On the convergence of Le Page series in Skohorod space

Youri Davydov^{*} and Clément Dombry[†]

Abstract

We consider the problem of the convergence of the so-called Le Page series in the Skohorod space $\mathbb{D}^d = \mathbb{D}([0,1], \mathbb{R}^d)$ and provide a simple criterion based on the moments of the increments of the random process involved in the series. This provides a simple sufficient condition for the existence of an α -stable distribution on \mathbb{D}^d with given spectral measure.

Key words: stable distribution, Le Page series, Skohorod space. AMS Subject classification. Primary: 60E07 Secondary: 60G52.

1 Introduction

We are interested in the convergence in the Skohorod space $\mathbb{D}^d = \mathbb{D}([0,1],\mathbb{R}^d)$ endowed with the J_1 -topology of random series of the form

$$X(t) = \sum_{i=1}^{\infty} \Gamma_i^{-1/\alpha} \varepsilon_i Y_i(t), \quad t \in [0, 1],$$
(1)

where $\alpha \in (0,2)$ and

- $(\Gamma_i)_{i\geq 1}$ is the increasing enumeration of the points of a Poisson point process on $[0, +\infty)$ with Lebesgue intensity;
- $(\varepsilon_i)_{i>1}$ is an i.i.d. sequence of real random variables;

^{*}Université des sciences et technologies de Lille, Laboratoire Paul Painlevé, UMR CNRS 8524, U.F.R. de Mathématiques, Bâtiment M2, 59655 Villeneuve d'Ascq Cedex, France. Email: Youri.Davydov@math.univ-lille1.fr

[†]Université de Poitiers, Laboratoire LMA, UMR CNRS 6286, Téléport 2, BP 30179, F-86962 Futuroscope-Chasseneuil cedex, France. Email: clement.dombry@math.univ-poitiers.fr

- $(Y_i)_{i>1}$ is an i.i.d. sequence of \mathbb{D}^d -valued random variables;
- the sequences (Γ_i) , (ε_i) and (Y_i) are independent.

Note that a more constructive definition for the sequence $(\Gamma_i)_{i>1}$ is given by

$$\Gamma_i = \sum_{j=1}^i \gamma_j, \quad i \ge 1,$$

where $(\gamma_i)_{i\geq 1}$ is an i.i.d. sequence of random variables with exponential distribution of parameter 1, and independent of (ε_i) and (Y_i) .

Series of the form (1) are known as Le Page series. For fixed $t \in [0, 1]$, the convergence in \mathbb{R}^d of the series (1) is ensured as soon as one of the following conditions is satisfied:

-
$$0 < \alpha < 1$$
, $\mathbb{E}|\varepsilon_1|^{\alpha} < \infty$ and $\mathbb{E}|Y_1(t)|^{\alpha} < \infty$,

-
$$1 \le \alpha < 2$$
, $\mathbb{E}\varepsilon_1 = 0$, $\mathbb{E}|\varepsilon_1|^{\alpha} < \infty$ and $\mathbb{E}|Y_1(t)|^{\alpha} < \infty$

Here |.| denotes the usual Euclidean norm on \mathbb{R} or on \mathbb{R}^d . The random variable X(t) has then an α -stable distribution on \mathbb{R}^d . Conversely, it is well known that any α -stable distributions on \mathbb{R}^d admits a representation in terms of Le Page series (see for example Samorodnitsky and Taqqu [9] section 3.9).

There is a vast literature on symmetric α -stable distributions on separable Banach spaces (see e.g. Ledoux and Talagrand [7] or Araujo and Giné [1]). In particular, any symmetric α -stable distribution on a separable Banach space can be represented as an almost surely convergent Le Page series (see Corollary 5.5 in [7]). The existence of a symmetric α -stable distribution with a given spectral measure is not automatic and is linked with the notion of stable type of a Banach space; see Theorem 9.27 in [7] for a precise statement. In [3], Davydov, Molchanov and Zuyev consider α -stable distributions in the more general framework of abstract convex cones.

