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Abstract—We study the scaling behavior of coupled sparse
graph codes over the binary erasure channel. In particular, let
2L+1 be the length of the coupled chain, let M be the number of
variables in each of the 2L+1 local copies, let ` be the number
of iterations, let Pb denote the bit error probability, and let ε
denote the channel parameter. We are interested in how these
quantities scale when we let the blocklength (2L+ 1)M tend to
infinity. Based on empirical evidence we show that the threshold
saturation phenomenon is rather stable with respect to the scaling
of the various parameters and we formulate some general rules
of thumb which can serve as a guide for the design of coding
systems based on coupled graphs.

I. INTRODUCTION

Spatially coupled codes [1] provide an entirely new way of
approaching capacity. The basic phenomena can be phrased
as follows: an ensemble constructed by coupling a chain
of (2L + 1) regular (l, r) low-density parity-check (LDPC)
ensembles, together with appropriate boundary conditions of
the chain, exhibits a belief propagation (BP) threshold close
to the maximum-a-posteriori (MAP) threshold of the regular
(l, r) ensemble. This phenomenon is known as threshold satu-
ration and it has been proved rigorously for the binary erasure
channel (BEC) in [1]. It has also been observed empirically
for a variety of other channels and other graphical models in
[2], [3], [4]. Low-density parity-check convolutional (LDPCC)
ensembles, first introduced in [5], are the best known example
of spatially coupled codes. In [6], the authors reformulate
LDPCC ensembles in terms of protographs. The BP threshold
for these codes is computed using density evolution (DE)
in [3], [1] and it is conjectured that they achieve capacity
universally across the set of binary-input memoryless output-
symmetric channels [1].

It is probably fair to state that by now the asymptotic perfor-
mance of spatially coupled LDPC codes is well understood.
However, much less is known about their scaling behavior
[1]. For instance, the DE analysis of LDPCC codes typically
assumes that L is kept fixed while M tends to infinity. But,
does the threshold saturation phenomena happen even if L
grows as a function of M? In this work, we analyze the finite-
length performance of LDPCC codes and we study how it
scales with the coupling dimensions M and L. Our empirical
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observations indicate that the threshold saturation phenomenon
happens even when L grows considerably faster than M ,
which indicates that the threshold saturation phenomenon is
very robust. From our simulation results we synthesize some
general design rules for these codes. In particular, if the code-
length is bounded, how should we chose L and M to have
the best performance? And how does this choice affect the
decoder complexity (in terms of average number of iterations)?
These questions, among others, are of significantly practical
importance.

The study of the finite-length behavior of LDPCC codes is
augmented by analyzing their error floor [7]. In [1], [8], the
authors prove that the minimum distance of LDPCC codes
is a fraction of M . These studies concern “large” weight
codewords. We investigate the occurrence of constant-sized
codewords/stopping sets, and in particular their scaling. We
prove that the fraction of codes with no error floor is roughly
equal to exp(−cL/M l−2), where c only depends on the rate
of the code. Hence, for sufficiently small ratios L/M l−2, it is
very easy to expurgate the ensemble and to find codes with
linear minimum distance.

II. CONVOLUTIONAL-LIKE LDPC ENSEMBLES. BASIC
DESIGN PARAMETERS

We define the LDPCC ensembles using protographs [6]. We
start from a collection of (2L + 1) regular (l, r = kl) LDPC
protographs with k ∈ N [9] and so that l is odd, as shown
in Fig. 1 for (l, r) = (3, 6) and L = 9. The regular (l, r =
kl) code is referred to as the underlying code. The associated
protograph has k variable nodes of degree l so that, if M is the
total number of variables per protograph, each variable node of
the protograph represents M/k variables in total. For instance,
in Fig. 1, each variable node of the protograph represents M/2
variables. In the following, we say that the LDPCC graph has
(2L+ 1) sections, one per protograph in Fig. 1.

Let us now define the coupled protograph. This graph is
constructed by spatially coupling the protographs in Fig. 1:
each variable node is connected to its l̂ check node neighbors
on the left and to its l̂ check node neighbors on the right,
where l̂ = (l−1)/2 [1]. The coupled protograph is terminated
by adding l̂ extra check nodes on each side. This process
is illustrated in Fig. 2 for the case (l, r, L) = (3, 6, 9).
In the termination procedure described, the check nodes of
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Fig. 1. A chain of (2L + 1) regular (3,6) non-interacting protographs for
L = 9.

