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Abstract 
 
Volume or statistical averaging of the microscopic Maxwell equations (MEs), i.e. transition from 
microscopic MEs to their macroscopic counterparts, is one of the main steps in electrodynamics of 
materials. In spite of the fundamental importance of the averaging procedure, it is quite rarely 
properly discussed in university courses and respective books; up to now there is no established 
consensus about how the averaging procedure has to be performed. In this paper we show that there 
are some basic principles for the averaging procedure (irrespective to what type of material is 
studied) which have to be satisfied. Any homogenization model has to be consistent with the basic 
principles. In case of absence of this correlation of a particular model with the basic principles the 
model could not be accepted as a credible one. Another goal of this paper is to establish the 
averaging procedure for metamaterials, which is rather close to the case of compound materials but 
should include magnetic response of the inclusions and their clusters. We start from the 
consideration of bulk materials, which means in the vast majority of cases that we consider 
propagation of an electromagnetic wave far from the interfaces, where the eigenwave in the 
medium has been already formed and stabilized. A basic structure for discussion about boundary 
conditions and layered metamaterials is a subject of separate publication and will be done 
elsewhere. 
  

1. Material equations representations 
 
We consider as a starting point a system of microscopic MEs in the following form:  
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Here   and are the microscopic electric and magnetic fields, respectively,  is the charge 
density, , 

e
q

h ρ

i ip ,  and  are the charges, impulses, coordinates and velocities of charges, ir iv j  is the 
microscopic current density,  and c  are the frequency and the velocity of light in vacuum. It is 
assumed that system (1) is strictly valid without any approximations. Actually, system (1) can be 
elaborated in the framework of the minimum action approach [1]; nevertheless, one should 

ω



remember that the minimum action principle does not give an unambiguous form of the MEs (1), 
but instead gives a set of different forms which satisfy the requirement of relativistic invariance. 
The “right” form can be chosen based on the evident requirement of correspondence of the results 
of the final system of equations to the observed physical effects. One should also mention that in the 
framework of the minimum action approach the final equations are written for “potentials + 
particles”, not for “fields + particles”; the respective equations are: 
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(2) 
 
 
Here A  and  are the components of the 4-vector potential, and the relations between the 
microscopic fields and the potentials are given by: 
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Form (2) will not be used in the following discussions and is presented here just for methodological 
reasons.  
 
We consider propagation of an electromagnetic plane wave interacting with the medium in case 
when the classical dynamics is supposed to be valid and the bulk material fills the whole space; the 
system (1) in this case can be formally averaged over a physically small volume (or through statistic 
averaging), which results in:  
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(4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
The averaging makes sense in case of a large number of atoms/molecules in the volume of 
averaging; from the other side the volume is supposed to be small in comparison with the 
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wavelength of the electromagnetic wave, propagating in the medium.   
The main problem after that is to find the averaged current and charge distribution as functions of 
the averaged electric and magnetic fields:  
 

( )
( )

j j ,

,

E B

E B

=

ρ = ρ

 
(5) 

 
 
 
The last equation in (4) is not going to be averaged and describes the microscopic dynamics which 
is supposed to be substituted in j , ρ  and averaged in order to get (5). Relations  (5) in turn use 

information about microscopic dynamics as a function of microscopic fields which get averaged 
only after substitution into equations for j , ρ . In fact, there is only one model (a multipole 

model [2]) where the averaging procedure for the j , ρ  is performed rigorously, all other 

models do not even try to make this step and assume something phenomenological; the last 
equation in (4) is usually left out completely.               
 
The system of equations (4), (5) is rather useless in practice until we make some progress and find 
analytical expressions for (5). Nevertheless, even without finding of an analytical form for (5), the 
averaged MEs can be analysed and important conclusions can be made.  
 
It is worth noting that if we assume some analytical form for (5) (see, for example, [6] and 
references herein) then the averaging problem is basically fixed (or, better to say, bypassed), system 
(4) becomes self consistent and can be solved for the electric and magnetic fields ,E B . All 
following below considerations (including introducing of ,D H in different representations, and 
permittivity and permeability) in this case are no more required. Thus, we assume in what follows 
that there are no explicit form of (5) and it is necessary to elaborate (5) further in order to find some 
reasonable analytical expressions for the averaged charge and current densities.  
 