The space \mathbb{D}^d equipped with the norm

$$||x|| = \sup\{|x_i(t)|, t \in [0,1], i = 1, \cdots, d\}, x = (x_1, \cdots, x_d) \in \mathbb{D}^d,$$

is a Banach space but is not separable. The uniform topology associated with this norm is finer than the J_1 -topology. On the other hand, the space \mathbb{D}^d with the J_1 topology is Polish, i.e. there exists a metric on \mathbb{D}^d compatible with the J_1 -topology that makes \mathbb{D}^d a complete and separable metric space. However, such a metric can not be compatible with the vector space structure since the addition is not continuous in the J_1 -topology. These properties explains why the general theory of stable distributions on separable Banach space can not be applied to the space \mathbb{D}^d .

Nevertheless, in the case when the series (1) converges, the distribution of the sum X defines an α -stable distribution on \mathbb{D}^d . We can determine the associated spectral measure σ on the unit sphere $\mathbb{S}^d = \{x \in \mathbb{D}^d; \|x\| = 1\}$. It is given by

$$\sigma(A) = \frac{\mathbb{E}\Big(|\varepsilon_1|^{\alpha} \|Y_1\|^{\alpha} \mathbf{1}_{\{\operatorname{sign}(\varepsilon_1)Y_1/\|Y_1\| \in A\}}\Big)}{\mathbb{E}(|\varepsilon_1|^{\alpha} \|Y_1\|^{\alpha})}, \quad A \in \mathcal{B}(\mathbb{S}^d).$$

This is closely related to regular variations theory (see Hult and Lindskog [5] or Davis and Mikosch [2]): for all r > 0 and $A \in \mathcal{B}(\mathbb{S}^d)$ such that $\sigma(\partial A) = 0$, it holds that

$$\lim_{n \to \infty} n \mathbb{P}\left(\frac{X}{\|X\|} \in A \mid \|X\| > rb_n\right) = r^{-\alpha} \sigma(A),$$

with

$$b_n = \inf\{r > 0; \ \mathbb{P}(||X|| < r) \le n^{-1}\}, \quad n \ge 1.$$

The random variable X is said to be regularly varying in \mathbb{D}^d with index α and spectral measure σ .

In this framework, convergence of the Le Page series (1) in \mathbb{D}^d is known in some particular cases only:

- When $0 < \alpha < 1$, $\mathbb{E}|\varepsilon_1|^{\alpha} < \infty$ and $\mathbb{E}||Y_1||^{\alpha} < \infty$, the series (1) converges almost surely uniformly in [0, 1] (see example 4.2 in Davis and Mikoch [2]);
- When $1 \leq \alpha < 2$, the distribution of the ε_i 's is symmetric, $\mathbb{E}|\varepsilon_1|^{\alpha} < \infty$ and $Y_i(t) = \mathbf{1}_{[0,t]}(U)$ with $(U_i)_{i\geq 1}$ an i.i.d. sequence of random variables with uniform distribution on [0, 1], the series (1) converges almost surely uniformly on [0, 1] and the limit process X is a symmetric α -stable Lévy process (see Rosinski [8]).

The purpose of this note is to complete these results and to provide a general criterion for almost sure convergence in \mathbb{D}^d of the random series (1). Our main result is the following:

Theorem 1 Suppose that $1 \le \alpha < 2$,

$$\mathbb{E}\varepsilon_1 = 0$$
 , $\mathbb{E}|\varepsilon_1|^{\alpha} < \infty$ and $\mathbb{E}||Y_1||^{\alpha} < \infty$.

Suppose furthermore that there exist $\beta_1, \beta_2 > \frac{1}{2}$ and F_1 , F_2 nondecreasing continuous functions on [0, 1] such that, for all $0 \le t_1 \le t \le t_2 \le 1$,

$$\mathbb{E}|Y_1(t_2) - Y_1(t_1)|^2 \le |F_1(t_2) - F_1(t_1)|^{\beta_1},\tag{2}$$

$$\mathbb{E}|Y_1(t_2) - Y_1(t)|^2 |Y_1(t) - Y_1(t_1)|^2 \le |F_2(t_2) - F_2(t_1)|^{2\beta_2}.$$
(3)

Then, the Le Page series (1) converges almost surely in \mathbb{D}^d .

The proof of this Theorem is detailled in the next section. We provide hereafter a few cases where Theorem 1 can be applied.