−L L0

Fig. 2. Coupled protograph created from a chain of (2L+ 1) regular (3,6)
protographs for L = 9.

lower degree on both sides provide better protection for the
connected variables. However, there is a price to be payed for
this extra protection – the rate is reduced with respect to the
rate of the underlying code. The ensemble has n = M(2L+1)
variable nodes and (2(L + l̂) + 1)M/k check nodes and the
design rate is:

R(l, r = kl, L) =
k − 1

k
− 2l̂

k(2L+ 1)
, (1)

where the first term is the rate of the underlying code [1]. To
generate a sample of the LDPCC ensemble we now “lift” the
coupled protograph in the same manner as this is done for
regular ensembles [9]: we make (M/k) copies of the coupled
protograph and we connect them by picking for each “edge
bundle” a random permutation. In the following we refer to
the ensemble as the (l, r, L,M) (convolutional) ensemble.

A. Asymptotic analysis of the LDPCC ensemble

The performance of spatially-coupled ensembles under BP
decoding as M goes to infinity is analyzed in [3], [1] using
density evolution (DE) [7]. This allows to compute the BP
threshold, which defines the limit of the decodable region.
Let us denote the threshold for the BEC by εBP(l, r, L). We
have

lim
`→∞

lim
M→∞

P `b (ε, l, r, L,M) = 0, ε < εBP(l, r, L), (2)

where P `b (ε, l, r, L,M) is the ensemble average bit error
probability after ` decoding rounds:

P `b (ε, l, r, L,M) = EC∈(l,r,L,M)[P
`
b (ε, C)]. (3)

Similarly, P `B(ε, l, r, L,M) denotes the ensemble average
block error probability. One of the key results of the asymp-
totic analysis of coupled codes is that εBP(l, r, L) is “very
close” to εMAP(l, r), the MAP threshold of the underlying
regular ensemble [3].

B. Finite-length scaling LDPCC codes

Finite-length scaling investigates the relationship between
the performance, the code parameters, and the decoding com-
plexity. Any practical design of a LDPCC code starts from a
set of constraints on the code rate in (1), the code length, and
the number of decoding iterations with the goal of finding the
best choice of parameters. To first order, one might wonder for
which scaling of L with respect to M the threshold saturation
phenomenon occurs. More precisely, if L = f(M), for what
functions f(·) does the limit

lim
`→∞

(
lim
M→∞

P `B (ε, l, r, L = f(M),M)
)

(4)

converges to 0 for all ε < εBP(l, r, L) as stated in (2)? In
Section IV, we investigate this question by testing the code
performance for several scaling functions f(M) and increasing
M values.

III. DECODING COMPLEXITY

A practical implementation of a message-passing decoder
has to set the number of iterations, call it `min, which ensures
a reliable decoding in most cases. To be precise, assume that
we have to design `min so that the decoder succeeds with
probability higher than δ. In [3], this task is addressed via
DE. We have empirically computed the ensemble average
distribution of the required number of iterations. It is defined
as follows [7](Chapter 3, Section 22):

ϕ(`, ε, L,M) = P `−1B (ε, l, r, L,M)− P `B(ε, l, r, L,M), (5)

for ` ≥ 1. Note that the associated cumulative function

Φ(`0, ε, L,M) =

`0∑
`=1

ϕ(`, ε, L,M)

= P 0
B(ε, l, r, L,M)− P `0B (ε, l, r, L,M)

≈ 1− P `0B (ε, l, r, L,M), (6)

provides the probability of successful decoding after `0 itera-
tions. Therefore, `min is chosen so that Φ(`min, ε, L,M) ≥ δ.

It is clear that for ε < εBP(l, r), `min is essentially inde-
pendent of L and has the same distribution as the distribution
for the regular (l, r) code of length M . In this regime all
sections can be decoded at the same time and the effect of the
boundary condition vanishes once L has become sufficiently
large. It is easy to give a coarse upper bound on how large L
has to be for this to be true. Fix the “gap” εBP(l, r)− ε > 0.
We can determine via DE the required number of iterations
for the (l, r) ensemble to bring down the error probability to
a desired small value. Assume that L is large compared to
this number of iterations. Then the effect of the boundary has
not reached the middle section of the code by the time it has
essentially decoded.

