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Abstract

We address the estimation of conditional quantiles when the covariate is functional and

when the order of the quantiles converges to one as the sample size increases. In a first time,

we investigate to what extent these large conditional quantiles can still be estimated through

a functional kernel estimator of the conditional survival function. Sufficient conditions on the

rate of convergence of their order to one are provided to obtain asymptotically Gaussian dis-

tributed estimators. In a second time, basing on these result, a functional Weissman estimator

is derived, permitting to estimate large conditional quantiles of arbitrary large order. These

results are illustrated on finite sample situations.

Keywords: Conditional quantiles, heavy-tailed distributions, functional kernel estimator,

extreme-value theory.

AMS 2000 subject classification: 62G32, 62G30, 62E20.

1 Introduction

Let (Xi, Yi), i = 1, . . . , n be independent copies of a random pair (X,Y ) in E × R where E is an

infinite dimensional space associated to a semi-metric d. We address the problem of estimating

q(αn|x) ∈ R verifying P(Y > q(αn|x)|X = x) = αn where αn → 0 as n → ∞ and x ∈ E. In such

a case, q(αn|x) is referred to as a large conditional quantile in contrast to classical conditional

quantiles (or regression quantiles) for which αn = α is fixed in (0, 1). While the nonparametric

estimation of ordinary regression quantiles has been extensively studied (see for instance [35,

39] or [18], Chapter 5), less attention has been paid to large conditional quantiles despite their

potential interest. In climatology, large conditional quantiles may explain how climate change over

years might affect extreme temperatures. In the financial econometrics literature, they illustrate

the link between extreme hedge fund returns and some measures of risk. Parametric models
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are introduced in [10, 38] and semi-parametric methods are considered in [2, 31]. Fully non-

parametric estimators have been first introduced in [9, 6] through local polynomial and spline

models. In both cases, the authors focus on univariate covariates and on the finite sample properties

of the estimators. Nonparametric methods based on moving windows and nearest neighbors are

introduced respectively in [23, 25] and [24] in the fixed design setting. We also refer to [15],

Theorem 3.5.2, for the approximation of the nearest neighbors distribution using the Hellinger

distance and to [19] for the study of their asymptotic distribution.

An important literature is devoted to the particular case where the conditional distribution of

Y given X = x has a finite endpoint ϕ(x) and when X is a finite dimensional random variable. The

function ϕ is referred to as the frontier and can be estimated from an estimator of the conditional

quantile q(αn|x) with αn → 0. As an example, a kernel estimator of ϕ is proposed in [27], the

asymptotic normality being proved only when Y given X = x is uniformly distributed on [0, ϕ(x)].

We refer to [33] for a review on this topic.

Estimation of unconditional large quantiles is also widely studied since the introduction of

Weissman estimator [41] dedicated to heavy-tailed distributions, Weibull-tail estimators [12, 22]

dedicated to light-tailed distributions and Dekkers and de Haan estimator [11] adapted to the

general case.

In this paper, we focus on the setting where the conditional distribution of Y given X = x has

an infinite endpoint and is heavy-tailed, an analytical characterization of this property being given

in the next section. In such a case, the frontier function does not exist and q(αn|x) → ∞ as αn → 0.

Nevertheless, we show, under some conditions, that large regression quantiles q(αn|x) can still be

estimated through a functional kernel estimator of P(Y > .|x). We provide sufficient conditions on

the rate of convergence of αn to 0 so that our estimator is asymptotically Gaussian distributed.

Making use of this, some functional estimators of the conditional tail-index are introduced and a

functional Weissman estimator [41] is derived, permitting to estimate large conditional quantiles

q(βn|x) where βn → 0 arbitrarily fast.

Assumptions are introduced and discussed in Section 2. Main results are provided in Section 3

and illustrated on simulated data in Section 4. Proofs are postponed to the appendix.

2 Notations and assumptions

The conditional survival function (csf) of Y given X = x is denoted by F̄ (y|x) = P(Y > y|X = x).

The functional estimator of F̄ (y|x) is defined for all (x, y) ∈ E × R by

ˆ̄Fn(y|x) =
n
∑

i=1

K(d(x,Xi)/h)Q((Yi − y)/λ)

/

n
∑

i=1

K(d(x,Xi)/h), (1)

with Q(t) =
∫ t

−∞Q
′(s)ds where K : R+ → R

+ and Q′ : R → R
+ are two kernel functions, and

h = hn and λ = λn are two nonrandom sequences (called window-width) such that h → 0 as
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n→ ∞. Let us emphasize that the condition λ→ 0 is not required in this context. This estimator

was considered for instance in [18], page 56. In Theorem 1 hereafter, the asymptotic distribution

of (1) is established when estimating small tail probabilities, i.e when y = yn goes to infinity with

the sample size n. Similarly, the functional estimators of conditional quantiles q(α|x) are defined

via the generalized inverse of ˆ̄Fn(.|x):

q̂n(α|x) =
ˆ̄F←n (α|x) = inf{t, ˆ̄Fn(t|x) ≤ α}, (2)

for all α ∈ (0, 1). Many authors are interested in this estimator for fixed α ∈ (0, 1). Weak and

strong consistency are proved respectively in [39] and [20]. The rate of uniform strong consistency

is established by [16] in the functional setting. Asymptotic normality is shown in [3, 36, 40] when

E is finite dimensional and by [17] for a general metric space under dependence assumptions. In

Theorem 2, the asymptotic distribution of (2) is investigated when estimating large quantiles, i.e

when α = αn goes to 0 as the sample size n goes to infinity. The asymptotic behavior of such

estimators depends on the nature of the conditional distribution tail. In this paper, we focus on

heavy tails. More specifically, we assume that the csf satisfies

(A.1): F̄ (y|x) = c(x) exp

{

−

∫ y

1

(

1

γ(x)
− ε(u|x)

)

du

u

}

,

where γ is a positive function of the covariate x, c is a positive function and |ε(.|x)| is continuous and

ultimately decreasing to 0. Examples of such distributions are provided in Table 1. (A.1) implies

that the conditional distribution of Y givenX = x is in the Fréchet maximum domain of attraction.

In this context, γ(x) is referred to as the conditional tail-index since it tunes the tail heaviness of

the conditional distribution of Y given X = x. More details on extreme-value theory can be found

for instance in [14]. Assumption (A.1) also yields that F̄ (.|x) is regularly varying at infinity with

index −1/γ(x). i.e for all ζ > 0,

lim
y→∞

F̄ (ζy|x)

F̄ (y|x)
= ζ−1/γ(x). (3)

We refer to [4] for a general account on regular variation theory. The auxiliary function ε(.|x) plays

an important role in extreme-value theory since it drives the speed of convergence in (3) and more

generally the bias of extreme-value estimators. Therefore, it may be of interest to specify how it

converges to 0. In [1, 28], |ε(.|x)| is supposed to be regularly varying and the estimation of the

corresponding regular variation index is addressed.

