{n} \frac{\left|x_{i}\right|^{p}}{\left|\mu_{i}\right|} \geq \frac{\left|x_{1}\right|^{p}}{\left|\mu_{1}\right|} . \tag{1.17}
\end{equation*}
$$

Let us make the substitutions

$$
\begin{aligned}
\left|\mu_{i}\right| & =\nu_{i}, \quad i=2, \ldots, n, \quad\left|\mu_{i}\right|=\Lambda, \quad|\lambda|=\nu \\
z_{1} & =\sum_{i=1}^{n} a_{i} x_{i}, \quad z_{i}=x_{i}, \quad i=2, \ldots, n
\end{aligned}
$$

and

$$
x_{1}=\frac{1}{a_{1}} z_{1}+\sum_{i=2}^{n}\left(\frac{-a_{i}}{a_{1}}\right) z_{i}=\sum_{i=1}^{n} C_{i} z_{i} .
$$

Inequality (1.17) becomes

$$
\sum_{i=1}^{n} \frac{\left|z_{i}\right|^{p}}{\nu_{i}} \geq \frac{\left|\sum_{i=1}^{n} C_{i} z_{i}\right|^{p}}{\Lambda}
$$

Therefore from Case (i) we get that

$$
\Lambda^{\frac{1}{p-1}} \geq \sum_{i=1}^{n} \nu_{i}^{\frac{1}{p-1}}\left|C_{i}\right|^{q}
$$

In other words (1.3) holds when

$$
\left|\mu_{1}\right|^{\frac{1}{p-1}} \geq \frac{|\lambda|^{\frac{1}{p-1}}}{\left|a_{1}\right|^{q}}+\sum_{i=2}^{n}\left|\mu_{i}\right|^{\frac{1}{p-1}}\left|\frac{a_{i}}{a_{1}}\right|^{q}
$$

which is the same as (1.4).
The proof of Case (iii) follows immediately from Case (ii).
This completes the proof of the theorem.
Corollary 1. For $n=2$ we get Theorem 1 which is Theorem 1.1 in [3] for complex numbers $x_{i}, a_{i}, i=1, \ldots n$.

## 2. Extension of Euler Lagrange type identity

Now we extend the Euler Lagrange type inequalities by introducing the set of superquadratic functions and its basic properties. Euler Lagrange identity is a special case of this extension.

A function $f:[0, b) \rightarrow \mathbb{R}$ is superquadratic provided that for all $x \in[0, b)$ there exists a constant $C_{f}(x) \in \mathbb{R}$ such that the inequality

$$
\begin{equation*}
f(y) \geq f(x)+C_{f}(x)(y-x)+f(\mid y-x) \mid \tag{2.1}
\end{equation*}
$$

holds for all $y \in[0, b)$, ( 1 , Definition 2.1]). The function $f:[0, b) \rightarrow \mathbb{R}$ is subquadratic if $-f$ is supequadratic.

According to [1, Theorem 2.2] the inequality

$$
\begin{align*}
& f\left(\int h(s) d \mu(s)\right)  \tag{2.2}\\
\leq & \int f(h(s))-f\left(\left|h(s)-\int h(s) d \mu(s)\right|\right) d \mu(s)
\end{align*}
$$

holds for all probability measures $\mu$ and all nonnegative $\mu$-integrable $h$, if and only if $f$ is superquadratic.

The discrete version of (2.2) is

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) \leq \sum_{i=1}^{n} \alpha_{i}\left(f\left(x_{i}\right)-f\left(\left|x_{i}-\sum_{j=1}^{n} \alpha_{j} x_{j}\right|\right)\right) \tag{2.3}
\end{equation*}
$$

$x_{i} \in[0, b), \quad \alpha_{i} \geq 0, \quad 1=i, \ldots, n, \quad \sum_{i=1}^{n} \alpha_{i}=1$.
The power functions $f(x)=x^{p}, x \geq 0$, are convex and superquadratic for $p \geq 2$, and convex and subquadratic for $1 \leq p \leq 2$. Inequalities (2.1), (2.2) and (2.3) reduce to inequalities for the function $f(x)=x^{2}$.

Now we use (2.3) in order to get the Euler Lagrange type inequality.

