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MATRIX DIVISIBILITY SEQUENCES

GUNTHER CORNELISSEN AND JONATHAN REYNOLDS

Abstract. We show that many existing divisibility sequences can be seen as sequences of deter-
minants ofmatrix divisibility sequences, which arise naturally as Jacobian matrices associated to
groups of maps on affine spaces.

1. Introduction

The most famous divisibility sequence is probably the Fibonacci sequence{Fn}n≥1: if m di-
videsn, thenFm dividesFn. This property is shared by other linear recurrent sequences [3], such
as any other Lucas sequence, and by higher degree recurrent sequences known as elliptic divisi-
bility sequences[13, 23]. Recent years have witnessed a revived and increasing interest in such
sequences[11, 12, 14, 15, 16], alongside applications in cryptography[18, 21]and undecidability
[8, 10]. In the current paper, we argue that – in a non-tautological way – behind each of these
divisibility sequences lies hidden a naturally defined divisibility sequence of matrices, such that
the given divisibility sequences occurs as the determinantof the sequence of matrices.

The plan for the paper is as follows: we shall first introduce the general notion of a matrix
divisibility sequence indexed by a semigroup. Then we will see how a faithful representation of
the semigroup by endomorphisms of an affine space gives rise to a matrix divisibility sequence, by
considering the Jacobian matrices of the endomorphisms. Wewill show how most of the commonly
known divisibility sequences (mentioned briefly above) arise as determinants of matrix divisibility
sequences through interesting semigroups of endomorphisms of affine spaces, often associated to
a representation of addition in an algebraic group. For example, Lucas sequences are associated to
the2× 2 Borel group. We also construct theelliptic matrix divisibility sequencethat underlies the
usual elliptic divisibility sequences, and prove that it has primitive right matrix divisor classes.

2. Matrix divisibility sequences

In this section, we introduce general matrix divisibility sequences over a ringS, indexed by a
semigroupΓ, and we define primitive divisor classes of matrix divisibility sequences.
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2 G. CORNELISSEN AND J. REYNOLDS

2.1. Definitions. Let S denote a commutative unital ring andMatd(S) the ring ofd × d matrices
overS. A (right) divisor class of a matrixM ∈ Matd(S) is a cosetGLd(S) · M of M in the
left quotient ofMatd(S) by the invertible matricesGLd(S) overS. A matrixM is said to (right)
dividea matrixN if there exists a matrixQ such thatN = QM . If M (right) dividesN , then any
element of the divisor class ofM also right dividesN .

2.2. Example. An interesting special case of matrix divisibility is that of integer matrices (i.e.,
S = Z). In this case, the right divisor classes of a matrixM are in bijection with subgroups of the
cokernelZd/M⊤Zn of left multiplication by the transposeM⊤ of M , cf. [4].

We will only consider right division from now on, and hence frequently leave out “right” from
the terminology.

2.3. Definitions. Let (Γ, ·) denote a (not necessarily commutative) semigroup. A divisibility se-
quence of matrices over a commutative ringS, indexed byΓ, is a collection of matrices

{Mα}α∈Γ
in Matd(S), such that ifα right dividesβ in Γ, thenMα right dividesMβ in Matd(S). A primitive
divisor classof a termMα of such a sequence is a right divisor class ofMα that is not a right
divisor class of anyMβ for β a right divisor ofα.

If {Mα}α∈Γ is a matrix divisibility sequence, then

{det(Mα)}α∈Γ
is a divisibility sequence consisting of elements from the ring S. This is obvious from the multi-
plicativity of the determinant.

In general, divisibility of matrices is strictly stronger than divisibility of their determinants. For
example, the matricesdiag(1, 2) anddiag(2, 1) are not right or left divisors of each other over the
integers, although of course, their determinants are. Thus, it appears that the theory presented here
is a strict superset of the existing one. Over a PID, divisibility of matrices is in general also stronger
than divisibility of their individual elementary divisorsin the Smith Normal Form.

3. Matrix divisibility sequences arising from endomorphisms

We produce a natural source of matrix divisibility sequences, as Jacobian matrices of endomor-
phisms of affine space.

3.1. Definitions. As before, let(Γ, ·) denote a semigroup,S a commutative unital ring. Now let

[·] : Γ →֒ End(Ad
S) : α 7→ [α]

denote a faithful representation ofΓ into the group (under composition) of endomorphisms of
affine d-spaceAd

S over S (i.e., morphismsAd
S → Ad

S). Let x ∈ Ad(S′) be a point in some
ring extensionS → S′. Thematrix divisibility sequence associated to(Γ, [·]) is the sequence of
Jacobians{Jα}α∈Γ(x), with Jα andd× d matrix whose(i, j)-entry is given by

(Jα)i,j := ∂([α](x))i)/∂xj .
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The associateddeterminantal divisibility sequenceis given by

{det(Jα)(x)}α∈Γ.