Some Lipschitz conditions are also required:

(A.2): There exist κε, κc, κγ > 0 and u0 > 1 such that for all (x, x′) ∈ E × E and u > u0,

|log c(x)− log c(x′)| ≤ κcd(x, x
′),

|ε(u|x)− ε(u|x′)| ≤ κεd(x, x
′),

∣

∣

∣

∣

1

γ(x)
−

1

γ(x′)

∣

∣

∣

∣

≤ κγd(x, x
′).
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The last two assumptions are standard in the functional kernel estimation framework.

(A.3): K is a function with support [0, 1] and there exist 0 < C1 < C2 < ∞ such that

C1 ≤ K(t) ≤ C2 for all t ∈ [0, 1].

(A.4): Q′ is a probability density function (pdf) with support [−1, 1].

One may also assume without loss of generality that K integrates to one. In this case, K is called

a type I kernel, see [18], Definition 4.1. Letting B(x, h) be the ball of center x and radius h, we

finally introduce ϕx(h) := P(X ∈ B(x, h) the small ball probability of X . Under (A.3), the τ -th

moment µ
(τ)
x (h) := E{Kτ (d(x,X)/h) can be controlled for all τ > 0 by Lemma 3 in Appendix. It

is shown that µ
(τ)
x (h) is of the same asymptotic order as ϕx(h).

3 Main results

Let us first focus on the estimation of small tail probabilities F̄ (yn|x) when yn → ∞ as n → ∞.

Defining

Λn(x) =

(

nF̄ (yn|x)
(µ

(1)
x (h))2

µ
(2)
x (h)

)−1/2

,

the following result provides sufficient conditions for the asymptotic normality of ˆ̄Fn(yn|x).

Theorem 1 Suppose (A.1) – (A.4) hold. Let x ∈ E such that ϕx(h) > 0 and introduce yn,j =

ajyn(1 + o(1)) for j = 1, . . . , J with 0 < a1 < a2 < · · · < aJ and where J is a positive integer.

If yn → ∞ such that nϕx(h)F̄ (yn|x) → ∞ and nϕx(h)F̄ (yn|x)(λ/yn ∨ h log yn)2 → 0 as n → ∞,

then
{

Λ−1n (x)

(

ˆ̄Fn(yn,j |x)

F̄ (yn,j |x)
− 1

)}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix C(x) where Cj,j′ (x) = a
1/γ(x)
j∧j′ for

(j, j′) ∈ {1, . . . , J}2.

Note that nϕx(h)F̄ (yn|x) → ∞ is a necessary and sufficient condition for the almost sure presence

of at least one sample point in the region B(x, h) × (yn,∞) of E × R, see Lemma 4 in Appendix.

Thus, this natural condition states that one cannot estimate small tail probabilities out of the

sample using ˆ̄Fn. Besides, from Lemma 3, Λ−2n (x) is of the same asymptotic order as nϕx(h)F̄ (yn|x)

and consequently Λn(x) → 0 as n → ∞. Theorem 1 thus entails ˆ̄Fn(yn,j|x)/F̄ (yn,j|x)
P
−→ 1

which can be read as a consistency of the estimator. The second condition nϕx(h)F̄ (yn|x)(λ/yn ∨

h log yn)
2 → 0 imposes to the biases λ/yn and h log yn introduced by the two smoothings to

be neglegible compared to the standard deviation Λn(x) of the estimator. Theorem 1 may be

compared to [13] which establishes the asymptotic behavior of the empirical survival function in

the unconditional case but without assumption on the distribution. Letting

σn(x) =

(

nαn
(µ

(1)
x (h))2

µ
(2)
x (h)

)−1/2

,
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the asymptotic normality of q̂n(αn|x) when αn → 0 as n → ∞ can be established under similar

conditions.

Theorem 2 Suppose (A.1) – (A.4) hold. Let x ∈ E such that ϕx(h) > 0 and consider a sequence

τ1 > τ2 > · · · > τJ > 0 where J is a positive integer. If αn → 0 such that σn(x) → 0 and

σ−1n (x)(λ/q(αn|x) ∨ h logαn) → 0 as n→ ∞, then

{

σ−1n (x)

(

q̂n(τjαn|x)

q(τjαn|x)
− 1

)}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix γ2(x)Σ where Σj,j′ = 1/τj∧j′ for

(j, j′) ∈ {1, . . . , J}2.

Remark that (A.1) provides an asymptotic expansion of the density function of Y given X = x:

f(y|x) =
1

γ(x)

F̄ (y|x)

y
(1 − ε(y|x)) =

1

γ(x)

F̄ (y|x)

y
(1 + o(1))

as y → ∞. Consequently, Theorem 2 entails that the random vector

{

µ
(1)
x (h)

(µ
(2)
x (h))1/2

(nτjαn(1− τjαn))
−1/2f(q(τjαn|x)|x) (q̂n(τjαn|x)− q(τjαn|x))

}

j=1,...,J

is also asymptotically Gaussian and centered. This result coincides with [3], Theorem 6.4 estab-

lished in the case where αn = α is fixed in (0, 1) and in a finite dimensional setting. The functional

estimator of large quantiles q̂n(αn|x) requires the stringent condition nϕx(h)αn → ∞, since by con-

struction it cannot extrapolate beyond the maximum observation in the ball B(x, h). To overcome

this limitation, a functional Weissman estimator [41] can be derived:

q̂W

n (βn|x) = q̂n(αn|x)(αn/βn)
γ̂n(x). (4)

Here, q̂n(αn|x) is the functional estimator (2) of the large quantile and γ̂n(x) is an estimator

of the conditional tail-index γ(x). As illustrated in the next theorem, the extrapolation factor

(αn/βn)
γ̂n(x) allows to estimate large quantiles of order βn arbitrary small.

Theorem 3 Suppose (A.1) – (A.4) hold. Let x ∈ E and introduce

• αn → 0 such that σn(x) → 0 and σ−1n (x)(λ/q(αn|x)∨h logαn∨ε(q(αn|x)|x)) → 0 as n→ ∞,

• (βn) such that βn/αn → 0 as n→ ∞,

• γ̂n(x) such that σ−1n (x)(γ̂n(x) − γ(x))
d

−→ N (0, V (x)) where V (x) > 0.