Example 1 The example considered by Davis and Mikosh [2] follows easily from Theorem 1: let U be a random variable with uniform distribution on [0, 1] and consider $Y_1(t) = \mathbf{1}_{[0,t]}(U), t \in [0, 1]$. Then, for $0 \le t_1 \le t \le t_2 \le 1$,

$$\mathbb{E}(Y_1(t_2) - Y_1(t_1))^2 = t_2 - t_1$$
 and $\mathbb{E}(Y_1(t_2) - Y_1(t))^2(Y_1(t) - Y_1(t_1))^2 = 0$,

so that conditions (2) and (3) are satisfied.

Example 2 Example 1 can be generalized in the following way: let $p \ge 1$, $(U_i)_{1 \le i \le p}$ independent random variables on [0, 1] and $(R_i)_{1 \le i \le p}$ random variables on \mathbb{R}^d . Consider

$$Y_1(t) = \sum_{i=1}^p R_i \mathbf{1}_{[0,t]}(U_i).$$

Assume that for each $i \in \{1, \dots, p\}$, the cumulative distribution function F_i of U_i is continuous on [0, 1]. Assume furthermore that there is some M > 0 such that for all $i \in \{1, \dots, p\}$

$$\mathbb{E}[R_i^4 \mid \mathcal{F}_U] \le M \quad \text{almost surely},\tag{4}$$

where $\mathcal{F}_U = \sigma(U_1, \dots, U_p)$. This is for example the case when the R_i 's are uniformly bounded by $M^{1/4}$ or when the R_i 's have finite fourth moment and are independent of the U_i 's. Simple computations entails that under condition (4), it holds for all $0 \le t_1 \le t \le t_2 \le 1$,

$$\mathbb{E}(Y_1(t_2) - Y_1(t_1))^2 \le M^{1/2} p^2 |F(t_2) - F(t_1)|^2$$

and

$$\mathbb{E}(Y_1(t_2) - Y_1(t))^2 (Y_1(t) - Y_1(t_1))^2 \le M p^4 |F(t_2) - F(t_1)|^4$$

with $F(t) = \sum_{i=1}^{p} F_i(t)$. So conditions (2) and (3) are satisfied and Theorem (1) can be applied in this case.

Example 3 A further natural example is the case when $Y_1(t)$ is a Poisson process with intensity $\lambda > 0$ on [0, 1]. Then, for all $0 \le t_1 \le t \le t_2 \le 1$,

$$\mathbb{E}(Y_1(t_2) - Y_1(t_1))^2 = \lambda |t_2 - t_1| + \lambda^2 |t_2 - t_1|^2$$

and

$$\mathbb{E}(Y_1(t_2) - Y_1(t))^2 (Y_1(t) - Y_1(t_1))^2 = (\lambda |t_2 - t| + \lambda^2 |t_2 - t|^2) (\lambda |t - t_1| + \lambda^2 |t - t_1|^2)$$

and we easily see that conditions (2) and (3) are satisfied.

2 Proof

For the sake of clarity, we divide the proof of Theorem 1 into five steps.

Step 1. According to Lemma 1.5.1 in [9], it holds almost surely that for k large enough

$$|\Gamma_k^{-1/\alpha} - k^{-1/\alpha}| \le 2\alpha^{-1} k^{-1/\alpha} \sqrt{\frac{\ln \ln k}{k}}.$$
(5)

This implies the a.s. convergence of the series

$$\sum_{i=1}^{\infty} |\Gamma_i^{-1/\alpha} - i^{-1/\alpha}| |\varepsilon_i| ||Y_i|| < \infty.$$
(6)

The series (6) has indeed nonnegative terms, and (5) implies that the following conditionnal expectation is finite,

$$\mathbb{E}\left[\sum_{i=1}^{\infty} |\Gamma_i^{-1/\alpha} - i^{-1/\alpha}| |\varepsilon_i| \|Y_i\| \mid \mathcal{F}_{\Gamma}\right] = \mathbb{E}|\varepsilon_1| \mathbb{E}||Y_i|| \sum_{i=1}^{\infty} |\Gamma_i^{-1/\alpha} - i^{-1/\alpha}|$$

where $\mathcal{F}_{\Gamma} = \sigma(\Gamma_i, i \ge 1)$.

