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THE BARTH QUINTIC SURFACE HAS PICARD NUMBER 41

SLAWOMIR RAMS AND MATTHIAS SCHÜTT

Dedicated to Wolf Barth

1. Introduction

Quintic surfaces in P3 have been studied extensively by Barth and others, for
instance with a view towards configurations of singularities or lines contained
in them. This paper investigates a specific smooth quintic surface suggested
by Barth for it contains the current record of 75 lines over C (see also [16]).
In what follows the surface will be denoted by Sa. Our main incentive is to
prove that over C the quintic Sa has Picard number 41 (Theorem 2.2). To the
best of our knowledge this is the record Picard number for smooth quintics. In
fact the surfaces with Picard number 43 or 45 exhibited in [10] involved several
rational double point singularities. The previous record of 37 was attained by
the Fermat quintic surface which also contains 75 lines (Remark 2.3).

This note is organised as follows. Section 2 reviews the surface Sa inside a
pencil of quintics with an action of the symmetric group S5. Sections 3 and
4 derive lower and upper bounds for the Picard number by exhibiting certain
quotient surfaces (Godeaux and K3). As a by-product we prove the Tate conjec-
ture for any non-degenerate member of the pencil of quintics (Proposition 4.8).
Throughout we keep the exposition as characteristic free as possible. This also
enables us to work out an explicit non-classical Godeaux surface (Proposition
3.1) compared to Miranda’s implicit results in [8].

2. A pencil of S5-invariant quintics in P3

In this note we consider certain surfaces that belong to the pencil of quintics

(1) Sλ :

{

s1 =
5

6
λs2 · s3 + s5 = 0

}

⊂ P4, λ ∈ K ,

where sk stands for the symmetric polynomial

sk := xk0 + xk1 + xk2 + xk3 + xk4 (k ∈ N)

and K denotes an algebraically closed field of any characteristic. Mostly we
will be concerned with the case K = C, but our methods to investigate these
surfaces will use reduction modulo different primes, and in fact we will also
derive results exclusive to positive characteristic. The factor of 5/6 in front
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2 SLAWOMIR RAMS AND MATTHIAS SCHÜTT

of λ might seem unnatural at first, but in fact it allows us to derive proper
pencils in characteristics 2, 3, 5 by substituting s1 in the quintic polynomial
and eliminating common factors. It should be understood that we always work
with such a proper model of the pencil in the sequel.

The above pencil (albeit without the extra factor) was studied by Barth in order
to find a quintic with three-divisible set of cusps ([4]) and smooth quintics with
many lines ([5]). For the convenience of the reader we list below the facts
from [4], [5] that we will use in the sequel. All of them can be verified by
straightforward computation (possibly with help of a computer program), and
related properties also appear in [16] (see Remark 2.4).

Observe that if we denote by B10 (resp. B15) the curve in P4 given by s1 = s5 =
s2 = 0 (resp. s1 = s5 = s3 = 0), then the base locus of the pencil in question is
the curve B10 ∪B15. One can check by direct computation that the curve B15

consists of the 15 lines

(2) xi1 = xi2 + xi3 = xi4 + xi5 = 0,

where i1, i2, i3, i4, i5 are pairwise different, i.e. {i1, i2, i3, i4, i5} = {0, 1, 2, 3, 4}.
Similarly, the curve B10 is the union of the five conics Ci1 (smooth outside
characteristic 2)

(3) xi1 = x2i2 + x2i3 + x2i4 + xi2xi3 + xi2xi4 + xi3xi4 = s1 = 0.

Therefore, the plane xi1 = s1 = 0 meets the base locus along the three lines
(2) and the conic (3). In particular, the four curves are the only components of
intersection of the plane xi1 = s1 = 0 with an irreducible quintic S that belongs
to the pencil.

Lemma 2.1. A general member of the pencil {Sλ} is smooth.