Then,
σ−1n (x)

log(αn/βn)

(

q̂W

n (βn|x)

q(βn|x)
− 1

)

d
−→ N (0, V (x)).
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Note that, when K is the pdf of the uniform distribution, this result is consistent with [25],

Theorem 3, obtained in a fixed-design setting.

Let us now focus on the estimation of the conditional tail-index. Let αn → 0 and consider a

sequence 1 = τ1 > τ2 > · · · > τJ > 0 where J is a positive integer. Two additional notations are

introduced for the sake of simplicity: u = (1, . . . , 1)t ∈ R
J and v = (log(1/τ1), . . . , log(1/τJ))

t ∈

R
J . The following family of estimators is proposed

γ̂φn(x) =
φ(log q̂n(τ1αn|x), . . . , log q̂n(τJαn|x))

φ(log(1/τ1), . . . , log(1/τJ))
, (5)

where φ : RJ → R denotes a twice differentiable function verifying the shift and location invariance

conditions






φ(θv) = θφ(v)

φ(ηu + x) = φ(x)
(6)

for all θ > 0, η ∈ R and x ∈ R
J . In the case where J = 3, τ1 = 1, τ2 = 1/2 and τ3 = 1/4, the

function

φFP(x1, x2, x3) = log

(

exp(4x2)− exp(4x1)

exp(4x3)− exp(4x2)

)

leads us to a functional version of Pickands estimator [34]:

γ̂φFP

n (x) =
1

log 2
log

(

q̂n(αn|x)− q̂n(2αn|x)

q̂n(2αn|x) − q̂n(4αn|x)

)

.

We refer to [26] for a different variant of Pickands estimator in the context where the distribution

of Y given X = x has a finite endpoint. Besides, introducing the function mp(x1, . . . , xJ ) =
∑J

j=1(xj − x1)
p for all p > 0 and considering φp(x) = m

1/p
p (x) gives rise to a functional version of

the estimator considered for instance in [37], example (a):

γ̂φp

n (x) =





J
∑

j=1

[log q̂n(τjαn|x)− log q̂n(αn|x)]
p

/

J
∑

j=1

[log(1/τj)]
p





1/p

.

As a particular case φ1(x) = m1(x) corresponds to a functional version of the Hill estimator [32]:

γ̂φ1

n (x) =

J
∑

j=1

[log q̂n(τjαn|x)− log q̂n(αn|x)]

/

J
∑

j=1

log(1/τj) .

More interestingly, if {φ(1), . . . , φ(H)} is a set of H functions satisfying (6) and if A : RH → R is a

homogeneous function of degree 1, then the aggregated function A(φ(1), . . . , φ(H)) also satisfies (6).

Generalizations of the functional Hill estimator can then be obtained using H = 2, Ap(x, y) =

xpy1−p and defining φp,q,r = Ap(φq , φr) = m
p/q
q m

(1−p)/r
r :

γ̂φp,q,r

n (x) =

(

∑J
j=1 [log q̂n(τjαn|x) − log q̂n(αn|x)]

p
)p/q (

∑J
j=1[log(1/τj)]

r
)(p−1)/r

(

∑J
j=1 [log q̂n(τjαn|x) − log q̂n(αn|x)]

r
)(p−1)/r (

∑J
j=1[log(1/τj)]

p
)p/q

.
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For instance, the estimator introduced by [29], equation (2.2) corresponds to the particular function

φp,p,1 and the estimator of [5] corresponds to φp,pθ,p−1.

For an arbitrary function φ, the asymptotic normality of γ̂φn(x) is a consequence of Theorem 2. The

following result permits to establish the asymptotic normality of the above mentioned estimators

in an unified way.

Theorem 4 Under the assumptions of Theorem 2 and if, moreover, σ−1n (x)ε(q(αn|x)|x) → 0

as n → ∞, then, σ−1n (x)(γ̂φn(x) − γ(x)) converges to a centered Gaussian random variable with

variance

Vφ(x) =
γ2(x)

φ2(v)
(∇φ(γ(x)v))tΣ(∇φ(γ(x)v)).

Let us note that the additional condition σ−1n (x)ε(q(αn|x)|x) → 0 is standard in the extreme-

value framework: Neglecting the unknown function ε(.|x) in the construction of γ̂φn(x) yields a bias

that should be negligible with respect to the standard deviation σn(x) of the estimator. Finally,

combining Theorem 3 and Theorem 4, the asymptotic distribution of the functional large quantile

estimator q̂W,φ
n (βn|x) based on (4) and (5) is readily obtained.

Corollary 1 Suppose (A.1) – (A.4) hold. Let x ∈ E such that ϕx(h) > 0 and consider a sequence

1 = τ1 > τ2 > · · · > τJ > 0 where J is a positive integer. If

• αn → 0, σn(x) → 0 and σ−1n (x)(λ/q(αn|x) ∨ h logαn ∨ ε(q(αn|x)|x)) → 0 as n→ ∞,

• βn/αn → 0 as n→ ∞,

then
σ−1n (x)

log(αn/βn)

(

q̂W,φ
n (βn|x)

q(βn|x)
− 1

)

d
−→ N (0, Vφ(x)).

As an example, in the case of the functional Hill and Pickands estimators, we obtain

Vφ1
(x) = γ2(x)





J
∑

j=1

2(J − j) + 1

τj
− J2





/





J
∑

j=1

log(1/τj)





2

.

VφFP
(x) =

γ2(x)(22γ(x)+1 + 1)

4(log 2)2(2γ(x) − 1)2
.

Clearly, VφFP
(x) is the variance of the classical Pickands estimator, see for instance [30], Theo-

rem 3.3.5.

4 Illustration on simulated data

The finite sample performance is illustrated on N = 50 replications of a sample of size n = 500

from a random pair (X,Y ), where the functional covariate X ∈ E = L2[0, 1] is defined by X(t) =

cos(2πZt) for all t ∈ [0, 1] where Z is uniformly distributed on [1/4, 1]. Some examples of simulated
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random functions X are depicted on Figure 1. Besides, the conditional distribution of Y given X

is a Burr distribution (see Table 1) with parameters τ(X) = 2 and λ(X) = 2/(8‖X‖22 − 3) with

‖X‖22 =

∫ 1

0

X2(t)dt =
1

2

(

1 +
sin(4πZ)

4πZ

)

.