This proves that (6) holds true and it is enough to prove the a.s. convergence in \mathbb{D}^d of the series

$$Z(t) = \sum_{i=1}^{\infty} i^{-1/\alpha} \varepsilon_i Y_i(t), \quad t \in [0, 1],$$
(7)

Step 2. Next, consider

$$\widetilde{Z}(t) = \sum_{i=1}^{\infty} i^{-1/\alpha} \widetilde{\varepsilon}_i Y_i(t), \quad t \in [0, 1].$$
(8)

with

$$\tilde{\varepsilon}_i = \varepsilon_i \mathbf{1}_{\{|\varepsilon_i|^{\alpha} \le i\}}, \quad i \ge 1.$$

We prove that the series (7) and (8) differ only by a finite number of terms. We have indeed

$$\sum_{i=1}^{\infty} \mathbb{P}\left(\tilde{\varepsilon}_i \neq \varepsilon_i\right) = \sum_{i=1}^{\infty} \mathbb{P}\left(|\varepsilon_i|^{\alpha} > i\right) \leq \mathbb{E}|\varepsilon_1|^{\alpha} < \infty$$

and the Borel-Cantelli Lemma implies that almost surely $\tilde{\varepsilon}_i = \varepsilon_i$ for *i* large enough. So, both series (7) and (8) have the same nature and it is enough to prove the convergence in \mathbb{D}^d of the series (8).

Step 3. As a preliminary for step 4, we prove several estimates involving the moments of the random variables $(\tilde{\varepsilon}_i)_{i\geq 1}$. First, for all $m > \alpha$,

$$C(\alpha, m) := \sum_{i=1}^{\infty} i^{-m/\alpha} \mathbb{E}(|\tilde{\varepsilon}_i|^m) < \infty.$$
(9)

We have indeed

$$C(\alpha, m) = \sum_{i=1}^{\infty} i^{-m/\alpha} \mathbb{E}(|\varepsilon_i|^m \mathbf{1}_{\{|\varepsilon_i| \le i^{1/\alpha}\}})$$

$$= \mathbb{E}\left(|\varepsilon_1|^m \sum_{i=1}^{\infty} i^{-m/\alpha} \mathbf{1}_{\{i \ge |\varepsilon_1|^\alpha\}}\right)$$

$$\leq C \mathbb{E}(|\varepsilon_1|^m |\varepsilon_1|^{\alpha-m}) = C \mathbb{E}(|\varepsilon_1|^\alpha) < \infty$$

where the constant $C = \sup_{x>0} x^{m/\alpha - 1} \sum_{i \ge x} i^{-m/\alpha}$ is finite since for $m > \alpha$

$$\lim_{x \to \infty} x^{m/\alpha - 1} \sum_{i \ge x}^{\infty} i^{-m/\alpha} = \frac{\alpha}{m - \alpha}.$$

Similarly, we also have

$$C(\alpha, 1) := \sum_{i=1}^{\infty} i^{-1/\alpha} |\mathbb{E}(\tilde{\varepsilon}_i)| < \infty.$$
(10)

Indeed, the assumption $\mathbb{E}\varepsilon_i = 0$ implies $\mathbb{E}(\tilde{\varepsilon}_i) = \mathbb{E}(\varepsilon_i \mathbf{1}_{\{|\varepsilon_i|^{\alpha} > i\}})$. Hence,

$$\sum_{i=1}^{\infty} i^{-1/\alpha} |\mathbb{E}(\tilde{\varepsilon}_i)| \leq \sum_{i=1}^{\infty} i^{-1/\alpha} \mathbb{E}(|\varepsilon_1| \mathbf{1}_{\{|\varepsilon_1| > i^{1/\alpha}\}})$$
$$= \mathbb{E}\left(|\varepsilon_1| \sum_{i=1}^{[|\varepsilon_1|^{\alpha}]} i^{-1/\alpha}\right)$$
$$\leq \mathbb{E}\left(|\varepsilon_1| C'(|\varepsilon_1|^{\alpha})^{1-1/\alpha}\right) = C' \mathbb{E}|\varepsilon_1|^{\alpha} < \infty$$

where the constant $C' = \sup_{x>0} x^{1/\alpha - 1} \sum_{i=1}^{[x]} i^{-1/\alpha}$ is finite.