Proof. It suffices to show that the pencil contains a smooth quintic. The Jacobi
criterion reveals that the special member at λ = 0 is smooth outside character-
istics 3, 13, 17. For the exceptional characteristics, the computations are greatly
simplified by arguing with K3 quotients as in 4.1. Indeed the pencil of elliptic
fibrations (12) is non-degenerate in any odd characteristic, so the argumenta-
tion from Lemma 4.3 and Corollary 4.4 applies, for instance to S3 for p = 13, 17
and S√

−1 for p = 3 (confer Remark 4.5). �

For the special quintic with 75 lines we introduce the following notation:

a := − 2

b+ 2
, where b4 − b3 + 1 = 0.(4)

Throughout the paper Sa stands for the surface given by (1) with λ = a (over
C unless specified otherwise). In the sequel we shall often write S instead of Sλ

when there is no ambiguity from the context.

Suppose that K = C. Then, by [5] (see also [16, Table, p. 2070])

(5) the surface Sλ is smooth exactly for λ 6= −1,−3

2
,−51

50
,−13

25
,−1

2
.
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In particular, the surface Sa is smooth over C (for positive characteristic see
Corollary 4.4). One directly verifies that Sa contains the line

(6) span({(1 : −1 : b : −b : 0), ((b − 1) : 1 : −(b− 1) : 0 : −1)}),
with b given by (4). In fact, the S5-action endows Sa with 60 lines obtained
from (6) by virtue of the symmetries. Thus we already have a good portion of
divisors on Sa. Our main result for this paper is:

Theorem 2.2. Over C, the quintic Sa has Picard number 41.

Remark 2.3. To the best of our knowledge, the Picard number 41 of Sa gives
a new record among smooth complex quintics. In comparison, 43 and 45 have
so far only been realised by desingularisations of quintics with rational double
point singularities in [10]. The previous record of 37 was attained by the Fermat
quintic, so Theorem 2.2 also gives an alternative way to see that Sa and the
Fermat quintic surface cannot be isomorphic over C. In fact the surfaces differ
also in another respect: the Fermat quintic has NS generated by lines (even
over Z by [12]) while any basis of NS(Sa) includes some other divisor class that
will be made visible in the proof of Lemma 3.2.

The proof of Theorem 2.2 proceeds in two steps. First we derive the lower
bound ρ(Sa) ≥ 41 by exhibiting a suitable quotient surface Q of S by a cyclic
group of order 5 (a Godeaux surface studied in section 3). Then we establish
the upper bound ρ(Sa) ≤ 41 through a quotient surface X that is K3 in section
4. Here we use reduction modulo different primes and the Artin-Tate conjecture
in a technique following van Luijk [15].

Remark 2.4. For K = C the pencil {Sλ} has also been studied in [16]. By [16,
Thm 1.2] the pencil in question contains (up to Galois conjugation) exactly
three smooth surfaces that carry a line given by (6). Moreover, no quintic in
the pencil (1) contains more than 75 lines and the surface Sa is the unique (up
to Galois conjugation) element of the pencil which carries the maximal number
of lines. We will not use that result in the sequel, but it certainly motivates our
interest in the quintic Sa.

3. Lower bound – Godeaux quotient

In this section we derive the lower bound ρ(Sa) ≥ 41 (Lemma 3.2). At first
we exhibit a Godeaux surface Q that arises from S as a quotient by a cyclic
group of order 5 acting without fixed points. Then a close examination of the
75 lines on Sa and their images under the quotient map implies the inequality
in question.

Consider the automorphism R : P4 → P4 defined as

R(x0 : x1 : x2 : x3 : x4) := (x4 : x0 : x1 : x2 : x3).

Outside characteristic 5, R has five fixed points: (1 : εk5 : ε2k5 : ε3k5 : ε4k5 ) where
k ∈ {0, 1, 2, 3, 4} and ε5 6= 1 is a root of unity of order five. Clearly each member
of the pencil {Sλ} is invariant under R, so we can restrict R to Sλ and compute
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the fixed points. One directly sees that sl(1, . . . , ε
4k
5 ) = 0 for all k 6= 0 and 5 ∤ l,

whereas s5l(1, . . . , ε
4k
5 ) = sl(1, . . . , 1) = 5 for each k and l. In conclusion none

of the fixed points of R belong to Sλ for any λ ∈ K. In characteristic 5, there
is only one fixed point (1 : 1 : 1 : 1 : 1) which is easily verified to lie outside any
quintic Sλ.