We focus on the estimation of q(βn|x) with βn = log(n)/n. To this end, the functional Weissman

estimator q̂W

n (βn|x) is used with a piecewise linear kernel K(t) = (1.9 − 1.8t)I{t ∈ [0, 1]} and

the triangular kernel Q′. The conditional tail index is estimated by the functional Hill estimator

γ̂φ1

n with τj = 1/j for each j = 1, . . . , 10. The choice of the semi-metric d is a recurrent issue

in functional estimation [18], Chapter 3. Here, two semi-metrics are considered. The first one

is defined for all (s, t) ∈ E2 by dX(s, t) = ‖s − t‖2 and coincides with the L2 distance between

functions. Remarking that the conditional quantile q(αn|X) depends only on ‖X‖22, or equivalently

on Z, another interesting semi-metric is dZ(s, t) =
∣

∣‖s‖22 − ‖t‖22
∣

∣.

With such choices, the functional Weissman estimator q̂W

n (βn|x) depends on three parameters

αn, h and λ. The choice of αn is equivalent to the choice of the number of upper order statistics in

the non-conditional extreme-value theory. It is still an open question, even though some techniques

have been proposed, see for instance [7] for a bootstrap based method. Here, the “optimal” selection

of αn would consist in minimizing the Integrated Mean-Squared Error (IMSE) associated to the

estimated conditional extreme-value index γ̂φ1

n :

IMSE(αn) =
1

N

N
∑

r=1

n
∑

i=1

(

(

γ̂φ1

n

)(r)
(Xi)− γ(Xi)

)2

,

where
(

γ̂φ1

n

)(r)
is the estimator γ̂φ1

n computed on the r-th replication. The “optimal” value of αn

is given by

αopt
n = argmin

{

IMSE(αn), αn = c
logn

n
, c ∈ {5, 6, . . . , 20}

}

.

The results are presented on Figure 2 for the two semi-metrics dX and dZ . Clearly, the use of

dZ permits to reach lower IMSE than dX does. Let us highlight that αopt
n cannot be computed

in practical situations where the true function γ is unknown. Nevertheless, it will appear in the

following that the estimations are not very sensitive with respect to the choice of αn. The smoothing

parameter h is selected using the cross-validation approach introduced in [42] and implemented for

instance in [8, 21]:

hopt = argmin







n
∑

i=1

n
∑

j=1

(

I{Yi ≥ Yj} −
ˆ̄Fn,−i(Yj |Xi)

)2

, h ∈ H







where ˆ̄Fn,−i is the estimator (depending on h) given in (1) computed from the sample {(Xℓ, Yℓ), 1 ≤

ℓ ≤ n, ℓ 6= i}. Here, H is a regular grid, H = {h1 ≤ h2 ≤ · · · ≤ hM} with h1 = 1/100, hM = 1/10

and M = 20. In our experiments, the choice of the bandwidth λ appeared to be less crucial than
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the other smoothing parameter h. It could have been selected with the same criteria as previously,

but for simplicity reasons, it has been fixed to λ = 0.1.

In Figure 3, the estimator q̂W

n (βn|x) is represented as a function of Z. The estimator has been

computed for two values of αn (the ”optimal” value αopt
n and an arbitrary value αarb

n = 15 log(n)/n)

and for the two semi-metrics dX and dZ . We have only represented the estimator computed on

the replication that gives rise to the median of the L2-errors ∆
(r)
d , r = 1, . . . , N with

∆
(r)
d =

n
∑

i=1

(

(q̂W

n (βn|Xi))
(r) − q(βn|Xi)

)2

,

and where d can be either dX or dZ . It appears that the choice of the sequence αn is not crucial

i.e. the results obtained with αopt
n are not visually better than these obtained with αarb

n . The

choice of the semi-metric seems to be a more challenging issue.

5 Appendix: Proofs

5.1 Preliminary results

The following two lemmas are of analytical nature. The first one is dedicated to the control of the

local variations of the csf when the quantity of interest y goes to infinity.

Lemma 1 Let x ∈ E and suppose (A.1) and (A.2) hold.

(i) If yn → ∞ and h log yn → 0 as n→ ∞, then, for n large enough,

sup
x′∈B(x,h)

∣

∣

∣

∣

F̄ (yn|x)

F̄ (yn|x′)
− 1

∣

∣

∣

∣

≤ 2(κc + κγ + κε)h log yn.

(ii) If yn → ∞ and y′n → ∞ as n→ ∞, then, for n large enough,

sup
x′∈B(x,h)

∣

∣

∣

∣

F̄ (y′n|x
′)

F̄ (yn|x′)
− 1

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

(

yn
y′n

)2/γ(x)

− 1

∣

∣

∣

∣

∣

.

Proof. (i) Assumption (A.1) yields, for all x′ ∈ B(x, h):

∣

∣

∣

∣

log

(

F̄ (yn|x)

F̄ (yn|x′)

)∣

∣

∣

∣

≤ |log c(x)− log c(x′)|+

∫ yn

1

(∣

∣

∣

∣

1

γ(x)
−

1

γ(x′)

∣

∣

∣

∣

+ |ε(u|x)− ε(u|x′)|

)

du

u

≤ κch+

∫ yn

1

(κγ + κε)h
du

u

≤ (κc + κγ + κε)h log yn,

eventually, from (A.2). Thus,

sup
d(x,x′)≤h

∣

∣

∣

∣

log

(

F̄ (yn|x)

F̄ (yn|x′)

)∣

∣

∣

∣

= O(h log yn) → 0

as n→ ∞ and taking account of log(u+ 1) ∼ u as u→ 0 gives the result.
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(ii) Let us assume for instance y′n > yn. From (A.1) we have

∣

∣

∣

∣

F̄ (y′n|x
′)

F̄ (yn|x′)
− 1

∣

∣

∣

∣

= 1−

(

y′n
yn

)−1/γ(x′)

exp

(

∫ y′

n

yn

ε(u|x′)

u
du

)

≤ 1−

(

y′n
yn

)−1/γ(x′)−|ε(yn|x
′)|

. (7)

Now, x′ ∈ B(x, h) and (A.2) imply for n large enough that

1

γ(x′)
+ |ε(yn|x

′)| ≤
1

γ(x)
+ (κε + κγ)h+ |ε(yn|x)| ≤

2

γ(x)
.

Replacing in (7), it follows that

∣

∣

∣

∣

F̄ (y′n|x
′)

F̄ (yn|x′)
− 1

∣

∣

∣

∣

≤ 1−

(

y′n
yn

)−2/γ(x)

.

The case y′n ≤ yn is similar.

The second lemma provides a second order asymptotic expansion of the quantile function. It is

proved in [8].

Lemma 2 Suppose (A.1) hold.