Step 4. For $n \ge 1$, consider the partial sum

$$\widetilde{Z}_n(t) = \sum_{i=1}^n i^{-1/\alpha} \widetilde{\varepsilon}_i Y_i(t), \quad t \in [0,1].$$
(11)

We prove that the sequence of processes $(\widetilde{Z}_n)_{n\geq 1}$ is tight in \mathbb{D}^d . Following Theorem 3 in Gikhman and Skohorod [4] chapter 6 section 3, it is enough to show that there exists $\beta > 1/2$ and a non decreasing continuous function F on [0, 1] such that

$$\mathbb{E}|\widetilde{Z}_{n}(t_{2}) - \widetilde{Z}_{n}(t)|^{2}|\widetilde{Z}_{n}(t) - \widetilde{Z}_{n}(t_{1})|^{2} \leq |F(t_{2}) - F(t_{1})|^{2\beta},$$
(12)

for all $0 \le t_1 \le t \le t_2 \le 1$. Remark that in Gikhman and Skohorod [4], the result is stated only for $F(t) \equiv t$. However, the case of a general continuous non decreasing function F follows easily from a simple change of variable.

We use the notations $Y(t) = (Y^p(t))_{1 \le p \le d}$, $\llbracket 1, n \rrbracket = \{1, \cdots, n\}$ and

 $\mathbf{i} = (i_1, i_2, i_3, i_4) \in [\![1, n]\!]^4$. We have

$$\mathbb{E}|\widetilde{Z}_{n}(t_{2}) - \widetilde{Z}_{n}(t)|^{2}|\widetilde{Z}_{n}(t) - \widetilde{Z}_{n}(t_{1})|^{2} \\
= \mathbb{E}\Big|\sum_{i=1}^{n} i^{-1/\alpha} \widetilde{\varepsilon}_{i}(Y_{i}(t) - Y_{i}(t_{1}))\Big|^{2}\Big|\sum_{j=1}^{n} j^{-1/\alpha} \widetilde{\varepsilon}_{j}(Y_{j}(t_{2}) - Y_{j}(t))\Big|^{2} \\
= \sum_{1 \leq p,q \leq d} \sum_{\mathbf{i} \in [\![1,n]\!]^{4}} (i_{1}i_{2}i_{3}i_{4})^{-1/\alpha} \mathbb{E}(\widetilde{\varepsilon}_{i_{1}}\widetilde{\varepsilon}_{i_{2}}\widetilde{\varepsilon}_{i_{3}}\widetilde{\varepsilon}_{i_{4}}) \mathbb{E}[(Y_{i_{1}}^{p}(t) - Y_{i_{1}}^{p}(t_{1})) \qquad (13)$$

$$(Y_{i_2}^p(t) - Y_{i_2}^p(t_1))(Y_{i_3}^q(t_2) - Y_{i_3}^q(t))(Y_{i_4}^q(t_2) - Y_{i_4}^q(t))]$$
(14)

$$\leq d^{2} \sum_{\mathbf{i} \in \llbracket 1, n \rrbracket^{4}} (i_{1}i_{2}i_{3}i_{4})^{-1/\alpha} |\mathbb{E}(\tilde{\varepsilon}_{i_{1}}\tilde{\varepsilon}_{i_{2}}\tilde{\varepsilon}_{i_{3}}\tilde{\varepsilon}_{i_{4}})| D_{\mathbf{i}}(t, t_{1}, t_{2})$$

$$\tag{15}$$

where

$$D_{\mathbf{i}}(t,t_1,t_2) = \mathbb{E}|Y_{i_1}(t) - Y_{i_1}(t_1)||Y_{i_2}(t) - Y_{i_2}(t_1)||Y_{i_3}(t_2) - Y_{i_3}(t)||Y_{i_4}(t_2) - Y_{i_4}(t)|.$$

Consider $\sim_{\mathbf{i}}$ the equivalence relation on $\{1, \dots, 4\}$ defined by

$$j \sim_{\mathbf{i}} j'$$
 if and only if $i_j = i_{j'}$.