The automorphism R generates a subgroup C5 ⊂ S5 ⊂ Aut(S). Assume that
the quintic S is smooth (or replace it by the minimal desingularisation if it is
non-degenerate, i.e. it has only rational double points as singularities), then

(7) the quotient surface Q := S/C5
is smooth.

We thus obtain a Godeaux surface. If char(K) 6= 5, we can almost verbatim
repeat the considerations of [3, Example 9.6.2] to show that Q is a minimal
surface of general type with Picτ (Q) ∼= Z/5Z and the following invariants:

(8) h1(OQ) = h2(OQ) = 0, and K2
Q = 1.

In characteristic 5, however, the invariants differ as Q is a non-classical Godeaux
surface with Picτ (Q) ∼= µ5. Namely, because C5

∼= Z/5Z, one finds as in [8]

h1(OQ) = h2(OQ) = K2
Q = 1.

Remember that S0 has a smooth model in characteristic 5. As opposed to the
implicit result of [8], this yields an explicit non-classical Godeaux surface in
characteristic 5:

Proposition 3.1. In characteristic five, Q0 is a non-classical Godeaux surface.

We shall now turn to the Picard group of the special quintic Sa. Our previous
considerations put us in the position to derive a geometric lower bound for
the Picard number. We state the result here only over C. The argument goes
through without essential modifications in positive characteristic as well, but
there we will derive better bounds in relation with the Tate conjecture (see
Remark 3.3 and Corollary 4.9).

Lemma 3.2. Over C the following inequality holds

ρ(Sa) ≥ 41.

Proof. The surface Sa carries the 15 lines (2). Moreover, it contains the 60 lines
obtained by action of symmetries on the line (6). Let M be the Gram matrix
of the 75 lines in question. By direct computation we obtain

rank(M) = 40.

Observe that both OSa
(3) and the divisors 3Ci, where i = 0, . . . , 4, lie in the

span of the 75 lines (see section 2).

Let π : Sa → Qa be the quotient map and let L,L′ be two of the 75 lines on
Sa. From the equality

π(L).π(L′) =
1

5

(

4
∑

i=0

Ri(L)

)

.

(

4
∑

i=0

Ri(L′)

)
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we can compute the Gram matrix N of the 15 divisors on Qa that are the
images of the 75 lines on Sa under the quotient map π. A direct computation
gives

(9) rank(N) = 8.

On the other hand, by (8) and Noether’s formula, we compute the topological
Euler number (or Euler-Poincaré characteristic) e(Qa) = 11. Since we work
over C, inequality (8) and Lefschetz’ theorem on (1, 1)-classes yield

ρ(Qa) = b2(Qa) = 9.

Thus by (9) there is an R-invariant divisor on Sa whose class in NS(Sa) is not
contained in the Q-span of the 75 lines. Therefore ρ(Sa) ≥ 41. �

Remark 3.3. a) In positive characteristics where Sa is smooth, exactly the
same argument goes through after lifting Qa to C which implies the analo-
gous (in)equalities (or use reduction modulo p). Those characteristics where Sa

attains singularities require some extra care.
b) K3 quotients and the Tate conjecture will allow us to derive better, and
in fact precise estimates for the Picard numbers ρ(Sa ⊗ F̄p) regardless of the
(rational double point) singularities (Corollary 4.9).

Remark 3.4. Alternatively, one could argue with the induced action of R on
the holomorphic 2-form over C. As we will infer in (10), this implies that
the transcendental lattice T (S) generally has 4-divisible rank. Consequently
ρ(S) ≡ 1 mod 4, so that for Sa our lower bound ρ ≥ 40 coming from the
lines on Sa automatically improves to the bound of Lemma 3.2. In our eyes,
the previous proof has the advantages of a constructive nature and relative
independence of the characteristic (as sketched in Remark 3.3.a)).

4. Upper bound – quotient K3 surface

4.1. In order to complete the proof of Theorem 2.2 it remains to establish the
upper bound ρ(Sa) ≤ 41 over C. Here we shall crucially use the S5 action
on the pencil S. Consider the transcendental part T (S) of H2(S) obtained as
the orthogonal complement of NS(S) with respect to the intersection pairing
and understood as Hodge structure or as a Galois representation. From the
operation of S5 on the regular 2-forms on S, we infer the splitting

T (S) = V 4.(10)

Here V will be made visible on a K3 quotient X of S that we exhibit below.