First, following [1] we consider a volume with charges and fields. The averaged charge in (5) can 
be represented through another function taking into account that the total charge of the considered 
volume is zero: 
 
 

0dVρ =∫ (6) 
 
 
It means that the averaged density of charges can be presented as a divergence of another unknown 
function fullP (see more details in [1] and [8]): 
  
 
 

div fullPρ =−  (7) 
 
which is supposed to be zero outside the volume of integration in (6). In addition, this function is 
introduced with the accuracy of “rot” from any other arbitrary function 1F :  
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The averaged current is connected with the averaged charge density through the continuity relation 
[4], which remains valid for the macroscopic representation:  
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This gives: 
 
 

( )div 0fullj i P+ ω = (10) 
 
 
The averaged current can be introduced with the accuracy of “rot” of one more arbitrary function 

: 2F
 
 

2rotfull fullj i P i P F=− ω =− ω + (11) 
 
or, taking into account (8):  
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It turns out that the material equations (3) can be written through one new function  with the 
accuracy of two more arbitrary functions 

P
1F  and 2F : 
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It has to be mentioned that there are known concerns about possibility to present averaged density 
and current in form (13). In order to get (7) from (6) it is necessary to assume that the function fullP  
is zero outside the integration volume. In case of a medium with inclusions (which is the case for 
presented here discussion) the integration volume has to be taken inside the media and can cross the 
other volume of integration, where  fullP  is not zero. To avoid this contradiction, one can carefully 
choose the integration volume, which basically means, that the averaged characteristics depend on 
the choice of the integration volume, which should not be the case. Nevertheless, we can assume 
this situation for at least periodically spaced inclusions.  
 
Another approach which is basically free from this drawback has been proposed in [5] and is called 
the scaling algorithm. The developed approach is based on a lemma proving that any field can be 
represented as a sum of three terms which are called “electric dipole”, “magnetic dipole”, and 
“electric quadrupole” moments (in the frequency domain): 
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This lemma leads to the possibility to represent, for example, the averaged current in the following 
form [5]: 
 
 

( )div rotj i P Q c M=− ω − + (15) 
 
 
which basically repeats the second equation in (13). It is worth noting that equation (15) has been 
obtained without any additional limitations. The question about the physical meaning of the 
functions in (15) and (13) remains open.    
 
Both functions  and  are arbitrary and independent. This means that it is up to us to impose 
any additional requirements on them. There are different but countable number of choices for the 
possible representations of (13). The most general case is when both 
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which leads to the so called Casimir (“C”) form of material equations: 
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In this case MEs include four functions , , ,E B D H   : 
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Note, that the case  and  leads to the same form (16), where rot part of the full 
polarisability 

1 0F = 2 * CF c M=

fullP  is excluded (the physical mean of this part – presence of anapoles - will be 
considered below).  
 
Alternative to (16), we can set:  
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Which leads according to (13) to the so called Landau&Lifshitz (“L&L”) form of material 
equations: 
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In this case MEs contain three functions , ,E B D : 
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Note that the form (20) does not assume that the averaged current j does not contain any curl  

part – this part is included in j through 1F  (see (19)). The main difference between “C” and 

“L&L” representation is in the absence in the latter any stationary (not proportional to ) part of the 
curl part of 

ω
j , described by CM . In case of the absence of stationary magnetization both 

representations have to be equivalent.  
 
Finally, we assume that the full polarisability fullP contains only the curl part, namely: 
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which leads, according to (13), to the case which we call here Anapole (“A”) form of material 
equations: 
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(23) 
 
 
 
In this case the system of MEs contains three functions , ,E B D and reads: 
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The physical object corresponding to such representation is an anapole [6], [8], which is now of 
great interest in connection with potential possibility of creation of such structures at nanoscales for 
optical wavelength region application [9].  
 
Physical interpretation of the three mentioned above representations can be done based on the types 
of atoms/molecules (or meta-atoms/metamolecules) which the considered media consist of. In the 
most general case (dipole, quadrupole, dynamic and stationary magnetization, and anapoles) “C” 
form is preferable. In the case of absence of stationary magnetisation (but presence of all others) the 
“C” and “L&L” representations have to be equivalent. In case of absence of dipole, quadrupole, and 
magnetic dipole parts (presence of only anapoles and, maybe stationary magnetization) the “A” 
form is appropriate. 
 
It is important to realize that there are no other choices for the material equations. Any 
homogenization model has to start from the statement in which representation it will be developed; 
arbitrary mixing between several representations is not acceptable, as it will be seen below.  
 