Theorem 3. Let $x_{i} \geq 0, a_{i} \geq 0, \mu_{i}>0, i=1, \ldots, n, p \geq 2, \frac{1}{p}+\frac{1}{q}=1$. Then

$$
\begin{align*}
\sum_{i=1}^{n} \frac{x_{i}^{p}}{\mu_{i}} \geq & \frac{\left(\sum a_{i} x_{i}\right)^{p}}{\left(\sum_{j=1}^{n} \mu_{j}^{\frac{1}{p-1}} a_{j}^{q}\right)^{p-1}}  \tag{2.4}\\
& +\frac{\sum_{i=1}^{n} \mu_{i}^{\frac{1}{p-1}} a_{i}^{q}}{\left(\sum_{j=1}^{n} \mu_{j}^{\frac{1}{p-1}} a_{j}^{q}\right)^{p}}\left(\left|\left(\frac{1}{a_{i} \mu_{i}}\right)^{\frac{1}{p-1}}\left(\sum_{j=1}^{n} \mu_{j}^{\frac{1}{p-1}} a_{j}^{q}\right) x_{i}-\sum_{j=1}^{n} a_{j} x_{j}\right|\right)^{p}
\end{align*}
$$

If $1<p \leq 2$ the inverse of (2.4) holds.
Proof. In Theorem 2 we showed that for $x_{i} \geq 0, a_{i} \geq 0, \mu_{i}>0, i=1, \ldots, n$. inequalities (1.5) and (1.6) hold. There

$$
\begin{equation*}
\sum_{i=1}^{n} Q_{i}\left(A_{i}\right)^{p}=\sum_{i=1}^{n} \frac{\left|x_{i}\right|^{p}}{\mu_{i}} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{gather*}
Q_{i}=\frac{\mu_{i}^{\frac{1}{p-1}} a_{i}^{q}}{\left(\sum_{j=1}^{n} \mu_{j}^{\frac{1}{p-1}} a_{j}^{q}\right)^{p}}, \quad i=1, \ldots, n,  \tag{2.6}\\
A_{i}=\frac{1}{\left(a_{i} \mu_{i}\right)^{\frac{1}{p-1}}}\left(\sum_{j=1}^{n} \mu_{j}^{\frac{1}{p-1}} a_{j}^{q}\right) x_{i}, \quad i=1,, \ldots, n \tag{2.7}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} Q_{i} A_{i}}{\sum_{j=1}^{n} Q_{j}}=\sum_{i=1}^{n} a_{i} x_{i} \tag{2.8}
\end{equation*}
$$

Therefore, as $f(x)=x^{p}, p \geq 2, x \geq 0$ is superquadratic, (2.3) becomes by inserting (2.6)-(2.8)

$$
\begin{align*}
& \sum_{i=1}^{n} Q_{i}\left(A_{i}\right)^{p}  \tag{2.9}\\
= & \frac{\sum_{i=1}^{n} \mu_{i}^{\frac{1}{p-1}} a_{i}^{q}\left(\left(\frac{1}{a_{i} \mu_{i}}\right)^{\frac{1}{p-1}}\left(\sum_{j=1}^{n} \mu_{j}^{\frac{1}{p-1}} a_{j}^{q}\right) x_{i}\right)^{p}}{\left(\sum_{j=1}^{n} \mu_{j}^{\frac{1}{p-1}} a_{j}^{q}\right)^{p}} \\
\geq & \frac{\left(\sum_{i=1}^{n} a_{i} x_{i}\right)^{p}}{\left(\sum_{j=1}^{n} \mu_{j}^{\frac{1}{p-1}} a_{j}^{q}\right)^{p-1}} \\
& +\frac{\sum_{i=1}^{n} \mu_{i}^{\frac{1}{p-1}} a_{i}^{q}}{\left(\sum_{j=1}^{n} \mu_{j}^{\frac{1}{p-1}} a_{j}^{q}\right)^{p}}\left(\left|\left(\frac{1}{a_{i} \mu_{i}}\right)^{\frac{1}{p-1}}\left(\sum_{j=1}^{n} \mu_{j}^{\frac{1}{p-1}} a_{j}^{q}\right) x_{i}-\sum_{i=1}^{n} a_{j} x_{j}\right|\right)^{p} .
\end{align*}
$$

Hence from (2.5) and (2.9) we get that (2.4) holds.
If $1<p \leq 2$ then $f(x)=x^{p}, x \geq 0$ is a subquadratic function, therefore the reverse of (2.4) holds.