On the other hand, for ε ≥ εBP(l, r), we expect that
the number of required iterations scales linearly in L: the
“decoding wave” starts at the boundaries and moves at a
constant speed towards the middle [3]. This can be seen in
Fig. 3, where we plot the bit error rate (BER) measured in
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Fig. 3. Bit Error Probability per code section during the decoding process
for ` = 5 (a), ` = 30 (b), ` = 70 (c) and ` = 110 (d) for a convolutional
code with L = 20, M = 1024 and ε = 0.44.

each section of a (l = 3, r = 6, L = 20,M = 1024) ensemble
after ` = 5 (a), ` = 30 (b), ` = 70 (c) and ` = 110
(d) iterations for a channel parameter of ε = 0.44. In Fig.
4 we plot ϕ(`, ε, L,M) for L = 5, 10, 20, M = 256, 512
and ε = 0.44. We have averaged over 50 code samples. First
observe that the distribution moves to the right with L and we
can see that the mean of the distributions scales linearly in L
– so the larger L the more iterations we need. Further, as M
increases, the distribution concentrates around its mean. This
means that for large M most instances decode with a number
of iterations which is close to the expected value. However,
the distributions are heavy-tailed. I.e., over a large interval the
curves are approximately straight lines, which indicates that
over this range they follow a power law, i.e., they have the form
`αβ for some non-negative constant α and β. Operationally
this means that, with non-negligible probability, an instance
takes many more iterations to decode as it is typical. The last
two conclusions are quite similar to what can be observed for
standard LDPC ensembles, see [7]. One strategy to deal with
the linear increase of the decoding complexity for very large
chain lengths is the application of a windowed decoder [10].

IV. SCALING BEHAVIOR

Let us now investigate for what scalings L = f(M) the
threshold saturation effect appears. We have run a large set
of simulations for various scaling functions f(M) and a
regular (l, r) = (3, 6) code has been used to construct the
ensembles. The BP and MAP thresholds for this ensemble are,
respectively, εBP(l, r) ≈ 0.4294 and εMAP(l, r) ≈ 0.4815. The
BP decoder is run until all messages have converged (which
always happens for the BEC). We choose a (l, r) = (3, 6)
code to better illustrate the effect of the error floor in the
scaling since regular codes with larger degrees, e.g., a (5, 10)
regular ensemble, have much lower error floors. Our current
aim however is not to construct optimal codes but to illustrate
some typical effects. For each (L,M) pair we only consider
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Fig. 4. Distribution for the BP required number of iterations, for a regular
(3,6) code for L ∈ {5, 10, 20} and M ∈ {512, 1024} and ε = 0.465.
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Fig. 5. Bit Error probability P `
b (ε, l, r, L) for a (l = 3, r = 6, L,M) code.

L is fixed to 100.

one single sample, randomly taken from the ensemble, as
described in Section II. For each ε value and fixed code, we
consider 105 transmitted codewords.

A. Fixed L, Increasing M

Consider first the case of constant f(M). Since this is
the regime used for the DE analysis, we know that the
limiting performance M → ∞ is given by (2). We can get a
negligible error probability as long as we are operating below
the threshold εMAP(l, r). In Fig. 5, we represent the bit error
probability when L is fixed to 100. As expected, the curves
become steeper as we increase M . Note that the curves show
an error floor. As we discuss in more detail in Section V, this
error floor is due to the fact that the ratio L/M l−2 is relatively
large for most of these cases.

B. Fixed M , Increasing L

Let us now look at the other extreme. i.e., we fix M to some
constant M0 > 0 and let L grow. Clearly, in this regime we do



not expect to see the same threshold saturation phenomenon.
If we consider P `=∞b (ε, l, r, L,M0) and if we increase L then
we expect this error probability to be monotonically increasing
in L since the longer the chain the higher the chance that
the “decoding wave” gets stuck before reaching the middle.
In Fig. 6, we plot the error probability for the case M0 =
512. As expected, the error probability is indeed monotonically
increasing in L and it seems to converge to a limiting curve.
The determination of this limiting curve is an interesting open
problem.
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Fig. 6. Bit Error probability P `
b (ε, l, r, L) for a (l = 3, r = 6, L,M) code.

M is fixed to 256.

C. L as a general function of M
Now where we have investigated the two limiting cases it

is of interest to scale both M and L together. At what scaling
does the behavior change? In Fig. 7 and Fig. 8, we test the
scaling functions L = M/2 and L = (M/2)2. In Fig. 8,
we have included, in dashed lines, the asymptotic ensemble
error floor derived in Section V. For both scaling functions the
performance improves with M , although in Fig. 8 the speed of
improvement is slower. Indeed, it seems that in both cases the
asymptotic threshold still is εMAP(l, r). This illustrates that the
threshold saturation phenomenon is quite robust and general.
Due to the large L/M l−2 values, we observe large error floor
levels in both cases. Finally, in Fig. 9 we plot the performance
of an extreme scenario, where L scales exponentially with
M . The performance now worsens with L, similarly to the
case considered in Section IV-B. A back of the envelope
calculation, proposed to us by Andrea Montanari, suggests
that an exponential scaling relationship is exactly the boundary
– for a subexponential growth of L as a function of M we
expect the threshold phenomenon to happen whereas for super-
exponential growths we expect it not to occur.

