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MATRIX DIVISIBILITY SEQUENCES
GUNTHER CORNELISSEN AND JONATHAN REYNOLDS

Abstract. We show that many existing divisibility sequences can b@& seesequences of deter-
minants ofmatrix divisibility sequenceswvhich arise naturally as Jacobian matrices associated to
groups of maps on affine spaces.

1. Introduction

The most famous divisibility sequence is probably the Féwmn sequencéF, },>1: if m di-
videsn, thenF;,, divides F,,. This property is shared by other linear recurrent seque8esuch
as any other Lucas sequence, and by higher degree recuepregrees known as elliptic divisi-
bility sequence$13,/23] Recent years have witnessed a revived and increasingshier such
sequencefil1,[12[14[ 15, Tg]lalongside applications in cryptograpfi8,/21] and undecidability
[8,[10]. In the current paper, we argue that — in a non-tautologial w behind each of these
divisibility sequences lies hidden a naturally defined sibility sequence of matrices, such that
the given divisibility sequences occurs as the determioftite sequence of matrices.

The plan for the paper is as follows: we shall first introdulce general notion of a matrix
divisibility sequence indexed by a semigroup. Then we val $iow a faithful representation of
the semigroup by endomorphisms of an affine space givesorseniatrix divisibility sequence, by
considering the Jacobian matrices of the endomorphismsvilghow how most of the commonly
known divisibility sequences (mentioned briefly above¥aids determinants of matrix divisibility
sequences through interesting semigroups of endomorplo$mffine spaces, often associated to
a representation of addition in an algebraic group. For @@nhucas sequences are associated to
the2 x 2 Borel group. We also construct tledliptic matrix divisibility sequencéhat underlies the
usual elliptic divisibility sequences, and prove that it pgimitive right matrix divisor classes.

2. Matrix divisibility sequences

In this section, we introduce general matrix divisibilitgggiences over a rin§, indexed by a
semigroupl’, and we define primitive divisor classes of matrix divistigisequences.
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2.1. Definitions. Let S denote a commutative unital ring abht,(.S) the ring ofd x d matrices
over S. A (right) divisor class of a matrix\/ € Mat,(S) is a cosetGL4(S) - M of M in the
left quotient ofMat,(.S) by the invertible matrice&L;(.S) overS. A matrix M is said to (right)
dividea matrixV if there exists a matrix) such thatv = QM. If M (right) dividesN, then any
element of the divisor class @ff also right dividesV.

2.2. Example. An interesting special case of matrix divisibility is thatinoteger matrices (i.e.,
S = Z). In this case, the right divisor classes of a matfvixare in bijection with subgroups of the
cokernelZ? /M T Z" of left multiplication by the transpos&/ " of M, cf. [4].

We will only consider right division from now on, and henceduently leave out “right” from
the terminology.

2.3. Definitions. Let (I", -) denote a (not necessarily commutative) semigroup. A divitsi se-
guence of matrices over a commutative risigndexed byl", is a collection of matrices

{Ma}ael"

in Matq(S), such that it right dividesg in T', then/,, right dividesMg in Mat4(.S). A primitive
divisor classof a term M, of such a sequence is a right divisor classMf that is not a right
divisor class of anyl/ for 3 a right divisor ofa.

If {M,}aer is a matrix divisibility sequence, then

{det(Ma)}aeF

is a divisibility sequence consisting of elements from timg 1S. This is obvious from the multi-
plicativity of the determinant.

In general, divisibility of matrices is strictly strongédran divisibility of their determinants. For
example, the matricediag(1,2) anddiag(2, 1) are not right or left divisors of each other over the
integers, although of course, their determinants are. ,Tihappears that the theory presented here
is a strict superset of the existing one. Over a PID, diMisjdf matrices is in general also stronger
than divisibility of their individual elementary divisois the Smith Normal Form.

3. Matrix divisibility sequences arising from endomorphigns

We produce a natural source of matrix divisibility sequenes Jacobian matrices of endomor-
phisms of affine space.