3.2. Example. A trivial example: setΓ = (Z≥0, ·), and[n] : A1
Z
→ A1

Z
: x 7→ xn. Then indeed

[mn] = [m] ◦ [n], and the associated (matrix) divisibility sequence isnxn−1. At x = 1, this is just
the divisibility sequence of integers1, 2, 3, . . . .

The following facts are obvious, but they represent the basic idea in our definition:derivatives
turn composition into multiplication.

3.3. Proposition. A matrix divisibility sequence associated to(Γ, [·]) as before is indeed a matrix
divisibility sequence: ifα right dividesβ in Γ, then for anyx ∈ Ad(S′), the matrixJα(x) right
dividesJβ(x) in the semigroup ofd× d-matricesMatn(S), anddet(Jα(x)) dividesdet(Jβ(x)) in
S.

Proof. Write β = γ · α in Γ. Then[β] = [γ] ◦ [α]. The chain rule for the Jacobian matrix implies
that for anyx ∈ Ad(S′), we have

Jβ(x) = Jγ([α]x) · Jα(x)

in Matd(S). One can then simply take determinants of this identity. �

3.4. Remark. We have included the case of a general semigroupΓ, instead of focussing on the
(positive) integers as index set for the sequence, because some natural examples arise from elliptic
curves with complex multiplication[22], and even noncommutative semigroups occur naturally
from supersingular elliptic curves over infinite fields of positive characteristic.

3.5. Remark. A more general case would arise when one replaces affine spaceAd by an algebraic
varietyX. If [·] : Γ →֒ End(X) is a representation, then one may consider the pullback of[α] to
the tangent bundle

d[α] : TX → TX,

which then satisfies the chain rule

d[αβ](x) = d[α](βx) ◦ d[β](x).

Instead of taking a determinant, one may construct the highest exterior power

det d[α] :
∧d

TX →
∧d

TX

as automorphisms of the canonical bundle
∧d TX. In general, however, there is no canonical

choice for compatible coordinates in tangent spaces at different points (as there is on affine space),
so that this does not lead to a “numerical” divisibility sequence. Therefore, we will not consider
this more general setting here.



4 G. CORNELISSEN AND J. REYNOLDS

4. A construction of endomorphisms from algebraic groups

A natural context for endomorphism representations is one that arises from the endomorphisms
of a linear algebraic group, as follows. Let(G,+) denote an affine algebraic group over a fieldk,
and letΓ ⊆ Endk(G) denote a finitely generated semisubgroup of the algebraic group endomor-
phisms ofG. Fix an affine embedding ofG into Ad. Choose generatorsγ1, . . . , γn for the group,
and fix an algebraic formula〈γi〉 for the action of the generators on the affine embedding, and fix
an algebraic formula for the product and inverse in the groupin the given embedding. Now define
a representation[·] : Γ → End(Ad) by [

∑
aiγi](x1, . . . , xd) :=

∑
ai〈γi〉(x1, . . . , xd), whereΣai

is computed using the given formulas for+ and− in the group.

4.1. Example. Example 3.2 fits into this framework, if we considerx 7→ xm as iterates of the
multiplication map on the multiplicative groupGm. A more interesting example is the following:

4.2. Example(Borel group and Lucas sequences). Consider the Borel groupB of 2 × 2 matrices
with the affine embedding

B → A3 :

(
X Y
0 Z

)
7→ (X,Y,Z),

and the multiplication formula

(X1, Y1, Z1)⊙ (X2, Y2, Z2) := (X1X2,X1Y2 + Y1Z2, Z1Z2),

corresponding to the product of matrices, and a similar one for the inverse. Now, forn ∈ N = Γ,
consider the endomorphisms given by

[n](X,Y,Z) = (X,Y,Z) ⊙ · · · ⊙ (X,Y,Z)︸ ︷︷ ︸
n times

= (Xn, Y
Xn − Zn

X − Z
,Zn).