Recall the special member Sa. Since a quintic S has b2(S) = 53, we know by
Lemma 3.2 that T (Sa) has rank at most 12. On the other hand, rank(T (Sa)) ≥
8 by Lefschetz’ theorem. In view of the splitting T (Sa) = V 4

a there are only
two possibilities remaining: rank 8 or 12. Our goal is to prove that the latter
alternative holds:

Lemma 4.1. On Sa over C, the transcendental part T (Sa) has rank 12.
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We shall prove the lemma by constructing a suitable K3 quotient Xa of Sa.
Before going into the details, we comment briefly on other possible approaches.
In a similar situation of a surface with S5 action in [13], the authors alluded to
modularity in order to rule out the small rank alternative. This line of argument
does not apply here since Sa is not defined over Q. Instead one can use the
Artin-Tate conjecture to compare square classes of discriminants of reductions
modulo different primes. For Sa, however, this approach would always result
in perfect 4th powers due to the splitting (10). This is the main reason to
switch to a quotient surface of Sa that is a K3 surface (or any other surface of
geometric genus 1).

In order to prove Lemma 4.1 our first aim is to construct a quotient surface of
S that has geometric genus 1. The easiest way to achieve this builds on an in-
volution interchanging exactly two homogeneous coordinates, say x0, x1, as one
easily verifies that this fixes exactly one holomorphic 2-form on S up to scaling.
The involution has six isolated fixed points on S, yielding A1 singularities on
the quotient surface.

For the quotient surface X, we introduce the invariant coordinates

u = x0x1, v = x0 + x1.

Then the quotient is birationally given in weighted projective space P[1, 1, 1, 1, 2].
Expressing x4 through s1 and setting affinely v = 1, we obtain the equation

(x3 + 1)(x2 + 1)(x2 + x3)(x
2
2 + x2x3 + x2 + x3 + 1 + x23)(λ+ 1)

= (λx2x3 − λ+ λx22x3 + λx2x
2
3 − 1)u+ (λ+ 1)u2

This realises X as the minimal resolution of a double sextic with rational dou-
ble point singularities over the affine x2, x3-plane, so X is a K3 surface. By
construction, X has the Hodge structure

T (X) = V,(11)

and the corresponding equality holds for Galois representations on specific mem-
bers.

We can also interpret X as an elliptic surface over the affine x3 line, say; this
fibration has four obvious sections given by x2 = −1 and x2 = −x3. Converting
to Weierstrass form, we directly find a 2-torsion section; translation to (0, 0)
yields the following equation in the standard coordinates x = x2, t = x3:

X : u2 = x(x2 +A(t)x+B(t))(12)

A = λ2t4 − (4 + 8λ+ 2λ2)t3 − (24λ + 12 + 11λ2)t2

−4(2λ+ 3)(1 + λ)t− 4(1 + λ)2

B = 16t(t+ 1)(1 + λ)2[(2λ+ 1)(t4 + t3) + (3λ+ 2)t2 + (2λ+ 2)t+ 1 + λ]

The discriminant reveals generally 6 singular fibres of type I2 in Kodaira’s
notation and a split-multiplicative fibre of type I4 at ∞.
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4.2. Special fibre Xa. We shall now specialise to the fibre Sa and its K3
quotient Xa where a is given by (4) as before. Here we know that the Hodge
structure Va has rank 2 or 3, so Xa has Picard number 19 or 20 over C by (11).

Proposition 4.2. The complex K3 surface Xa has Picard number 19.

In order to prove the proposition, we assume on the contrary that ρ(Xa) = 20
and establish a contradiction by reducing modulo different good primes and
comparing the square classes of the discriminants of the Néron-Severi lattices
by virtue of the Artin-Tate conjecture. This method was pioneered in [15],
refined in [6] and applied in a similar context in [9].

To be on the safe side when applying the reduction method, we compute the
primes of bad reduction for Xa. This is easily achieved thanks to the elliptic
fibration which specialises from the pencil Xλ. On Xa it attains 8 singular
fibres of type I2, each of them defined over the ground field k(a) (in addition
to the I4 fibre at ∞). For the bad primes it suffices to study the degeneration
of this fibration upon reduction mod p.