Let \mathcal{P} be the set of all partitions of $\{1, \dots, 4\}$ and $\tau(\mathbf{i})$ be the partition of $\{1, 2, 3, 4\}$ given by the equivalence classes of $\sim_{\mathbf{i}}$. We introduce these definitions because, since the Y_i 's are i.i.d., the term $D_{\mathbf{i}}(t, t_1, t_2)$ depends on \mathbf{i} only through the associated partition $\tau(\mathbf{i})$. For example, if $\tau(\mathbf{i}) = \{1, 2, 3, 4\}$, i.e. if $i_1 = i_2 = i_3 = i_4$, then

$$D_{\mathbf{i}}(t, t_1, t_2) = \mathbb{E}|Y_1(t) - Y_1(t_1)|^2 |Y_1(t_2) - Y_1(t)|^2.$$

Or if $\tau(\mathbf{i}) = \{1\} \cup \{2\} \cup \{3\} \cup \{4\}$, i.e. if the indices i_1, \dots, i_4 are pairwise distinct, then

$$D_{\mathbf{i}}(t, t_1, t_2) = (\mathbb{E}|Y_1(t) - Y_1(t_1)|\mathbb{E}|Y_1(t_2) - Y_1(t)|)^2.$$

For $\tau \in \mathcal{P}$, we denote by $D_{\tau}(t, t_1, t_2)$ the common value of the terms $D_{\mathbf{i}}(t, t_1, t_2)$ corresponding to indices \mathbf{i} such that $\tau(\mathbf{i}) = \tau$. Define also

$$S_{n,\tau} = \sum_{\mathbf{i} \in \{1,\cdots,n\}^4; \tau(\mathbf{i}) = \tau} (i_1 i_2 i_3 i_4)^{-1/\alpha} |\mathbb{E}(\tilde{\varepsilon}_{i_1} \tilde{\varepsilon}_{i_2} \tilde{\varepsilon}_{i_3} \tilde{\varepsilon}_{i_4})|.$$

With these notations, equation (15) can be rewritten as

$$\mathbb{E}|\widetilde{Z}_n(t_2) - \widetilde{Z}_n(t)|^2 |\widetilde{Z}_n(t) - \widetilde{Z}_n(t_1)|^2 \le d^2 \sum_{\tau \in \mathcal{P}} S_{n,\tau} D_\tau(t, t_1, t_2).$$
(16)

Under conditions (2) and (3), we will prove that for each $\tau \in \mathcal{P}$, there exist $\beta_{\tau} > 1/2$, a non decreasing continuous function F_{τ} on [0, 1] and a constant $S_{\tau} > 0$ such that

$$D_{\tau}(t,t_1,t_2) \le |F_{\tau}(t_1) - F_{\tau}(t_2)|^{2\beta_{\tau}}, \quad 0 \le t_1 \le t \le t_2,$$
(17)

and

$$S_{n,\tau} \le S_{\tau}, \quad n \ge 1. \tag{18}$$

Equations (16),(17) and (18) together imply inequality (12) for some suitable choices of $\beta > 1/2$ and F.

It remains to prove inequalities (17) and (18). If $\tau = \{1, 2, 3, 4\}$,

$$D_{\tau}(t,t_1,t_2) \le \mathbb{E}|Y_1(t) - Y_1(t_1)|^2 |Y_1(t_2) - Y_1(t)|^2 \le |F_2(t_2) - F_2(t_1)|^{2\beta_2}$$

and

$$S_n^{\tau} = \sum_{i=1}^n i^{-4/\alpha} \mathbb{E}\tilde{\varepsilon}_i^4 \le C(\alpha, 4).$$

If $\tau = \{1\} \cup \{2\} \cup \{3\} \cup \{4\}$, Cauchy-Schwartz inequality entails

$$D_{\tau}(t,t_1,t_2) \le (\mathbb{E}|Y_1(t) - Y_1(t_1)|\mathbb{E}|Y_1(t_2) - Y_1(t)|)^2 \le |F_1(t_2) - F_1(t_1)|^{2\beta_1}$$

and

$$S_n^{\tau} \leq \sum_{\mathbf{i} \in \{1, \cdots, n\}^4; \tau(\mathbf{i}) = \tau} (i_1 i_2 i_3 i_4)^{-1/\alpha} |\mathbb{E}\tilde{\varepsilon}_{i_1}| |\mathbb{E}\tilde{\varepsilon}_{i_2}| |\mathbb{E}\tilde{\varepsilon}_{i_3}| |\mathbb{E}\tilde{\varepsilon}_{i_4}| \leq C(\alpha, 1)^4.$$