3.1. Definitions. As before, lefT", -) denote a semigroup; a commutative unital ring. Now let
[]: T < End(A%): a — [a]

denote a faithful representation bfinto the group (under composition) of endomorphisms of
affine d-spaceA¢ over S (i.e., morphismsA¢ — A%). Letz € A4(S’) be a point in some
ring extensionS — S’. Thematrix divisibility sequence associated (i, [-]) is the sequence of
Jacobiang J, }aer (), with J, andd x d matrix whose(i, j)-entry is given by

(Ja)ij = 0([a]()):)/0z;.
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The associatedeterminantal divisibility sequends given by

{det(*]a)(x)}ael"'

3.2. Example. A trivial example: sel’ = (Zxo, ), and[n]: AL — AL: 2z — 2. Then indeed
[mn] = [m] o [n], and the associated (matrix) divisibility sequence:i&—!. At x = 1, this is just
the divisibility sequence of integets2, 3, .. ..

The following facts are obvious, but they represent thedoasa in our definitionderivatives
turn composition into multiplication

3.3. Proposition. A matrix divisibility sequence associated(Io, -]) as before is indeed a matrix
divisibility sequence: ity right divides3 in T', then for anyz € A%(S’), the matrix.J,,(x) right
dividesJs(z) in the semigroup of x d-matricesMat,,(.S), anddet(J,(x)) dividesdet(Jz(x)) in

Proof. Write 5 = v - ain I'. Then[3] = [y] o [a]. The chain rule for the Jacobian matrix implies
that for anyz € A%(S’), we have

Jp(x) = Jy([o]z) - Ja(2)
in Mat4(S). One can then simply take determinants of this identity. O

3.4. Remark. We have included the case of a general semigioumstead of focussing on the
(positive) integers as index set for the sequence, because isatural examples arise from elliptic
curves with complex multiplicatioffi22], and even noncommutative semigroups occur naturally
from supersingular elliptic curves over infinite fields ofsgive characteristic.

3.5. Remark. A more general case would arise when one replaces affine ggabg an algebraic
variety X. If []: I — End(X) is a representation, then one may consider the pullba¢k]db
the tangent bundle

dla]: TX - TX,
which then satisfies the chain rule
dlaf(z) = da](Bz) o d[B](x).

Instead of taking a determinant, one may construct the kighderior power
d d
detdla]: \ TX - \ TX

as automorphisms of the canonical bungzi{éTX. In general, however, there is no canonical
choice for compatible coordinates in tangent spaces ardift points (as there is on affine space),
so that this does not lead to a “numerical” divisibility seque. Therefore, we will not consider
this more general setting here.
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4. A construction of endomorphisms from algebraic groups

A natural context for endomorphism representations is batdrises from the endomorphisms
of a linear algebraic group, as follows. Lgk, +) denote an affine algebraic group over a fie)d
and letl’ C Endy(G) denote a finitely generated semisubgroup of the algebraigpgendomor-
phisms ofG. Fix an affine embedding a into A?. Choose generators, .. ., v, for the group,
and fix an algebraic formuléy;) for the action of the generators on the affine embedding, and fi
an algebraic formula for the product and inverse in the giaupe given embedding. Now define
arepresentatiop]: I' — End(A9) by [> aivil(z1, ..., 2zq) = > a;i(y:)(z1, ..., 2q), WhereXa;
is computed using the given formulas ferand— in the group.

4.1. Example. Example[3.R fits into this framework, if we consider— z™ as iterates of the
multiplication map on the multiplicative grou@,,,. A more interesting example is the following:

4.2. Example(Borel group and Lucas sequence€jonsider the Borel groupB of 2 x 2 matrices
with the affine embedding

XY

3.
B—>A.<O 7

> — (X,Y,2),

and the multiplication formula
(X1,Y1,21) © (X2, Ys, Z2) = (X1 Xo, X1 Y2 + Y122, Z1 Z3),
corresponding to the product of matrices, and a similar onéhe inverse. Now, fon € N =T,
consider the endomorphisms given by
Xn _zn

nl(X,Y.2) = (X.Y,2) 0 0 (X,Y,2) = (X" Y ——

n times

The associated matrix divisibility sequences of Jacobidiis] is

2.