Lemma 4.3. Xa has good reduction outside characteristics {2, 3, 5, 11, 17, 433}.

Proof. It is an easy exercise using the discriminant to verify that the given
elliptic fibration is non-degenerate outside the above characteristics and 83, 151.
In the latter two characteristics (and exactly for the Fp-rational root of (4)), the
fibration degenerates by merging fibres of type I1 and I2 to a fibre of type III.
In other words, the two nodes of the I2 fibre come together without reduction
causing a singularity. Thus Xa has good reduction at all primes dividing 83
and 151, and the lemma follows. �

On the quintic Sa, the above characteristics (except for 2) are also visible in
terms of singularities: the Fp-rational root of (4) equals some exceptional value
for λ from (5). We can easily show that there are no other bad characteristics:

Corollary 4.4. The quintic Sa has good reduction outside characteristics {3, 5, 11, 17, 433}.

Proof. If Sa has bad reduction at some prime p, then the ℓ-adic étale cohomology
is ramified. Note that Sa has enough symmetries over the ground field k so
that all of H2

ét(Sa ⊗ k̄,Qℓ) is governed by K3 quotients as in 4.1 via pull-back.
Actually the quotients always lead to one and the same K3 surface Xa. But
then p, being a prime of bad reduction for Sa, divides some prime from Lemma
4.3. In order to rule out p | 2, note that any root a of (4) reduces to zero modulo
p. Since S0 is smooth outside characteristics 3, 13, 17 by the Jacobi criterion,
this suffices to conclude the proof. �

Remark 4.5. The same argument goes through for other members of the pencil
{Sλ} (as we will exploit in the proof of Proposition 4.8). In particular, the
non-degeneracy of the pencil of elliptic fibrations (12) on X (visible from the
discriminant) in any odd characteristic suffices to prove that the general member
of the pencil is smooth (Lemma 2.1).
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4.3. Proof of Proposition 4.2. As a preparation we recall the Lefschetz fixed
point formula for Xa. Over some finite field Fq (q = pe, p prime) containing a
root a from (4), it returns with some auxiliary prime ℓ

#Xa(Fq) = 1 + tr Frob∗q(H
2
ét(Xa ⊗ F̄p,Qℓ)) + q2.

On divisors, Frob∗q has eigenvalues ζq for roots of unity ζ. In particular, the trace

on the algebraic subspace inside H2
ét(Xa ⊗ F̄p,Qℓ) spanned by NS(Xa ⊗ F̄p) via

the cycle class map equals an integer multiple of q. Presently ρ(Xa ⊗ F̄p) = 20
or 22 by assumption, since ρ = 21 is ruled out by [1]. By the previous argument,
any non-congruence

#Xa(Fq) 6≡ 1 mod q(13)

implies ρ(Xa ⊗ F̄q) ≤ 20. This congruence is easily verified at specific primes;
for instance, Table 1 shows ρ(Xa ⊗ F̄p) ≤ 20 for p = 19, 23 and the respective
choice of solution to (4) in Fp. Thus our assumption implies equality, and in
fact the validity of the Tate conjecture for Xa over any finite extension of F19

and F23 (alternatively one can use the elliptic fibration with section on Xa and
appeal to [2]).

Since ρ(Xa ⊗ F̄p) = 20, the characteristic polynomial of Frob∗q on H2
ét(Xa ⊗

F̄p,Qℓ) factors into a product of cyclotomic polynomials (shifted by q) and a
single quadratic factor

µq(T ) = T 2 − aqT + q2.(14)

Here we are concerned exclusively with the case aq 6≡ 0 mod q, for instance for
q = p = 19 or 23 as alluded to above. Moreover aq ∈ {−2q, . . . , 2q} by the Weil
conjectures. Thus the parity of #Xa(Fq) modulo q predicts four possibilities
for the trace aq without any further knowledge about the Galois action on divi-
sors. (In fact the Galois action cannot be overly complicated since Sa contains
numerous non-trivial divisor classes over Fq, such as all components of the 8 I2
fibres and the I4 fibre at ∞ and the infinite section inherited from the generic
member.)

