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We report on the response of a thin layer of ferrofluid to a spatially mod-
ulated magnetic field. This field is generated by means of a constant current
in a special arrangement of aluminum wires. The full surface profile of the
liquid layer is recorded by means of the absorption of X-rays. The outcome is
analyzed particularly with regard to the magnetic self focusing effect under
a deformable fluid layer.

Introduction

A beautiful example of spatial forcing in a pattern forming system was studied experi-
mentally in electroconvection [1]. More recently, inclined layer convection was measured
under the influence of lamellar surface corrugations [2]. In both cases, stripes are the
first convection pattern beyond a threshold. The Rosensweig instability in a layer of
ferrofluid can provide a primary instability to hexagons if a homogeneous magnetic field
normal to the flat surface is applied [3, 4]. In case of a tilted magnetic field, a primary
instability to stripes can be observed [5]. This system allows to study the response of
both configurations to a stripe like modulation of the magnetic induction.

As a start, here we present and characterize the influence of the modulation on the
layer of ferrofluid in the subcritical regime. One method of generating a spatially mod-
ulated magnetic field was described in Refs. [6, 7] and uses rods of metallic iron to
modulate a homogeneous magnetic field. It lacks the possibility to control the ampli-
tude of modulation independently from the field offset, a nuisance which is overcome in
the experiments presented in this paper.
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Figure 1: (a) Photograph of the field modulation array made of aluminum. Length:
14.6 cm, width: 13 cm, thickness: 2mm. (b) Blue: Magnetic induction
Bz = µ0Hz generated by the modulation array at a constant current of 10A,
measured via a Hall probe along the black arrow in (a). The distance between
the array and the Hall probe was 2mm. Red: Hz from Eq. (1) fitted to the
experimental data.

1 Setup

To produce a spatially modulated magnetic field, we developed an array of nonmagnetic
conducting wires shown in Fig. 1(a). The array is made of a plate of aluminum by cutting
slits from opposite directions using electrical discharge machining. Aluminum has been
chosen because of its low mass absorption coefficient for X-rays. The rectangular cross
section of the wires is crucial to guarantee a spatially homogeneous absorption. By
design, the current in the aligned conductors is reversing its direction from one to the
next conductor. The resulting induction µ0Hz is depicted in Fig. 1(b). It was measured
using a Hall probe for a certain region of the array as indicated by the arrow in Fig. 1(a).
To achieve a spatial forcing with a wavelength of λc = 9.6mm, which corresponds to
the critical wavelength [4] of the used ferrofluid, the center to center distance between
adjacent conductors has to be λc/2. The components of the generated magnetic field ~H
can be well approximated by

Hx = −∆H cos(kx)e−kz and Hz = H0 +∆H sin(kx)e−kz, (1)

where ∆H represents the amplitude of the field modulation, k = 2π/λ is the wave
number and H0 states an offset. As Fig. 1(b) shows, a fit of Hz in Eq. (1) to the
experimental data reveals a good agreement. In addition to the spatially modulated
field from the array described above, we superimpose a homogeneous magnetic field
H0 created by a pair of Helmholtz coils. Thus, H0 and ∆H can be controlled by two
independent currents.
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The described modulation array is mounted below the bottom of a container machined
from PerspexTM. It contains a block shaped cavity with a length of 120mm, a width
of 100mm and a height of 25mm. This cavity is filled with 30ml of ferrofluid EMG909
from Ferrotec Corporation (density ρ = 994.5 kg/m3, surface tension 23.37mN/m). The
ferrofluid EMG909 consists of magnetite particles dispersed in kerosene. Its nonlinear
magnetization curve is plotted in Fig. 2. We measured M(H) using a commercial vibrat-
ing sample magnetometer (LakeShore VSM 7404). To represent M(H) for modeling, we
used the approximation by Vislovich et al. for a nonlinear magnetization [8]. It describes
the magnetization as

Mvis(H) = Msat
H

H + Msat

χi

. (2)

The fit yields the two parameters Msat = 15.2 kA
m and χi = 0.99.
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Figure 2: Magnetization of the ferrofluid EMG909 as a function of the internal magnetic
field. The points denote experimental data, and the curve is a fit of Eq. (2).

2 Experimental Results

Applying the modulated magnetic field to the layer of ferrofluid causes the flat surface
of the liquid to deform periodically. This deformation is driven by the Kelvin force
since the magnetized ferrofluid is subjected to a periodically varying field gradient. To
characterize the deformation, we record X-ray transmission images of the fluid layer
to measure its thickness for the whole surface at the same time. This method has
been described in detail in Refs. [9, 10]. The deformation amplitude of the ferrofluid’s
free surface depends on ∆H and H0. To resolve this dependance, the field offset is
kept constant at µ0H0 = 20.8mT, while the modulation amplitude ∆H is successively
increased from zero. As the amplitude of the field modulation increases, liquid ridges
build up. Figure 3(a) depicts the deformed surface for a modulation of µ0∆H = 0.27mT.