nXnt 0 0
Jn(X,Y, Z) = ( Y-P(X,Z) =% YP(ZX) ) ,
0 0 nZn1
with
nX"(X - Z)+ Z(X" - Z")
(X —2)? ’

P(X,7) =

and the associated determinant sequence is
D GEAL
X-zZ’
an inocuous modification of the Lucas sequenceXandZ (and independent df).

det(J,)(X,Y, Z) = n?X" 1771

4.3. Example. Similarly, taking powers of matriced/ € GL(2) leads to a determinantal divisi-
bility sequence of the form

o (252) (252 )
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with o = tr(M) andj = tr?(M) — 4det(M). Here, whers = 0 (i.e., the matrix has two identical
eigenvalues), the formula should be understood in the ksjit — 0, which givesn®*(«/2)4*—1),

It could be interesting to consider the determinantal dhilisy sequence of more exotic linear
algebraic groups.

One might wonder whether for Lucas sequences, one can downgldimension less, but this
is not even true for Mersenne sequences and general setdarherphisms of the affine line, as a
simple integration proves:

4.4. Proposition. A generalized Mersenne sequedaé — 1},,~; cannot occur as a matrix divis-
ibility sequence associated to a set of endomorphism#s'of.e., in dimensionl = 1.

Proof. If so, then there are polynomiafs such that

dfn
"—1=-"—(2).
T T ()
By integration, we find that
l,n-l—l
fnlx) = i —zT+cy

for some constants,,, but thenn — f,, cannot be a representation, because it already fails to
satisfy finn = fm o fn (for exampledeg(fin(fn(2))) = (m+1)(n+1) # mn = deg(fmn). O

In connection with applications of divisibility sequendadogic, we record the following. Re-
call that a subsek” C Z¢ is calledDiophantineif there exists an algebraic variety defined over
Z and a morphismr: V — A? defined oveiZ, such that the image of the set of integral points of
X is the given setrr(V(Z)) = X.

4.5. Proposition. Suppose{ M, }»en is a matrix divisibility sequence that arises as above from
an affine algebraic groug=/Z, evaluated at a poinP € G(Z). Then{M,, } ,en is a Diophantine
subset oZ?*, and the associated determinant sequefibe (M,,) } is a Diophantine subset &.

Proof. By the David-Putnam-Robinson-Matijasevich theorem (seg., [17]), Diophantine sets
over Z are the same as recursively enumerable setsZvé&¥e prove that the s€th/,, } is recur-
sively enumerable. The formula that expressés in algebraic terms, for a general pointe G,

is computable in finite time on a Turing machine. The samesfudits Jacobian matrix. Hence
also the values of the Jacobian matriced’aare computable in finite time. Now the sgi/,, }

can be enumerated by running through The same holds for the determinant sequence, since
determinants are computable in finite time. O

4.6. Remark. For a set of endomorphisms of a projective algebraic group, @n abelian variety),
one can use the general construction from Rerhark 3.5. Oneatsaytry to adapt the previous
method from affine groups, by fixing an equation for additiorhomogeneous coordinates and
consider it on the affine cone over the group. (A particulaitmple example of such a formula
arises from the complete group law on the representatiom eflgtic curve in Edwards form, cf.
[9], [2]) However, in general one will then only have a projective position formula

[@B](P) = Aa,p(P)[([B]P),
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for some functions\, g on G — from which the associated Jacobian matrix divisibilitgjsence
will not in general be multiplicative, but rather satisfy

Jag(P) = Xas(P)Ja([B1P)J5(P) + (VAas(P)) " - [B]P.

If P € G(5) is a point whosd -orbit stays within a fixed affine chart, then it is possible to
extend the previous method.

Another approach to general divisibility sequences, basegeneralized GCD’s, is due to Sil-
verman[20]. For a further approach to (non-divisibility!) sequencesigher genus, see Cantor
[6] (where ther-th division polynomial is zero at a poi if and only if » P is in the theta-divisor
— compare witH5] for another interpretation of these sequences).

In the next section, we will use a slightly different methodélliptic curves, based on the theory
of division polynomials.