The associated matrix divisibility sequences of Jacobiansof [n] is

Jn(X,Y,Z) =




nXn−1 0 0

Y · P (X,Z) Xn−Zn

X−Z
Y P (Z,X)

0 0 nZn−1


 ,

with

P (X,Z) =
nXn(X − Z) + Z(Xn − Zn)

(X − Z)2
,

and the associated determinant sequence is

det(Jn)(X,Y,Z) = n2Xn−1Zn−1X
n − Zn

X − Z
,

an inocuous modification of the Lucas sequence forX andZ (and independent ofY ).

4.3. Example. Similarly, taking powers of matricesM ∈ GL(2) leads to a determinantal divisi-
bility sequence of the form

n 7→ n2

β
· det(M)n−1 ·

((
α−√

β

2

)n

−
(
α+

√
β

2

)n)2
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with α = tr(M) andβ = tr2(M)−4det(M). Here, whenβ = 0 (i.e., the matrix has two identical
eigenvalues), the formula should be understood in the limitasβ → 0, which givesn4(α/2)4(n−1).

It could be interesting to consider the determinantal divisibility sequence of more exotic linear
algebraic groups.

One might wonder whether for Lucas sequences, one can do withone dimension less, but this
is not even true for Mersenne sequences and general sets of endomorphisms of the affine line, as a
simple integration proves:

4.4. Proposition. A generalized Mersenne sequence{xn − 1}n≥1 cannot occur as a matrix divis-
ibility sequence associated to a set of endomorphisms ofA1, i.e., in dimensiond = 1.

Proof. If so, then there are polynomialsfn such that

xn − 1 =
dfn
dx

(x).

By integration, we find that

fn(x) =
xn+1

n+ 1
− x+ cn

for some constantscn, but thenn 7→ fn cannot be a representation, because it already fails to
satisfyfmn = fm ◦ fn (for example,deg(fm(fn(x))) = (m+1)(n+1) 6= mn = deg(fmn). �

In connection with applications of divisibility sequencesin logic, we record the following. Re-
call that a subsetX ⊆ Zd is calledDiophantineif there exists an algebraic varietyV defined over
Z and a morphismπ : V → Ad defined overZ, such that the image of the set of integral points of
X is the given set:π(V (Z)) = X.

4.5. Proposition. Suppose{Mn}n∈N is a matrix divisibility sequence that arises as above from
an affine algebraic groupG/Z, evaluated at a pointP ∈ G(Z). Then{Mn}n∈N is a Diophantine
subset ofZd2 , and the associated determinant sequence{det(Mn)} is a Diophantine subset ofZ.

Proof. By the David-Putnam-Robinson-Matijasevich theorem (see,e.g., [17]), Diophantine sets
overZ are the same as recursively enumerable sets overZ. We prove that the set{Mn} is recur-
sively enumerable. The formula that expresses[n]x in algebraic terms, for a general pointx ∈ G,
is computable in finite time on a Turing machine. The same holds for its Jacobian matrix. Hence
also the values of the Jacobian matrices atP are computable in finite time. Now the set{Mn}
can be enumerated by running throughn. The same holds for the determinant sequence, since
determinants are computable in finite time. �

4.6. Remark. For a set of endomorphisms of a projective algebraic group (e.g., an abelian variety),
one can use the general construction from Remark 3.5. One mayalso try to adapt the previous
method from affine groups, by fixing an equation for addition in homogeneous coordinates and
consider it on the affine cone over the group. (A particularlysimple example of such a formula
arises from the complete group law on the representation of an elliptic curve in Edwards form, cf.
[9], [2]) However, in general one will then only have a projective composition formula

[αβ](P ) = λα,β(P )[α]([β]P ),
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for some functionsλα,β onG — from which the associated Jacobian matrix divisibility sequence
will not in general be multiplicative, but rather satisfy

Jαβ(P ) = λα,β(P )Jα([β]P )Jβ(P ) + (∇λα,β(P ))⊤ · [β]P.
If P ∈ G(S′) is a point whoseΓ-orbit stays within a fixed affine chart, then it is possible to

extend the previous method.
Another approach to general divisibility sequences, basedon generalized GCD’s, is due to Sil-

verman[20]. For a further approach to (non-divisibility!) sequences in higher genus, see Cantor
[6] (where ther-th division polynomial is zero at a pointP if and only if rP is in the theta-divisor
— compare with[5] for another interpretation of these sequences).

In the next section, we will use a slightly different method for elliptic curves, based on the theory
of division polynomials.