Transformation between different forms of the representations is possible, taking into account 
mentioned above limitations for one or another representations. It is clear, that starting from “C” 
form (as the most general one) one can always get other three representations. From the other side, 
inverse transformations are not always possible – for example, “L&L” to “C” transformation 
assumes presence of stationary part of magnetization, which was not originally included in “L&L” 
form; the same is valid for “C” to “A” and “L&L” and “A” (and inverse) transformations due to the 
fact, that both “C” and “L&L” include anapole contributions, but “A” form does not include neither 
dipole/quadrupole nor magnetic dipole contributions.   
 
Let us consider the relation between the forms of MEs, and start from the “C” form (17), (18). It is 
known that the “C” form is invariant with respect to the so called Serdyukov-Fedorov 
transformations: 
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Here  and  are arbitrary differentiable vector functions. The invariance means that for the new 
primed fields (22) the MEs keep their form (18).  

1T 2T

The physical interpretation of the Serdyukov-Fedorov transformation is not trivial and will be 
considered elsewhere. Here it has to be pointed out that in these transformations the two pairs 

,E B and are transformed independently, which obviously does not have too much physical 
sense. Nevertheless, here we (following [8]) apply these transformations rather formally and 
consider possible conclusions which can be made based on the application of the Serdyukov-
Fedorov transformations. 
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For the material equations we can respectively write: 
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In order to get the ME for the new fields in “L&L” form we have to require that: 
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Substituting the last equation into (26), we finally have:  
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which gives us the MEs in form of “L&L”. If, in addition, we require that the electric and magnetic 
fields remain the same for both representations (which is reasonable, because both fields are 
assumed to be physically measurable), we obtain by setting 1T  to zero:  
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We see that starting from “C” representation, we can unambiguously reduce the MEs to the “L&L” 
form. It is important to emphasize, that in general both electric and magnetic fields are transformed 
and lose their initial physical means. The requirement of keeping the electric and magnetic fields 
the same in both representations is an additional one with respect to the Serdyukov-Fedorov 
transformation.     
 
Let us consider the inverse transformation (“L&L” to “C” representation), namely we start from 
system (21) and write the Serdyukov-Fedorov transformation in this case:  
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Substituting equations (30) into (21), we come to the conclusion that the MEs keep their form only 
if:  
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In this case we can formally assign:  
 

' 'B H= (32) 
 
and thus arrive to the “C” form. Nevertheless, in this case the electric field in new representation is 
not the same as in the old one – see (30). If we require again, as in previous case, that the electric 
and magnetic fields should not be changed at the transformations, we have to conclude that the 
“L&L” form is not invariant with respect to the Serdyukov-Fedorov transformation. Let us 
emphasize again, that starting from the “C” form it is possible to arrive to the “L&L” form, but 
starting from the “L&L” form it is impossible to reduce MEs to the “C” form using Serdyukov-
Fedorov transformations and keeping electric and magnetic fields not transformed.  
 
The inverse transformation is actually possible, if 'LLP  clearly contains some curl part, in this case 

obvious separation of this part and grouping this part with B  in MEs gives us immediately the 
MEs in “C” form. Note, that this transformation is not a part of the Serdyukov-Fedorov formalism 
and in general is not a trivial math problem. In general, one can use lemma (14) and present 'LLP  as 



a sum of dipole, magnetic dipole, and quadrupole parts followed by mentioned above regrouping, 
which gives finally “C” form. Nevertheless, we have to remember that (14) is not constructive and 
does not give a clear recipe for such representation but rather proves its existence. Complete 
discussion of mutual “C” to “L&L” transformation is given in [8], where the equivalence between 
“C” and “L&L” form is given using consideration of boundary conditions, which is out of scope of 
this paper.      
 
The direct and inverse transformations between “C” and “A”, or between “L&L” and “A” forms 
can be considered in the same way as for “C” and “L&L” forms. 
 
The presented above consideration of relations between the “”L&L” form and “C” form is very 
important. There is a commonly accepted integral form of LLP  , which can be written according to 
the causality principle (which imposes limitations on the frequency dispersion form) and assuming 
that the physical processes at some point depend on the fields at other points (which gives rise to 
spatial dispersion):  
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where the first term is responsible for interactions with the electric field, and the second one – with 
the magnetic field. The last term is often omitted assuming that the constant takes into consideration 
both contributions: 
 
  ( ) ( ) ( ), , ,LLP k k E kω =χ ω ω (34) 
 
 
When we use this representation, it has to be clearly realized that: 
 

1. We are working with the “L&L” representation where there is no magnetization (the 
magnetic response is included through the spatial dispersion of electric polarization). 