Corollary 2. In case $n=2$ we get that

$$
\begin{align*}
\frac{x^{p}}{\mu}+\frac{y^{p}}{\nu} \geq & \frac{(a x+b y)^{p}}{\left(\mu^{\frac{1}{p-1}} a^{q}+\nu^{\frac{1}{p-1}} b^{q}\right)^{p-1}}  \tag{2.10}\\
& +\mu^{\frac{1}{p-1}} a^{q}\left(\left|\left(\frac{1}{a \mu}\right)^{\frac{1}{p-1}} x-\frac{a x+b y}{\mu^{\frac{1}{p-1}} a^{q}+\nu^{\frac{1}{p-1}} b^{q}}\right|\right)^{p} \\
& +\nu^{\frac{1}{p-1}} b^{q}\left(\left|\left(\frac{1}{\nu b}\right)^{\frac{1}{p-1}} y-\frac{a x+b y}{\mu^{\frac{1}{p-1}} a^{q}+\nu^{\frac{1}{p-1}} b^{q}}\right|\right)^{p}
\end{align*}
$$

In particular if $f(x)=x^{2}, n=2$ as Inequality (2.4) reduces to equality we get from (2.10) that

$$
\frac{x^{2}}{\mu}+\frac{y^{2}}{\nu}=\frac{(a x+b y)^{2}}{\mu a^{2}+\nu b^{2}}+\frac{(\nu b x-a \mu y)^{2}}{\mu \nu\left(\mu a^{2}+\nu b^{2}\right)}
$$

which is Euler Lagrange type identity.
Corollary 3. From Theorem 3 as $f(x)=x^{p}, 1<p \leq 2$ is both subquadratic and convex, we get that

$$
\begin{aligned}
0 \leq & \sum_{i=1}^{n} \frac{x_{i}^{p}}{\mu_{i}}-\frac{\left(\sum a_{i} x_{i}\right)^{p}}{\left(\sum_{i=1}^{n} \mu_{i}^{\frac{1}{p-1}} a_{i}^{q}\right)^{p-1}} \\
& \leq \frac{\sum_{i=1}^{n} \mu_{i}^{\frac{1}{p-1}} a_{i}^{q}}{\left(\sum_{j=1}^{n} \mu_{j}^{\frac{1}{p-1}} a_{j}^{q}\right)^{p}}\left(\left|\left(\frac{1}{a_{i} \mu_{i}}\right)^{\frac{1}{p-1}}\left(\sum_{j=1}^{n} \mu_{j}^{\frac{1}{p-1}} a_{j}^{q}\right) x_{i}-\sum_{j=1}^{n} a_{j} x_{j}\right|\right)^{p} .
\end{aligned}
$$

## References

[1] S. Abramovich, G. Jameson and G. Sinnamon, Refining Jensen's inequality, Bull. Math. Sc. Math. Roum. 47 (2004), 3-14
[2] S. Abramovich, J. Baric, and J. Pecaric, Superquadracity, Bohr's inequality and deviation from a Mean Value, Australian Journal of Mathematical Analysis and Applications, 7 (1), (2009), Article 1.
[3] Sin-Ei Takahasi, J. M. Rassias, S. Saitoh, and Y. Takahashi, Refined generalization of the triangle inequality on Banach spaces, Journal of Mathematical Inequalities and Applications, 2010.

Depertment of Mathmatich, University of Haifa, Haifa, Israel
E-mail address: abramos@math.haifa.ac.il
Faculty of civil Technpology and Architecture, University of Split, Croatia.
E-mail address: sivelic@gradst.hr
Faculty of Textile Technology, University of Zagreb, Croatia.
E-mail address: pecaric@element.hr


[^0]:    Date: May 26, 2011.
    1991 Mathematics Subject Classification. 26D15.
    Key words and phrases. Euler Lagrange Identity, Bohr's inequality, Convexity, Superquadracity.