5. Matrix elliptic divisibility sequences: formal construction

We will now show how elliptic divisibility sequences fit intbe matrix divisibility picture, using
division polynomials. Letr denote a cubic curve with projective equation

Y?Z = X3+ AXZ? + BZS.

over the ringS = Z[A, B]. The non-singular points of over any field containings form a
group. Multiplication on the non-singular points of thidaticurve can be expressed using classical

division polynomials
Pn () wn(x,y)>
n-(r,y)= ) .
) <1/1%(x,y) i (2,y)
We refer to[[7], [1] and[20] (ex. 111.3.7) for the definition of these polynomials. Heg, and
{/;n = 1/1,%

only depend orx. We now consider the following map of affine 2-space

X ~ X
[n]: A* — A% (X, Z) <Z”2¢n(7), Z”2wn(7)> .

The multiplicative propertymn)P = m(nP) translates tgmn] = [m]o[n] (compard[7], formula
(5)), so that-] indeed defines a faithful representationlof= N as a group of endomorphisms of
affine 2-spaceA?. Hence the associated sequence of Jacobian matrices isria diasibility
sequence, and its determinant is a divisibility sequendienusual sense. We now establish a
formula for these sequences in terms of known division patyials. For this, we first compute
some partial derivatives:

0X([n] - (X, Z))

0X

= 7" (X/Z)
and
0X([n] - (X, 2))
o0z

= —XZ"(X/Z) + 0’2" 9u(X/2)
= Z"2n2Z¢,(X/Z) — X ¢, (X/2)).
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Also 0Z(In] - (X, Z))
=" Y (X/2)
and
8Z([n]a'Z(X, 7)) _ Z"2_2(n221zn(X/Z) — X4 (X)2)).
We conclude:

5.1. Proposition. The sequence

e Z(3) (X/Z) n*i(X/Z) - X(47) (X/Z)
is a matrix divisibility sequence, which we calhzatrix elliptic divisibility sequencgewith associ-
ated so-calleddeterminant elliptic divisibility sequence

det(Jn)(X, Z) = n? 22 DWW (¢, ) (X/2),
whereW (f,g) = f'g— f4' is the Wronskian determinant of two functiohg, andzZn =2, O

5.2. Remark. By Cassels’ Theorem I ifi’], the polynomial derivatives/, (x) andig(az) have all
their coefficients divisible by.; we conclude that the matri%, (X, Z) is divisible by the diagonal
matrix diag(n, n).

We can further simplify the Wronskian determinant in Propas 5.1, as follows: by taking
derivatives on both sides of

r\n-\x = (ﬁn—(fﬂ)
(n-(z,y)) @)
we find that _
& T

To use p-functions, we switch to classical Weierstrass form, bytingiz = z,/36 andy =
y1/432, so that(z1, y;) satisfies the Weierstrass equation in traditional fgim= 423 — gox — g3

for o = —5184A andgs = —186624B, and we can writec; = p(z),y1 = ¢'(z) for p the
Weierstrasgo-function of the corresponding lattice. Then
do(n-(wy) _ 1dp(n) _ 0y e of(n)
dx 36 dx 36 dz 0 (2)

which we further simplify to

so that we finally find

5.3. Proposition. The determinant elliptic divisibility sequence from Prejion[5.1 equals

det Jn(X7 Z) = ’I’L3Z2(n2_1 rl’f;n (X/Z) = 9n 3z2( -1) ¢nwn
2 2

¥ x/2). O
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This result shows that every elliptic divisibility sequenaccurs (up to passing to a field exten-
sion to divide a given point bg) as a determinant divisibility sequence.

5.4. Remark. We have already seen how Lucas sequences arise frointt2eBorel group. Since
all Lucas sequences also occur as elliptic divisibilityusrge for singular cubics, we immediately
find from the previous section that they, too, fit into thisviework (23], Thm. 22.1).

6. Matrix elliptic divisibility sequences: integral values and primitive divisors

We now turn to the issue of actually substituting a ratior@hpon the curve into these new
seguences.

6.1. Proposition. Suppose thaP = (z,y) is a rational point of infinite order on an elliptic curve
E/Q with chosen short Weierstrass equation with integral cciefits, and writer = a/b? in
coprime integers:, b. The determinantal divisibility sequence

det J,, (a, b%)
is integer valued, and has primitive prime divisors fosufficiently large.