Eventually, we want to apply the Artin-Tate conjecture [14] to Xa; it is equiv-
alent to the Tate conjecture by [7], so it holds in the present situation. There
is a little complication in mimicing the technique from [15]: the Artin-Tate
conjecture for Xa/Fq allows us to read off the square class of the discrimi-
nant of NS(Xa ⊗ F̄p) from the characteristic polynomial µq(T ) a priori only if
NS(Xa ⊗ F̄p) is actually defined over Fq, i.e. generated by divisors defined over
Fq. Presently this need not hold over Fp. However, as µq(T ) is quadratic, there
is a simple way to circumvent this problem and avoid computing explicitly the
minimal extension Fq where NS(Xa) is defined. For this purpose we introduce
the following auxiliary general result.

Lemma 4.6. Let X/Fq be a K3 surface with geometric Picard number 20.
Consider the characteristic polynomial µq(T ) as above. Let d ∈ Z such that

µq(T ) splits in Q(
√
d). Then the square class of the discriminant of NS(X⊗ F̄q)

is given by d.
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Proof. Denote the roots of µq(T ) by α, ᾱ. We will need that α does not equal q
times a root of unity. Equivalently the Tate conjecture holds for X, as checked
for Xa in conjunction with (13). For arbitrary X, assume to the contrary that
α takes the shape q times a root of unity. Then X has infinite height, so it
is supersingular in Artin’s sense. On the other hand, X admits an elliptic
fibration, induced by a divisor class with square zero (this holds for any K3
surface with ρ ≥ 5 since then NS represents 0). But then ρ = 22 by [1,
Thm. 1.7], giving the required contradiction.

Next we claim that the splitting field of µq(T ) is stable under extension. To see
this, we compute µqe(T ) = (T − αe)(T − ᾱe) for any e ∈ N. Then we use that
αe 6∈ Q by the above considerations.

As a consequence we can assume that q is chosen in such a way that NS(X⊗ F̄q)
is already defined over Fq2 , so that D = disc(NS(X⊗ F̄q)) = disc(NS(X⊗Fq2)).
Note that D < 0 by the Hodge index theorem. The Artin-Tate conjecture [14]
then predicts that the square class of −D is given by µq2(T ) evaluated at T = q2

up to a factor of q:

2q2 − aq2 = −M2D.(15)

Here M2 is the size of the Brauer group of X over Fq2 . Generally we have

aq2 = a2q − 2q2, so (15) simplifies as

4q2 − a2q = −M2D.(16)

But this implies that the splitting field of µq(T ) is exactly Q(
√
D). �

Remark 4.7. As in [9] one can also deduce that q splits into two principal ideals

in Q(
√
D). In other words, if q = pe, then the prime factors of p have order

dividing e in the class group Cl(Q(
√
D)) which gives a severe restriction on e.

Now let us return to our specific K3 surface Xa. Counting points over Fp for
p = 19, 23 we infer from Table 1 that ρ(Xa ⊗ F̄p) = 20 at both primes by the
congruence argument from (13).

p #Xa(Fp) ap D
19 676 29 −67

10 −21
−9 −29 · 47
−28 −3 · 5 · 11

23 924 26 −10
3 −43

−20 −3 · 11 · 13
−43 −3 · 89

Table 1. Possible discriminants of NS(Xa ⊗ F̄p)
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Recall the original assumption ρ(Xa ⊗ Q̄) = 20. This implies that reduction
mod p induces specialisation embeddings of finite index

NS(Xa ⊗ Q̄) →֒ NS(Xa ⊗ F̄p) for p = 19, 23.

In consequence, the square classes of all three Néron-Severi lattices under con-
sideration coincide. But then by Table 1 this is impossible for p = 19 and 23
thanks to Lemma 4.6 since no two possibilities for D match. Hence we reach
the desired contradiction. This concludes the proof of Proposition 4.2. �

4.4. Proof of Lemma 4.1 and Theorem 2.2. From Proposition 4.2 together
with the splitting (10) we directly deduce Lemma 4.1. Theorem 2.2 follows
immediately in conjunction with Lemma 3.2. �

4.5. Remark on the Tate conjecture for the pencil {Sλ}. It is common to
infer the Tate conjecture for a surface from its validity for some cover (cf. [7]).
Here we reverse this argument and verify the Tate conjecture for the quintics S
through K3 quotients. A similar technique was applied in [11], but the situation
here is more complicated since the surfaces in question have different geometric
genus.