Let us summarize. The threshold saturation phenomenon
happens empirically over a very wide range of scalings of L
with respect to M and far beyond what theory currently can
predict. This is of comfort to the code designer in the field
and a challenge for any theoretician.
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Fig. 7. Bit Error probability P `
b (ε, l, r, L) for a (l = 3, r = 6, L,M) code.

L is equal to M/2.
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Fig. 8. Bit Error probability P `
b (ε, l, r, L) for a (l = 3, r = 6, L,M) code.

L is equal to (M/2)2. In dashed lines, we represent the asymptotic ensemble
error floor in (9) for M = 128 and M = 256.
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Fig. 9. Bit Error probability P `
b (ε, l, r, L) for a (l = 3, r = 6, L,M) code.

L scales exponentially with M .



V. ERROR FLOOR

In many of the former simulations, we have seen the
occurrence of error floors. Let us now quickly discuss how
this error floor can be analyzed. To simplify matters, we
only consider codewords/stopping sets of weight two since
codewords/stopping sets of higher weight vanish (in M ) at a
much higher rate.

Lemma 1 (Convergence to Poisson Distribution):
Consider an LDPCC ensemble (l, r = kl, L,M). Let C
be a code sample and NH

2 be the number codewords with
Hamming weight two in C. Assume that the code is chosen
randomly with a uniform probability from the ensemble.
Then the distribution of NH

2 converges (in M ) to

NH
2 ∼ Pois (λ) , λ = kl−2

(
k

2

)
(2L+ 1)

M l−2 k ≥ 2. (7)

Proof: Note that a codeword of weight two is only formed
by two variables in the same section, see Fig. 2, that share the
same set of l check nodes. Since there are (M/k) check nodes
per section, this happens with probability p = (M/k)−l. In
each section, we count

(
k
2

)
(M/k)2 pairs of variables that can

form a weight two codeword. Therefore, in a graph with (2L+
1) sections, the expected number of such codewords converges
to λ = (2L+ 1)

(
k
2

)
(M/k)2p. That the distribution converges

to a Poisson distribution follows by standard arguments as in
the case of uncoupled LDPC ensembles, see [7].

Corollary 1 (Fraction of Codes with No Small Codewords):
The fraction of codes in the (l, r = kl, L,M) ensemble with
no codewords of weight 2 converges to exp(−λ).

Proof: The expected fraction of such codes is given by
P (NH

2 = 0), which is exp(−λ) by Lemma 1.
The accuracy of Lemma 1 is illustrated in Fig. 10, where

we compare the Poisson distribution in (7) with some exper-
imental data, obtained by analyzing 104 code samples. We
consider an (l = 3, r = 6, L = 100,M = 128) ensemble and
we plot the experimental normalized histogram (◦) along with
the Poisson distribution in (7) (∗). We can see that both plots
fit almost perfectly.

Corollary 2: The expected error floor of an (l, r, L,M)
ensemble is given by

P `b (ε, l, r, L,M) = 2

(
k

2

)
kl−2

ε2

M l−1 , ε� εBP(l, r, L). (8)

Proof: In the error floor region, we compute the BER as
follows:

P `b (ε, l, r, L,M) = EC∈(l,r,L,M)

[
P `b (ε, C)

] (a)
= EC

[
2NH

2 ε
2

M(2L+ 1)

]
=

2λε2

M(2L+ 1)
= 2

(
k

2

)
kl−2

ε2

M l−1 , (9)

where, in step (a), we have assume that the error floor is due
to codewords of weight two. A given sample C has NH

2 of
such codewords and in average, ε2NH

2 of them are erased.
From the above observations we can deduce the following.

For a particular scaling of L = f(M), if λ stays bounded
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Fig. 10. Poisson distribution approximation for NH
2 (∗) and experimental

estimation of the pdf (◦) for an ensemble (l = 3, r = 6, L = 100,M =
128).

from above by a small constant or even tends to 0, then it
is easy to expurgate the ensemble and hence to avoid error
floors. This always happens if L grows slower than M l−2,
a condition which is easy to achieve in practice. In order
to illustrate the accuracy of analytical error floor predictions
we have on purpose considered ensembles that are hard to
expurgate, i.e., for these ensembles most code samples have
error floor, which is predicted by (8). For instance, in Fig. 8,
we have plotted in dashed lines the error floor in (8) for the
cases (M = 128, L = 4096) and (M = 256, L = 16384),
where we can observe the accuracy of the estimate.
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