As the black symbols in Fig. 3(b) indicate, the surface already shows some periodic
deformation in the absence of a spatial modulation of the applied magnetic field. In order
to measure the amplitude of the deformation, the data are fitted by a phase shifted sine
with two higher harmonics (wave numbers k, 2k and 3k) and a constant offset. As a
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Figure 3: (a) Measured height profile of the fluid layer under spatial forcing. The field off-
set is µ0H0 = 20.8mT, while the amplitude of modulation is µ0∆H = 0.27mT.
The layer thickness of the liquid is color coded as shown by the indicator bar.
The drawn isolines are equally spaced each 0.3mm. The two vertical black lines
mark the region displayed in (b). (b) Averaged fluid height of the innermost
ten columns (3.6mm) for four different values of the modulation amplitude as
nominated by the inset.

measure for the amplitude of deformation, only the amplitude of the fundamental mode
k is taken into account. The resulting dataset is depicted in Fig. 4a.

3 The self focusing effect

Under the deformed surface of a polarizable fluid, a self focusing of the magnetic field
occurs. To characterize this effect with a convenient parameter, we first calculate the
field Hflat under the artificial assumption of a flat surface. The parameter is then defined
as the dimensionless ratio between the realistic field and Hflat.

To derive a relation between the amplitude of the surface deformation and the mod-
ulation of the realistic field we use the static form of the ferrohydrodynamic Bernoulli
equation. The free surface must then be in an equilibrium of pressures and the thickness
of the ferrofluid layer is given by ζ(x). Thus, the Bernoulli equation reads

C = ρgζ(x)− µ0

∫ H(ζ)

0
MdH ′ + σK −

µ0

2

(

~M~n
)2

. (3)

Here, C is a constant, g represents the gravitational acceleration and σ is the surface
tension. The normal vector to the surface and the associated curvature read

~n =
1

√

1 + (∂xζ)
2

(

−∂xζ
1

)

and K = div (~n) . (4)

Equation (3) has to be fulfilled for all points along the surface. In approximation, the
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surface shape shall be given by

ζ(x) = h+∆h sin(kx) , (5)

where h denotes the thickness of the undisturbed fluid layer, and ∆h its amplitude of
modulation. Now ∆h can be numerically determined as a function of ∆H. The results
are depicted in Fig. 4(a). The dashed red line gives the result for a linear magnetization
law of the form M = χH, the dotted blue line shows the same for the nonlinear Vislovich
approximation given by Eq. (2). Clearly this does not describe the observed amplitudes
as the deformation of the magnetic liquid’s surface causes a focusing of the magnetic field
towards the maxima of the fluid height and accordingly a decrease of the field strength
at the minima

fconc =
Hreal(ζmax)

Hflat(ζmax)
, freduc = f−1

conc . (6)

Here, Hreal denotes the field strength obtained from the pressure equilibrium in order to
get to the experimentally measured deformation amplitude. To make a proper model,
this focusing has to be taken into account. Without solving the magnetostatic problem
together with the hydrodynamics, we can estimate the influence of the deformed surface
on the magnetic field. Therefore we calculate the dimensionless parameters fconc and
freduc from the experimental data via the pressure equilibrium. The outcome is shown
in Fig. 4(b).

The focusing of the magnetic field has earlier been investigated for fully grown Rosensweig
cusps in Ref. [11]. There, a factor of 1.5 in the alteration of the field has been found. As
our deformations are about one order of magnitude smaller, a change in the magnetic
field of about 3% seems realistic.

Experimentally, we observe a deformation of the surface even without any field mod-
ulation. This can be understood as a spatial oscillatory decay induced by the meniscus
at the walls of the fluid container in the advent of the Rosensweig instability. Such
an effect has been measured previously [9, 10]. The wave number kc is favored by
the nonmonotonous dispersion relation for surface waves on a ferrofluid in a magnetic
field. Note, that the width of the container is close to ten times the critical wavelength
(λc = 9.6mm) of the used ferrofluid.

4 Conclusion and Outlook

The described experiment could successfully produce a well controlled spatially modu-
lated magnetic field and allowed to study the response of a layer of ferrofluid to this
field. Using radioscopy, accurate data about the deformed surface could be gathered.
The measured amplitude of the resulting deformation serves to estimate the amount of
field focusing. This gives a conception of the impact of this effect, as in this case the fo-
cusing amplifies the field modulation by almost one order of magnitude compared to the
case of a flat fluid layer. It remains to be investigated how this amplification depends on
H0. Since the presented calculation uses experimental data to determine the influence
of the deformed surface on the magnetic field further studies are necessary in order to
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Figure 4: (a) Solid squares: Measured amplitude of the surface deformation for ∆B =
µ0∆H (measured in absence of the ferrofluid) and µ0H0 = 20.8mT. The red
dashed (blue dotted) line shows the calculated amplitudes without focusing
for a linear (nonlinear) magnetization law. The overlapping red solid and blue
dot-dashed lines underneath the data points are calculated by using the values
of f shown in (b) for a linear magnetization and nonlinear magnetization,
respectively. (b) Values of f needed to fit the measured amplitudes in (a) for
linear (red solid lines) and nonlinear (blue dash-dotted lines) magnetization.
The red dashed and blue dotted lines at fconc = freduc = 1 correspond to the
case where the focusing by a deformed surface was not taken into account.

calculate the equilibrium shape of the fluid ab initio. The modulation device described
in this paper is ideally suited to force Rosensweig patterns which will be exploited in
forthcoming investigations.
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