5. Matrix elliptic divisibility sequences: formal construction

We will now show how elliptic divisibility sequences fit intothe matrix divisibility picture, using
division polynomials. LetE denote a cubic curve with projective equation

Y 2Z = X3 +AXZ2 +BZ6.

over the ringS = Z[A,B]. The non-singular points ofE over any field containingS form a
group. Multiplication on the non-singular points of this cubic curve can be expressed using classical
division polynomials

n · (x, y) =
(

φn(x)

ψ2
n(x, y)

,
ωn(x, y)

ψ3
n(x, y)

)
.

We refer to[7], [1] and[20] (ex. III.3.7) for the definition of these polynomials. Here,φn and

ψ̃n := ψ2
n

only depend onx. We now consider the following map of affine 2-space

[n] : A2 → A2 : (X,Z) 7→
(
Zn2

φn(
X

Z
), Zn2

ψ̃n(
X

Z
)

)
.

The multiplicative property(mn)P = m(nP ) translates to[mn] = [m]◦[n] (compare[7], formula
(5)), so that[·] indeed defines a faithful representation ofΓ = N as a group of endomorphisms of
affine 2-spaceA2. Hence the associated sequence of Jacobian matrices is a matrix divisibility
sequence, and its determinant is a divisibility sequence inthe usual sense. We now establish a
formula for these sequences in terms of known division polynomials. For this, we first compute
some partial derivatives:

∂X([n] · (X,Z))
∂X

= Zn2−1φ′n(X/Z)

and
∂X([n] · (X,Z))

∂Z
= −XZn2−2φ′n(X/Z) + n2Zn2−1φn(X/Z)

= Zn2−2(n2Zφn(X/Z)−Xφ′n(X/Z)).
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Also
∂Z([n] · (X,Z))

∂X
= Zn2−1ψ̃′

n(X/Z)

and
∂Z([n] · (X,Z))

∂Z
= Zn2−2(n2Zψ̃n(X/Z)−Xψ̃′

n(X/Z)).

We conclude:

5.1. Proposition. The sequence

Jn(X,Z) := Zn2−2

(
Zφ′n(X/Z) n2Zφn(X/Z)−Xφ′n(X/Z)
Z(ψ2

n)
′(X/Z) n2ψ2

n(X/Z)−X(ψ2
n)

′(X/Z)

)

is a matrix divisibility sequence, which we call amatrix elliptic divisibility sequence, with associ-
ated so-calleddeterminant elliptic divisibility sequence

det(Jn)(X,Z) = n2Z2(n2−1)W (φn, ψ̃n)(X/Z),

whereW (f, g) = f ′g−fg′ is the Wronskian determinant of two functionsf, g, andψ̃n := ψ2
n. �

5.2. Remark. By Cassels’ Theorem I in[7], the polynomial derivativesφ′n(x) andψ̃′
n(x) have all

their coefficients divisible byn; we conclude that the matrixJn(X,Z) is divisible by the diagonal
matrixdiag(n, n).

We can further simplify the Wronskian determinant in Proposition 5.1, as follows: by taking
derivatives on both sides of

x(n · (x, y)) = φn(x)

ψ̃n(x)

we find that
dx(n · (x, y))

dx
=
W (φn, ψ̃n)

ψ̃2
n

.

To use℘-functions, we switch to classical Weierstrass form, by writing x = x1/36 and y =
y1/432, so that(x1, y1) satisfies the Weierstrass equation in traditional formy21 = 4x31 − g2x− g3
for g2 = −5184A and g3 = −186624B, and we can writex1 = ℘(z), y1 = ℘′(z) for ℘ the
Weierstrass℘-function of the corresponding lattice. Then

dx(n · (x, y))
dx

=
1

36

d℘(nz)

dx
=

n

36
℘′(nz)

dz

dx
= n

℘′(nz)

℘′(z)
,

which we further simplify to

n
y([n](x, y))

y
=

2n

ψ2
y([n](x, y)) =

1

ψ4
n

(
nψ2n

ψ2

)
,

so that we finally find

5.3. Proposition. The determinant elliptic divisibility sequence from Proposition 5.1 equals

det Jn(X,Z) = n3Z2(n2−1)ψ2n

ψ2
(X/Z) = 2n3Z2(n2−1)ψnωn

ψ2
(X/Z). �
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This result shows that every elliptic divisibility sequence occurs (up to passing to a field exten-
sion to divide a given point by2) as a determinant divisibility sequence.

5.4. Remark. We have already seen how Lucas sequences arise from the2× 2 Borel group. Since
all Lucas sequences also occur as elliptic divisibility sequence for singular cubics, we immediately
find from the previous section that they, too, fit into this framework ([23], Thm. 22.1).

6. Matrix elliptic divisibility sequences: integral values and primitive divisors

We now turn to the issue of actually substituting a rational point on the curve into these new
sequences.