2. The form (34) is NOT relativistic invariant, because of it DOES NOT take into account 
retardation effect in spatial dispersion; practically it means that the (34) makes sense for 
small k only. 

3. The form (33) and (34) assume translation invariance of the media, which means that the 
form is acceptable for homogeneous material far from the boundaries. Thus the 
representation (33) and (34) can NOT be used as a phenomenological form to describe 
boundaries, for instance reflection properties. The form (33) and (34) can only be used as a 
basis for dispersion relation inside the materials.    

4. Starting from (34), it is impossible to introduce any permeability, because of in “L&L” 
representation there is no magnetization. All magnetic effects are included in the 
permittivity. In order to introduce a permeability it is necessary to transit to “C” form taking 
into account the mentioned above restrictions.  

5. Basically, there is no reason to introduce permittivity or/and permeability provided there are 
some analytic forms for the averaged charge and current densities j , ρ , because of 

known j , ρ  as functions of the averaged fields (5) closes the system of MEs. The 

permittivity and permeability can nevertheless be introduced (through material equations) 
but they cannot in general be used in order to describe boundary effects (transmission and 
reflection), because in the vicinity of boundary the permittivity and permeability differ from 



their bulk counterparts.   
  
All the considerations above did not answer the question “How to get the unknown functions for the 
polarizability (”L&L” form) or polarizability and magnetization (“C” form)?” starting from the 
microscopic picture.  
The main problem is to develop a model, which would give us a recipe to find expressions for P  
and M  in (17) or (20) as a functions of the averaged fields – it has to be also pointed out, that the 
expressions have to be presented as functions of the averaged (macroscopic), and not the 
microscopic fields; only in this case we can formulate the MEs as a self consistent system. 
Nevertheless, it is important to realize, that whatever model is developed, it can be presented in 
“C”, or in “L&L”, or in “A” form with the respective consequences, described above, and the 
difference between the bulk and boundary situations has to be clearly distinguished.  
 
 

2. Models for polarization P and magnetization M 
 
Introduction of the unknown functions P  and M  are made following mainly two different ways, 
namely: 
 

1. By introducing multipole moments (which will be call below the Multipole model), which 
leads finally to the “C” form (as it has been shown above, in this case the “L&L” form can 
be obtained using the Serdyukov-Fedorov transformations). 

2. By introduction of the phenomenological integral (31) for polarization (which will be called 
below the Phenomenological model). The “L&L” form of representation is evidently 
preferable in this case, because there is only one unknown function LLP , which is supposed 
to contain all the information about intrinsic material properties (material equations are 
expressed through this function). As a result, we are working in the frame of the “L&L” 
approach, and transformation to the “C” representation (for example, to introduce 
permeability) is not straightforward.   

 
 
2.1 Multipole model 
 
The Multipole model has been put forward in [2], and then developed in a similar form in [3]. The 
model results in expressions for and CP CM  presented through the averaged dynamics of the 
charges: 
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Here it is important to realize that the formulas for the macroscopic polarization and magnetization 
are expressed in averaged dynamics, which are a priori functions of microscopic (not macroscopic) 



fields. Even if we are able to write analytical forms for the dynamics, we will have to express the 
microscopic fields through the macroscopic ones, which returns us to the main problem of all this 
consideration.  
 
2.2 Phenomenological model  
 
The Phenomenological model (34) is widely used in different branches of physics like plasma 
physics or physics of crystals. In the vast majority of the considered problems, expression (34) is 
expanded into the Taylor series up to the second order, namely: 
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experiments or rigorous microscopic calculations.  
 
Concerning (36) several things have to be pointed out, namely: 
 

1. Expansion can be performed around any 0k , not necessarily 0 0k = , provided expansion 
over angles and wavelengths is properly done; in other words, the expansion formally can be 
written for small spatial dispersion and for large spatial dispersion. Math in this case DOES 
NOT impose any limitations.  

2. Form (31) assumes no retardation. In order to keep the physical meaning for this form we 
have to require that (31) has to be applied only in cases where retardation does not play any 
role; mathematically it means that we consider the volumes smaller than the wavelengths of 
interest, which obviously corresponds to the case 0 0k = in expansion (33).  

3. It is worth noting, that in spite of the requirement 0 0k =  expansion (33) DOES NOT assume 
independence of material properties on the propagation direction!!! In general, this 
dependence is contained in the expansion coefficients; even though they are taken at 0 0k = !  