(i) Let 0 < βn < αn with αn → 0 as n→ ∞. Then,

| log q(βn|x)− log q(αn|x) + γ(x) log(βn/αn)| = O(log(αn/βn)ε(q(αn|x)|x)).

(ii) If, moreover, lim inf βn/αn > 0, then

β
γ(x)
n q(βn|x)

α
γ(x)
n q(αn|x)

= 1 +O(ε(q(αn|x)|x)).

The following lemma provides a control on the moments µ
(τ)
x (h) for all τ > 0, the case τ = 1 being

studied in [18], Lemma 4.3.

Lemma 3 Suppose (A.3) holds. For all τ > 0 and x ∈ E,

0 < Cτ
1ϕx(h) ≤ µ(τ)

x (h) ≤ Cτ
2ϕx(h).

Proof. From (A.3), we have

0 < C1I{t ∈ [0, 1]} ≤ K(t) ≤ C2I{t ∈ [0, 1]}

and thus, for all τ > 0,

0 < Cτ
1 I{d(x,X) ≤ h} ≤ Kτ (d(x,X)/h) ≤ Cτ

2 I{d(x,X) ≤ h}.

Taking the expectation concludes the proof.

The following lemma provides a geometrical interpretation of the condition nϕx(h)F̄ (yn|x) → ∞.
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Lemma 4 Suppose (A.1), (A.2) hold and let yn → ∞ such that h log yn → 0 as n→ ∞. Consider

the subset of E × R defined as Rn(x) = B(x, h) × (yn,∞) where x ∈ E is such that ϕx(h) > 0.

Then, P(∃i ∈ {1, . . . , n}, (Xi, Yi) ∈ Rn(x)) → 1 as n→ ∞ if, and only if, nϕx(h)F̄ (yn|x) → ∞.

Proof. Since (Xi, Yi), i = 1, . . . , n are independent and identically distributed random variable,

P(∃i ∈ {1, . . . , n}, (Xi, Yi) ∈ Rn(x)) = 1− (1− P((X,Y ) ∈ Rn(x)))
n (8)

where

P((X,Y ) ∈ Rn(x))) = E(I{X ∈ B(x, h) ∩ Y ≥ yn})

= E(I{X ∈ B(x, h)}F̄ (yn|X))

= F̄ (yn|x)ϕx(h) + F̄ (yn|x)E

((

F̄ (yn|X)

F̄ (yn|x)
− 1

)

I{X ∈ B(x, h)}

)

.

In view of Lemma 1(i), we have

E

(∣

∣

∣

∣

F̄ (yn|X)

F̄ (yn|x)
− 1

∣

∣

∣

∣

I{X ∈ B(x, h)}

)

≤ 2(κc + κγ + κε)ϕx(h)h log yn

and therefore

P((X,Y ) ∈ Rn(x)) = F̄ (yn|x)ϕx(h)(1 +O(h log yn)).

Clearly, this probability converges to 0 as n→ ∞ and thus (8) can be rewritten as

P(∃i ∈ {1, . . . , n}, (Xi, Yi) ∈ Rn(x)) = 1− exp
(

−nϕx(h)F̄ (yn|x)(1 + o(1))
)

,

which converges to 1 if and only if nϕx(h)F̄ (yn|x) → ∞.

Let us remark that the kernel estimator (1) can be rewritten as ˆ̄Fn(y|x) = ψ̂n(y, x)/ĝn(x) with

ψ̂n(y, x) =
1

nµ
(1)
x (h)

n
∑

i=1

K(d(x,Xi)/h)Q((Yi − y)/λ),

ĝn(x) =
1

nµ
(1)
x (h)

n
∑

i=1

K(d(x,Xi)/h).

Lemma 5 and Lemma 6 are respectively dedicated to the asymptotic properties of ĝn(x) and

ψ̂n(y, x).

Lemma 5 Suppose (A.3) holds and let x ∈ E such that ϕx(h) > 0. We have:

(i) E(ĝn(x)) = 1.

(ii) If, moreover, ϕx(h) → 0 as h→ 0 then

0 < lim inf nϕx(h) var(ĝn(x)) ≤ lim supnϕx(h) var(ĝn(x)) <∞.
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Therefore, under (A.3), if ϕx(h) → 0 and nϕx(h) → ∞ then ĝn(x) converges to 1 in probability.

Proof. (i) is straightforward.

(ii) Standard calculations yields

nϕx(h)var(ĝn(x)) = ϕx(h)

(

µ
(2)
x (h)

(µ
(1)
x (h))2

− 1

)

and Lemma 3 entails

(C1/C2)
2 ≤ ϕx(h)

µ
(2)
x (h)

(µ
(1)
x (h))2

≤ (C2/C1)
2.

The condition ϕx(h) → 0 concludes the proof.

Lemma 6 Suppose (A.1) – (A.4) hold. Let x ∈ E such that ϕx(h) > 0 and introduce yn,j =

ajyn(1 + o(1)) for j = 1, . . . , J with 0 < a1 < a2 < · · · < aJ and where J is a positive integer. If

yn → ∞ such that h log yn → 0, λ/yn → 0 and nϕx(h)F̄ (yn|x) → ∞ as n→ ∞, then

(i) E(ψ̂n(yn,j , x)) = F̄ (yn,j|x)(1 +O(h log yn ∨ λ/yn)), for j = 1, . . . , J .

(ii) The random vector

{

Λ−1n (x)

(

ψ̂n(yn,j , x)− E(ψ̂n(yn,j, x))

F̄ (yn,j|x)

)}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix C(x) where Cj,j′ (x) = a
1/γ(x)
j∧j′

for (j, j′) ∈ {1, . . . , J}2.

Proof. (i) The (Xi, Yi), i = 1, . . . , n being identically distributed, we have

E(ψ̂n(yn,j , x)) =
1

µ
(1)
x (h)

E{K(d(x,X)/h)Q((Y − yn,j)/λ)}

=
1

µ
(1)
x (h)

E{K(d(x,X)/h)E(Q((Y − yn,j)/λ)|X)}

Taking account of (A.4), it follows that

E(Q((Y − yn,j)/λ)|X) = F̄ (yn,j |X) +

∫ 1

−1

Q′(u)(F̄ (yn,j + λu|X)− F̄ (yn,j |X))du

and thus the bias can be expanded as

E(ψ̂n(yn,j, x)) − F̄ (yn,j |x) =: T1,n + T2,n, (9)

where we have defined

T1,n =
1

µ
(1)
x (h)

E{K(d(x,X)/h)(F̄ (yn,j |X)− F̄ (yn,j|x))},

T2,n =
1

µ
(1)
x (h)

E

{

K(d(x,X)/h)F̄ (yn,j |X)

∫ 1

−1

Q′(u)

(

F̄ (yn,j + λu|X)

F̄ (yn,j |X)
− 1

)

du

}

.
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Focusing on T1,n and taking account of (A.3), it follows that

T1,n =
1

µ
(1)
x (h)

E(K(d(x,X)/h)(F̄ (yn,j |X)− F̄ (yn,j |x))I{d(x,X) ≤ h})

=
F̄ (yn,j |x)

µ
(1)
x (h)

E

(

K(d(x,X)/h)

(

F̄ (yn,j |X)

F̄ (yn,j |x)
− 1

)

I{d(x,X) ≤ h}

)

.