6.1. Proposition. Suppose thatP = (x, y) is a rational point of infinite order on an elliptic curve
E/Q with chosen short Weierstrass equation with integral coefficients, and writex = a/b2 in
coprime integersa, b. The determinantal divisibility sequence

detJn(a, b
2)

is integer valued, and has primitive prime divisors forn sufficiently large.

Proof. First of all, we quote a result of Ayad ([1]) to the effect that if we write

nP =

(
An

B2
n

, yn

)
,

with An, Bn coprime integers, then

b2n
2

ψ2
n(a/b

2) = B2
nQn,

whereQn is only divisible by primesp for whichP is singular modulop on the given model (so in
particular,Qn has only prime factors from the divisors of the discriminant∆E of the given curve).
This means that

detJn(a, b
2) = n3b4(n

2−1)ψ2n

ψ2
(a/b2) = n3

B2n

B2
·Q′

n,

whereQ′
n has only prime divisors from∆E .

Now Silverman has proven the elliptic analogue of Zsigmondy’s theorem[19], implying that
B2n/B2 has a primitive prime divisor, say,p, for sufficiently largen (sinceP has infinite order in
E(Q)). We claim thatp is coprime ton for n sufficiently large. Indeed, supposep | n. Sincep is
prime and primitive,P mod p has order2n in E(Fp), so that by the Hasse-Weil bound

2n < p+ 1 + 2
√
p < n+ 1 + 2

√
n,

leading ton < 6. Hence forn sufficiently large (n > 6, n large enough for Silverman’s result
to hold and for2nP not to be anS-integer, whereS contains the primes dividing∆E), p is also
primitive for det Jn(a, b). �

We finish this section by proving a matrix version of the existence of primitive divisors, based
on the following general lemma:

6.2. Lemma. Let {Mn}n∈N denote a matrix divisibility sequence in integral matricesMn ∈
Matn(Z). If the associated determinantal divisibility sequence{det(Mn)}n∈N has primitive
prime divisors, then the matrix divisibility sequence has primitive right divisor classes.
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Proof. A nice way to organize the proof is by using the correspondence from Example 2.2, which
implies thatMn has a primitive right divisor in and only ifZd/M⊤

n Zd has a subgroup that is not
in the image of any of the natural reduction mapsZd/M⊤

mZd → Zd/M⊤
n Zd for anym | n with

m 6= n. But since we assume thatdet(Mn) has a prime divisorp that doesn’t divide anydet(Mm)
for anym | n with m 6= n, p divides one of the elementary divisors ofMn, but none of those of
suchMm. This implies that the subgroupZd/pZd corresponding top has non-trivial reduction, so
corresponds to a primitive right divisor class. �

6.3. Corollary (Elliptic matrix Zsigmondy theorem). Suppose thatP = (x, y) is a rational point
on an elliptic curveE/Q with chosen short Weierstrass equation with integral coefficients, and
write x = a/b2 in coprime integersa, b. There exists an integerN such that all the terms of
a matrix elliptic divisibility sequence{Jn(a, b2)}n∈N with n > N have primitive right matrix
divisors.

Proof. This follows from the previous lemma since the associated determinantal sequence (cf.
Proposition 5.1) has primitive prime divisors by Proposition 6.1. �

6.4. Remark. One may also ask for ‘converse theorems’ in the following style: if the height of
the entries of the matrices{Mn} has a specific growth behaviour inn, does it follow (at least
generically) that its determinant sequence has a ‘related’growth behaviour?

6.5. Remark. Linear and elliptic divisibility sequences satisfy recurrence relations (provided their
terms are chosen with the right sign), so we ask: Is there a choice of representatives for the divisor
classes corresponding to a Lucas or ellipticmatrixdivisibility sequence as in Proposition 5.1, such
that these representative matrices themselves satisfy a polynomial recurrence relation (i.e., with co-
efficients that do not depend on the index of the term of the sequence)? We have checked by direct
computation that it isnot the case that the “Borel” matrix sequenceJn(X,Y,Z) from Example 4.2
satisfies a second order linear recurrence in matrices of theform

Jn = A · Jn−1 +B · Jn−2

for matricesA = A(X,Y,Z) andB = B(X,Y,Z) independent ofn. One might argue that in the
non-commutative ring of matrices, a second order linear recurrence should be of the form

Jn = A · Jn−1 ·B + C · Jn−2 ·D
for matricesA,B,C,D independent ofn, but we did not investigate this possibility any further.
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