4. It should be again emphasized that form (33) as well as (30) and (31) can be used only to 
describe properties inside the material, where the translational invariance is satisfied. Any 
questions concerning boundaries can NOT be considered based on this form and require 
additional models of the boundary properties.  

 
After having all this said, the final form of the LLP  for “L&L” representation can be written as: 
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2.3 Dispersion relation and introduction of permittivity and permeability for bulk and 
boundaries 



 
It appears commonly in the literature to start discussion of the material properties from some 
expressions for dielectric (permittivity) and magnetic (permeability) constants. This approach has 
been used in the first papers about negative refractive index in metamaterials, this approach is used 
in plasma physics, etc. However, methodologically it is not quite well founded, and it would be 
reasonable to clarify the situation with introducing of permittivity and permeability. 
 
First, let us consider the problem of propagation of electromagnetic waves in a bulk infinite 
medium (without consideration of boundary conditions). In this case the solution of the problem can 
be expressed in form of plane waves, and the main result is (in case of the linear problem) the 
dispersion relation . The dispersion relation is in turn given by the system of field equations 
(for the “C” and “L&L” representation respectively): 
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As we see, there are absolutely NO reasons for introduction some new constants, especially if both 

 and P M  in the “C” representation depend on both electric and magnetic fields; in case of the 
“L&L” representation it is even less justified.  
 
The permittivity and permeability are introduced in this case in order to avoid microscopic 
considerations for the  and P M . For the case of the “L&L” representation, for example, it is often 
assumed that (see, for example, [8]):  
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which results in dispersion relation:  
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Equation (40) can be solved with respect to ( )k ω  which finally gives us all branches of ( )k ω . 

After substituting  into (39) one can write down expression  ( )k ω
(41) 
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without any apparent spatial dispersion. It indicates that in this formalism the spatial dispersion is 
no more than a math tool to describe the properties of the P  and M which is useful in some cases, 
and which physically stems from  nonlocal medium response. Finally, for a particular dispersion 
curve (in case of multiple dispersion curves) the dielectric constant is written without any spatial 
dispersion.  
It is worth noting that form (36) does not give us any recipe for finding unknown  (or ( )ε ω ( )ε ω  

and in case of the “C” representation).  Introduction of  ( )μ ω ( )ε ω  and ( )μ ω  is no more than a 

phenomenological introduction of a relation of  P  and M from  the averaged field (5), which is 
basically the key question in homogenization. Bypassing this problem by a phenomenological 
introduction of a relation for   and P M (5) means that basically the main problem of the 
homogenization is bypassed as well.   
 
Form (39) is no more than a phenomenological approach for writing expressions (17) and (20) 
without creation of some model which would give us P  and M ; in contrast, system (32) creates a 
transition between the microscopic and macroscopic pictures. It is also important to mention that 
(35) is applicable for both bulk materials and boundary problems (provided that the averaging is 
done correctly) in contrast with the phenomenological approach (33), (34), (37), which is restricted 
naturally by consideration of plane waves in bulk infinite materials. 
 
It should be realized also that the permittivity and permeability, which can be introduced for bulk 
materials can NOT be apiori used for modelling boundary phenomena, for example for reflection 
and transmission calculation based on the Fresnel equations. The permittivity and permeability in 
general will be different in the bulk and close to boundaries, which can be understood from (32) – 
the averaging near a boundary is definitively NOT the same as inside the bulk material.    
 

3. Conclusions 
 
As conclusions: 

1. Macroscopic, averaged MEs (more rigorously, material equations) can be presented in three 
different forms, namely “C”, “L&L”, and “A” forms. 

2. Starting from “C” form, one can unambiguously define the “L&L” and “A” forms. 
3. Starting from “L&L” or “A” form, in general it is impossible to define “C” form. 
4. Starting from “L&L” form, it is possible to derive “A” form, starting from “A” form it is 

generally impossible to derive neither “L&L” nor “C” form. 
5. In any consideration, one has to define in which representation - “C”, “L&L”, or “A” – a 

particular discussion is going on.  
6. The result of the averaging for bulk material is expressed in form of dispersion relation, not 

in form of some functional forms for permittivity and permeability; moreover, there are no 
reasons to introduce them. Permittivity and permeability can be introduced 
phenomenological or in the microscopic way in order to write some expressions for P  and 
M in (17) and (20) which are used to elaborate the dispersion relation. 
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