Proposition 4.8. The Tate conjecture holds true for any non-degenerate quin-
tic S in the pencil {Sλ} over any finite field.

Proof. Let k denote some finite field and assume at first that the quintic S is
smooth. Recall from the proof of Corollary 4.4 that the surface S has enough
symmetries over k so that all of H2

ét(S ⊗ k̄,Qℓ) is governed by copies of the
K3 quotient X as in 4.1 via pull-back. As this K3 surface admits an elliptic
fibration with section (12), the Tate conjecture holds for X by [2]. Pulling back
divisors from X to S via the various quotient maps, we infer that the Tate
conjecture holds for S.

The same argument works for the desingularisations of singular non-degenerate
members of the pencil. Subsequently it can also be verified for the singular
members themselves where we work with the original definition of the zeta
function as exponential sum involving numbers of points. �

We can use the Tate conjecture to compute the Picard number of Sa in any
characteristic. For instance, from Table 1 it follows that

ρ(Sa ⊗ F̄p) = 45 for p = 19, 23.

For details on the computations see the proof of the following corollary, espe-
cially (17). In general, there are two alternatives for the Picard number as we
indicate below. Here we only have to rule out that Sa degenerates mod p. This
happens exactly in characteristic 5 for the F5-rational root of (4). Characteristic
2 also plays a special role, see Example 4.10.
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Corollary 4.9. Let p 6= 2 be a prime and a ∈ Fq ⊂ F̄p a root of (4) such that
(a, p) 6= (−2, 5). Denote by S the desingularisation of Sa ⊗ F̄p (if necessary).
Then

ρ(S ⊗ F̄p) =

{

45, if #S(Fq) 6≡ 1 mod q,

53, if #S(Fq) ≡ 1 mod q.

Proof. Since the Tate conjecture holds for S/Fq, it suffices to compute the
characteristic polynomial χq(T ) of Frobq on H2

ét(S⊗ F̄p,Qℓ). Presently we have

χq(T ) = (T − q)40(T ∓ q)χ′
q(T )

4

where the first two factors come from the lines and the extra generator of
NS(Sa⊗C) and the last corresponds to T (Sa). That is, the degree 3 polynomial
χ′
q(T ) comes from the motive V of the K3 surface Xa. Thus it takes the shape

χ′
q(T ) = (T ∓ q)(T 2 − aqT ± q2)

where the alternative −q2 may only persist if aq = 0. In particular,

ρ(Xa ⊗ F̄p) =

{

20, if aq 6≡ 0 mod q,

22, if aq ≡ 0 mod q.
(17)

By Proposition 4.8 the corresponding statement for S reads

ρ(S ⊗ F̄p) =

{

45, if aq 6≡ 0 mod q,

53, if aq ≡ 0 mod q.

In order to translate to the number of points, we apply the Lefschetz fixed point
formula to find

#S(Fq) = 1 + 40q ± q + 4(aq ± q) + q2.(18)

Outside characteristic 2, the congruence for aq is equivalent to that for #S(Fq)
from the corollary. �

In practice it is often easier to use the condition (17) involving the quotient K3
surface. The following example in characteristic 2 illustrates this very well.

Example 4.10. In characteristic 2 the quintic Sa reduces to S0. One can prove
that S0 is supersingular (i.e. ρ(S0 ⊗ F̄2) = 53) by counting points on X0 and
using (17). Indeed for the singular double sextic model compactified over P2

we find #X0(F2) = 11. Since each exceptional divisor from the resolution of
singularities adds q = 2 points, this yields supersingularity.

Alternatively we can pursue an explicit approach on S0. Namely in character-
istic 2, the quintic Sa contains 60 additional lines. Following [16] these can be
given as S5-orbits of

x0 + x1 = x2 + ωx3 = 0

and

x0 + x1 − ω2x4 = x0 + x2 − ωx3 = 0
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where ω denotes a primitive third root of unity. With a machine it is easily
verified that the Gram matrix of the 135 lines in total has rank 53. Thus Sa is
supersingular in characteristic 2, and in fact ρ(Sa ⊗ F16) = 53.
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