Lemma 1(i) implies that
∣

∣

∣

∣

F̄ (yn,j |X)

F̄ (yn,j |x)
− 1

∣

∣

∣

∣

I{d(x,X) ≤ h} ≤ 2(κc + κγ + κε)h log yn,j ≤ 3(κc + κγ + κε)h log yn,

eventually and therefore

|T1,n| = F̄ (yn,j |x)O(h log yn). (10)

Let us now consider T2,n. From Lemma 1(ii), for all u ∈ [−1, 1], we eventually have

∣

∣

∣

∣

F̄ (yn,j + λu|X)

F̄ (yn,j|X)
− 1

∣

∣

∣

∣

I{d(x,X) ≤ h} ≤

∣

∣

∣

∣

∣

(

1 +
λu

yn,j

)2/γ(x)

− 1

∣

∣

∣

∣

∣

≤ Cγ(x)
λ

yn,j
,

since λ/yn → 0 as n→ ∞ and where Cγ(x) is a positive constant. As a consequence,

|T2,n| ≤ Cγ(x)
λ

yn,j

1

µ
(1)
x (h)

E(K(d(x,X)/h)F̄ (yn,j |X))

= Cγ(x)
λ

yn,j
(F̄ (yn,j |x) + T1,n) = F̄ (yn,j |x)O(λ/yn) (11)

in view of (10). Collecting (9), (10) and (11) concludes the first part of the proof.

(ii) Let β 6= 0 in R
J and consider the random variable

Ψn =

J
∑

j=1

βj

(

ψ̂n(yn,j , x)− E(ψ̂n(yn,j, x))

Λn(x)F̄ (yn,j |x)

)

=:

n
∑

i=1

Zi,n,

where, for all i = 1, . . . , n, the random variable Zi,n is defined by

nΛn(x)µ
(1)
x (h)Zi,n =







J
∑

j=1

βjK(d(x,Xi)/h)Q((Yi − yn,j)/λ)

F̄ (yn,j|x)

− E





J
∑

j=1

βjK(d(x,Xi)/h)Q((Yi − yn,j)/λ)

F̄ (yn,j|x)











.

Clearly, {Zi,n, i = 1, . . . , n} is a set of centered, independent and identically distributed random

variables. Let us determine an asymptotic expansion of their variance:

var(Zi,n) =
1

n2(µ
(1)
x (h))2Λ2

n(x)
var





J
∑

j=1

βjK(d(x,Xi)/h)
Q((Yi − yn,j)/λ)

F̄ (yn,j|x)





=
1

n2(µ
(1)
x (h))2Λ2

n(x)
βtB(x)β

=
F̄ (yn|x)

nµ
(2)
x (h)

βtB(x)β, (12)
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where B(x) is the J × J covariance matrix with coefficients defined for (j, j′) ∈ {1, . . . , J}2 by

Bj,j′(x) =
Aj,j′ (x)

F̄ (yn,j|x)F̄ (yn,j′ |x)
,

Aj,j′ (x) = cov{K(d(x,X)/h)Q((Y − yn,j)/λ), K(d(x,X)/h)Q((Y − yn,j′)/λ)}

= E
{

K2(d(x,X)/h)Q((Y − yn,j)/λ)Q((Y − yn,j′)/λ)
}

− E{K(d(x,X)/h)Q((Y − yn,j)/λ)}E{K(d(x,X)/h)Q((Y − yn,j′)/λ)}

=: T3,n − T4,n.

Let us first focus on T3,n:

T3,n = E{K2(d(x,X)/h)E(Q((Y − yn,j)/λ)Q((Y − yn,j′)/λ)|X)} (13)

and remark that

E(Q((Y − yn,j)/λ)Q((Y − y′n,j)/λ)|X) =: Ω(yn,j, yn,j′) + Ω(yn,j′ , yn,j)

where we have defined

Ω(y, z) =
1

λ

∫

R

Q′((t− y)/λ)Q((t− z)/λ)F̄ (t|X)dt

=

∫ 1

−1

Q′(u)Q(u+ (y − z)/λ)F̄ (y + uλ|X)du.

Let us consider the case j < j′. We thus have aj < aj′ and consequently (yn,j − yn,j′)/λ→ −∞ as

n→ ∞. Therefore, for n large enough u+(yn,j −yn,j′)/λ < −1 and Q(u+(yn,j −yn,j′)/λ) = 0. It

follows that, eventually Ω(yn,j, yn,j′) = 0. Similarly, for n large enough Q(u+(yn,j′ − yn,j)/λ) = 1

and

Ω(yn,j′ , yn,j) =

∫ 1

−1

Q′(u)F̄ (yn,j′ + uλ|X)du.

For symmetry reasons, it follows that, for all j 6= j′,

E(Q((Y −yn,j)/λ)Q((Y −y′n,j)/λ)|X) =

∫ 1

−1

Q′(u)F̄ (yn,j∨j′+uλ|X)du = E(Q((Y −yn,j∨j′)/λ)|X),

and replacing in (13) yields

T3,n = E{K2(d(x,X)/h)E(Q((Y − yn,j∨j′ )/λ)|X)} = E{K2(d(x,X)/h)Q((Y − yn,j∨j′)/λ)}.

Now, since K2 is a kernel also satisfying assumption (A.3), part (i) of the proof implies

T3,n = µ(2)
x (h)F̄ (yn,j∨j′ |x)(1 +O(h log yn ∨ λ/yn)), (14)

for all j 6= j′. In the case where j = j′, by definition,

T3,n = E{K2(d(x,X)/h)E(Q2((Y − yn,j)/λ)|X)}
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where K2 is a kernel also satisfying assumption (A.3) and where the pdf associated to Q2 satisfies

assumption (A.4). Consequently, (14) also holds for j = j′. Second, part (i) of the proof implies

T4,n = (µ(1)
x (h))2F̄ (yn,j|x)F̄ (yn,j′ |x)(1 +O(h log yn ∨ λ/yn)).