Proof. First of all, we quote a result of Ayadf]) to the effect that if we write

Ap
nP = <B_%7yn> )
with A,,, B,, coprime integers, then

b (a/b?) = B2Qu,
whereQ),, is only divisible by primeg for which P is singular modulg on the given model (so in
particular,,, has only prime factors from the divisors of the discriminan of the given curve).
This means that
d 2\ _ . 314(n%-1) Yan 2\ _ 3 Ban /
et Jy(a,b*) =n’b —(a/b*) =n"—/=-Q,,,
(o By

where@)/, has only prime divisors from\ .

Now Silverman has proven the elliptic analogue of Zsigmdmdyeorem[19], implying that
Bs,,/Bs has a primitive prime divisor, say, for sufficiently largen (since P has infinite order in
E(Q)). We claim thatp is coprime ton for n sufficiently large. Indeed, suppoge n. Sincep is
prime and primitive,” mod p has orde2n in E(F),), so that by the Hasse-Weil bound

n<p+1+2/p<n+1+2yn,

leading ton < 6. Hence forn sufficiently large & > 6, n large enough for Silverman’s result
to hold and for2n P not to be anS-integer, where5S contains the primes dividing\g), p is also
primitive for det J,,(a, b). O

We finish this section by proving a matrix version of the estiste of primitive divisors, based
on the following general lemma:

6.2. Lemma. Let {M, },en denote a matrix divisibility sequence in integral matricks, <
Mat, (Z). If the associated determinantal divisibility sequerert(M,,)},en has primitive
prime divisors, then the matrix divisibility sequence hemjive right divisor classes.
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Proof. A nice way to organize the proof is by using the corresponédram Examplé 2]2, which
implies thatM,, has a primitive right divisor in and only &?/M,’ Z¢ has a subgroup that is not
in the image of any of the natural reduction m&s§/M,! Z¢ — Z</M," Z¢ for anym | n with
m # n. But since we assume thatt(1/,,) has a prime divisop that doesn’t divide anglet(M,,)
for anym | n with m # n, p divides one of the elementary divisors bf,,, but none of those of
suchM,,,. This implies that the subgrouf /pZ¢ corresponding te has non-trivial reduction, so
corresponds to a primitive right divisor class. O

6.3. Corollary (Elliptic matrix Zsigmondy theorem)Suppose thaP = (z,y) is a rational point

on an elliptic curveE/Q with chosen short Weierstrass equation with integral coeffits, and

write x = a/b% in coprime integersz,b. There exists an integeN such that all the terms of
a matrix elliptic divisibility sequencé.J,,(a,b?)},en With n > N have primitive right matrix
divisors.

Proof. This follows from the previous lemma since the associate@rdenantal sequence (cf.
Propositiori 5.11) has primitive prime divisors by Propasifb.]. O

6.4. Remark. One may also ask for ‘converse theorems’ in the followindestyf the height of
the entries of the matrice§)M,,} has a specific growth behaviour iny does it follow (at least
generically) that its determinant sequence has a ‘relapeniith behaviour?

6.5. Remark. Linear and elliptic divisibility sequences satisfy re@ance relations (provided their
terms are chosen with the right sign), so we ask: Is there melwd representatives for the divisor
classes corresponding to a Lucas or elliptiatrix divisibility sequence as in Proposition 5.1, such
that these representative matrices themselves satisfy@gmoial recurrence relation (i.e., with co-
efficients that do not depend on the index of the term of theeecg)? We have checked by direct
computation that it imotthe case that the “Borel” matrix sequen&g X, Y, Z) from Examplé 4.2
satisfies a second order linear recurrence in matrices dbthre

Jn:A'Jn—1+B'Jn—2

for matricesA = A(X,Y, Z) andB = B(X,Y, Z) independent of.. One might argue that in the
non-commutative ring of matrices, a second order lineaurreace should be of the form

Jp=A-J,_1-B+C-J,_o-D
for matricesA, B, C, D independent of,, but we did not investigate this possibility any further.
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