As a consequence,

Aj,j′ (x) = µ(2)
x (h)F̄ (yn,j∨j′ |x)(1 +O(h log yn ∨ λ/yn))

− (µ(1)
x (h))2F̄ (yn,j |x)F̄ (yn,j′ |x)(1 +O(h log yn ∨ λ/yn))

leading to

Bj,j′(x) =
µ
(2)
x (h)

F̄ (yn,j∧j′ |x)

(

1 +O(h log yn ∨ λ/yn)−
(µ

(1)
x (h))2

µ
(2)
x (h)

F̄ (yn,j∧j′ |x)(1 +O(h log yn ∨ λ/yn))

)

.

In view of Lemma 3, (µ
(1)
x (h))2/µ

(2)
x (h) is bounded and taking account of F̄ (yn,j∧j′ |x) → 0 as

n→ ∞ yields

Bj,j′(x) =
µ
(2)
x (h)

F̄ (yn,j∧j′ |x)
(1 + o(1)).

Now, from the regular variation property (3), it is easily seen that

F̄ (yn,j∧j′ |x) = a
−1/γ(x)
j∧j′ F̄ (yn|x)(1 + o(1))

entailing Bj,j′ (x) = Cj,j′ (x)µ
(2)
x (h)/F̄ (yn|x)(1 + o(1)). Replacing in (12), it follows that

var(Zi,n) =
βtC(x)β

n
(1 + o(1)),

for all i = 1, . . . , n. As a preliminary conclusion, var(Ψn) → βtC(x)β as n → ∞. Conse-

quently, Lyapounov criteria for the asymptotic normality of sums of triangular arrays reduces

to
∑n

i=1 E |Zi,n|
3 = nE |Z1,n|

3 → 0 as n → ∞. Next, remark that Z1,n is a bounded random

variable:

|Z1,n| ≤
2C2

∑J
j=1 |βj |

nΛn(x)µ
(1)
x (h)F̄ (yn,J |x)

= 2C2a
1/γ(x)
J

µ
(1)
x (h)

µ
(2)
x (h)

J
∑

j=1

|βj |Λn(x)(1 + o(1))

≤ 2(C2/C1)
2a

1/γ(x)
J

J
∑

j=1

|βj |Λn(x)(1 + o(1));

in view of Lemma 3 and thus,

nE |Z1,n|
3 ≤ 2(C2/C1)

2a
1/γ(x)
J

J
∑

j=1

|βj |Λn(x)nvar(Z1,n)(1 + o(1))

= 2(C2/C1)
2a

1/γ(x)
J

J
∑

j=1

|βj |β
tC(x)βΛn(x)(1 + o(1)) → 0

as n → ∞ in view of Lemma 3. As a conclusion, Ψn converges in distribution to a centered

Gaussian random variable with variance βtC(x)β for all β 6= 0 in R
J . The result is proved.
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5.2 Proofs of main results

Proof of Theorem 1. Keeping in mind the notations of Lemma 6, the following expansion holds

Λ−1n (x)

J
∑

j=1

βj

(

ˆ̄Fn(yn,j |x)

F̄ (yn,j |x)
− 1

)

=:
∆1,n +∆2,n −∆3,n

ĝn(x)
, (15)

where

∆1,n = Λ−1n (x)

J
∑

j=1

βj

(

ψ̂n(yn,j , x)− E(ψ̂n(yn,j, x))

F̄ (yn,j|x)

)

∆2,n = Λ−1n (x)

J
∑

j=1

βj

(

E(ψ̂n(yn,j , x)) − F̄ (yn,j |x)

F̄ (yn,j |x)

)

∆3,n =





J
∑

j=1

βj



Λ−1n (x) (ĝn(x) − 1) .

Let us highlight that assumptions nh2ϕx(h) log
2(yn)F̄ (yn|x) → 0 and nϕx(h)F̄ (yn|x) → ∞ imply

that h log yn → 0 as n→ ∞. Thus, from Lemma 6(ii), the random term ∆1,n can be rewritten as

∆1,n =
√

βtC(x)βξn, (16)

where ξn converges to a standard Gaussian random variable. The nonrandom term ∆2,n is con-

trolled with Lemma 6(i):

∆2,n = O(Λ−1n (x)(h log yn ∨ λ/yn)) = o(1). (17)

Finally, ∆3,n can be bounded by Lemma 5 and Lemma 3:

∆3,n = OP (Λ
−1
n (x)(nϕx(h))

−1/2) = OP (F̄ (yn|x))
1/2 = oP (1). (18)

Collecting (15)–(18), it follows that

ĝn(x)Λ
−1
n (x)

J
∑

j=1

βj

(

ˆ̄Fn(yn,j |x)

F̄ (yn,j |x)
− 1

)

=
√

βtC(x)βξn + oP (1).

Finally, ĝn(x)
P
−→ 1 concludes the proof.

Proof of Theorem 2. Introduce for j = 1, . . . , J ,

αn,j = τjαn,

σn,j(x) = q(αn,j |x)σn(x),

vn,j(x) = α−1n,jγ(x)σ
−1
n (x),

Wn,j(x) = vn,j(x)
(

ˆ̄Fn(q(αn,j |x) + σn,j(x)zj |x)− F̄ (q(αn,j |x) + σn,j(x)zj |x)
)

,

an,j(x) = vn,j(x)
(

αn,j − F̄ (q(αn,j |x) + σn,j(x)zj |x)
)

,
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and zj ∈ R. Let us study the asymptotic behavior of J-variate function defined by

Φn(z1, . . . , zJ) = P





J
⋂

j=1

{

σ−1n,j(x)(q̂n(αn,j |x)− q(αn,j |x)) ≤ zj
}



 = P





J
⋂

j=1

{Wn,j(x) ≤ an,j(x)}



 .

We first focus on the nonrandom term an,j(x). Under (A.1), F̄ (.|x) is differentiable. Thus, for all

j ∈ {1, . . . , J} there exists θn,j ∈ (0, 1) such that

F̄ (q(αn,j |x)|x) − F̄ (q(αn,j |x) + σn,j(x)zj |x) = −σn,j(x)zj F̄
′(qn,j |x), (19)

where qn,j = q(αn,j |x) + θn,jσn,j(x)zj . It is clear that q(αn,j |x) → ∞ and σn,j(x)/q(αn,j |x) → 0

as n→ ∞. As a consequence, qn,j → ∞ and thus (A.1) entails

lim
n→∞

qn,jF̄
′(qn,j |x)

F̄ (qn,j |x)
= −1/γ(x). (20)

Moreover, since qn,j = q(αn,j |x)(1+ o(1)) and F̄ (.|x) is regularly varying at infinity, it follows that

F̄ (qn,j |x) = F̄ (q(αn,j |x)|x)(1 + o(1)) = αn,j(1 + o(1)). In view of (19) and (20), we end up with

an,j(x) =
vn,j(x)σn,j(x)αn,jzj

γ(x)q(αn,j |x)
(1 + o(1)) = zj(1 + o(1)). (21)

Let us now turn to the random term Wn,j(x). Defining aj = τ
−γ(x)
j , yn,j = q(αn,j |x) + σn,j(x)zj

for j = 1, . . . , J and yn = q(αn|x), we have yn,j = q(αn,j |x)(1 + o(1)) = ajyn(1 + o(1)) since

q(.|x) is regularly varying at 0 with index −γ(x). Using the same argument, it is easily shown that

log yn = −γ(x) log(αn)(1 + o(1)). As a consequence, Theorem 1 applies and the random vector

{

σ−1n (x)

vn,j(x)F̄ (yn,j |x)
Wn,j

}

j=1,...,J

= (1 + o(1))

{

Wn,j

γ(x)

}

j=1,...,J

converges to a centered Gaussian random variable with covariance matrix C(x). Taking account

of (21), we obtain that Φn(z1, . . . , zJ) converges to the cumulative distribution function of a cen-

tered Gaussian distribution with covariance matrix γ2(x)C(x) evaluated at (z1, . . . , zJ), which is

the desired result.

Proof of Theorem 3. The proof is based on the following expansion:

σ−1n (x)

log(αn/βn)
(log(q̂W

n (βn|x)) − log(q(βn|x))) =
σ−1n (x)

log(αn/βn)
(Qn,1 +Qn,2 +Qn,3)

where we have introduced

Qn,1 = σ−1n (x)(γ̂n(x)− γ(x)),

Qn,2 =
σ−1n (x)

log(αn/βn)
log(q̂n(αn|x)/q(αn|x)),

Qn,3 =
σ−1n (x)

log(αn/βn)
(log q(αn|x) − log q(βn|x) + γ(x) log(αn/βn)).

17



First, Qn,1
d

−→ N (0, V (x)) as a straightforward consequence of the assumptions. Second, Theo-

rem 2 implies that q̂n(αn|x)/q(αn|x)
P
−→ 1 and

Qn,2 =
σ−1n (x)

log(αn/βn)

(

q̂n(αn|x)

q(αn|x)
− 1

)

(1 + oP (1)) =
OP (1)

log(αn/βn)
.

Consequently, Qn,2
P
−→ 0 as n → ∞. Finally, from Lemma 2(i), Qn,3 = O(σ−1n (x)ε(q(αn|x)|x)),

which converges to 0 in view of the assumptions.

Proof of Theorem 4. The following expansion holds for all j = 1, . . . , J :

log q̂n(τjαn|x) = log q(αn|x) + log

(

q(τjαn|x)

q(αn|x)

)

+ log

(

q̂n(τjαn|x)

q(τjαn|x)

)

. (22)

First, Lemma 2(ii) entails that

log

(

q(τjαn|x)

q(αn|x)

)

= γ(x) log(1/τj) +O(ε(q(αn|x)|x)), (23)

where the O(ε(q(αn|x)|x)) is not necessarily uniform in j = 1, . . . , J . Second, it follows from

Theorem 2 that

log

(

q̂n(τjαn|x)

q(τjαn|x)

)

= σn(x)ξn,j (24)

where (ξn,1, . . . , ξn,J)
t converges to a centered Gaussian random vector with covariance matrix

γ2(x)Σ. Replacing (23) and (24) in (22) yields

log q̂n(τjαn|x) = log q(αn|x) + γ(x) log(1/τj) + σn(x)ξn,j +O(ε(q(αn|x)|x)),

for all j = 1, . . . , J and therefore, in view of the shift invariance property of φ, we have

φ ({log q̂n(τjαn|x)}j=1,...,J) = φ ({γ(x) log(1/τj) + σn(x)ξn,j +O(ε(q(αn|x)|x))}j=1,...,J) .

A first order Taylor expansion yields:

φ ({log q̂n(τjαn|x)}j=1,...,J) = φ (γ(x)v) +

J
∑

j=1

(σn(x)ξn,j +O(ε(q(αn|x)|x)))
∂φ

∂xj
(γ(x)v)

+ OP





J
∑

j=1

(σn(x)ξn,j +O(ε(q(αn|x)|x)))
2



 .

Thus, under the condition σ−1n (x)ε(q(αn|x)|x) → 0 as n→ ∞, it follows that

σ−1n (x)(φ ({log q̂n(τjαn|x)}j=1,...,J)− φ (γ(x)v)) =

J
∑

j=1

ξn,j
∂φ

∂xj
(γ(x)v) + oP (1).

Taking into account of the scale invariance property of φ, we finally obtain

σ−1n (x)(γ̂φn(x) − γ(x)) =
1

φ(v)

J
∑

j=1

ξn,j
∂φ

∂xj
(γ(x)v) + oP (1)

and the conclusion follows.

18
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Figure 1: Four realizations of the random function X(.).
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Figure 2: IMSE of γ̂φn as a function of αn. Left: semi-metric dZ , right: semi-metric dX .
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Figure 3: Comparison of the estimated quantile q̂W

n (βn|x) corresponding to the median error with

the true quantile function (continuous line). Horizontally: Z, vertically: quantiles. Two values of

αn are considered: αopt
n (dashed line) and αn = 15 log(n)/n (dotted line). Top: semi-metric dZ ,

bottom: semi-metric dX . 23



F̄ (y|x) γ(x) c(x) ε(y|x)

Pareto y−θ(x)
1

θ(x)
1 0

Cauchy
1

π
tan−1(1/y) +

1

2
(1− sign(y)) 1

1

4

2

3

1

y2
(1 + o(1))

Fréchet 1− exp(−y−θ(x))
1

θ(x)
1− e−1

θ(x)

2
y−θ(x)(1 + o(1))

Burr (1 + yτ(x))−λ(x)
1

λ(x)τ(x)
2−λ(x) λ(x)τ(x)y−τ(x)(1 + o(1))

Table 1: Examples of distributions satisfying (A.1). Their parameters θ(x), τ(x) and λ(x) are

positive.
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