Similarly, for $\tau = \{1, 2, 3\} \cup \{4\},\$

$$D_{\tau}(t,t_{1},t_{2}) = \mathbb{E}|Y_{1}(t) - Y_{1}(t_{1})|^{2}|Y_{1}(t_{2}) - Y_{1}(t)|\mathbb{E}|Y_{1}(t_{2}) - Y_{1}(t)|$$

$$\leq |F_{1}(t) - F_{1}(t_{1})|^{\beta_{1}/2}|F_{2}(t_{2}) - F_{2}(t_{1})|^{\beta_{2}}|F_{1}(t_{2}) - F_{1}(t)|^{\beta_{1}/2}$$

$$\leq |(F_{1} + F_{2})(t_{2}) - (F_{1} + F_{2})(t_{1})|^{\beta_{1} + \beta_{2}}$$

and

$$S_n^{\tau} \le \sum_{1 \le i \ne j \le n} (i^3 j)^{-1/\alpha} \mathbb{E}|\tilde{\varepsilon}_i|^3 |\mathbb{E}\tilde{\varepsilon}_j| \le C(\alpha, 3)C(\alpha, 3).$$

or for $\tau = \{1, 2\} \cup \{3\} \cup \{4\},\$

$$D_{\tau}(t, t_1, t_2) = \mathbb{E} |Y_1(t) - Y_1(t_1)|^2 (\mathbb{E} |Y_1(t_2) - Y_1(t)|)^2$$

$$\leq |F_1(t) - F_1(t_1)|^{\beta_1} |F_1(t_2) - F_1(t)|^{\beta_1}$$

$$\leq |F_1(t_2) - F_1(t_1)|^{2\beta_1}$$

and

$$S_n^{\tau} \leq \sum_{1 \leq i \neq j \neq k \leq n} (i^2 j k)^{-1/\alpha} \mathbb{E} |\tilde{\varepsilon}_i|^2 |\mathbb{E} \tilde{\varepsilon}_j| |\mathbb{E} \tilde{\varepsilon}_k| \leq C(\alpha, 2) C(\alpha, 1)^2.$$

Similar computations can be checked in all remaining cases. The cardinality of \mathcal{P} is equal to 13.

Step 5. We prove Theorem 1. For each fixed $t \in [0, 1]$, Kolmogorov's three-series Theorem implies that $\widetilde{Z}_n(t)$ converge almost surely as $n \to \infty$. So the finite-dimensional distributions of $(\widetilde{Z}_n)_{n\geq 1}$ converge. The tightness in \mathbb{D}^d of the sequence has already been proved in step 4, so $(\widetilde{Z}_n)_{n\geq 1}$ weakly convergence in \mathbb{D}^d as $n \to \infty$. We then apply Theorem 1 in Kallenberg [6] and deduce that \widetilde{Z}_n converges almost surely in \mathbb{D}^d . In view of step 1 and step 2, this yields the almost sure convergence of the series (1).

References

- Aloisio Araujo and Evarist Giné. The central limit theorem for real and Banach valued random variables. John Wiley & Sons, New York-Chichester-Brisbane, 1980. Wiley Series in Probability and Mathematical Statistics.
- [2] Richard A. Davis and Thomas Mikosch. Extreme value theory for space-time processes with heavy-tailed distributions. *Stochastic Process. Appl.*, 118(4):560– 584, 2008.
- [3] Youri Davydov, Ilya Molchanov, and Sergei Zuyev. Strictly stable distributions on convex cones. *Electron. J. Probab.*, 13:no. 11, 259–321, 2008.
- [4] Iosif I. Gikhman and Anatoli V. Skorokhod. The theory of stochastic processes. I. Classics in Mathematics. Springer-Verlag, Berlin, 2004. Translated from the Russian by S. Kotz, Reprint of the 1974 edition.
- [5] Henrik Hult and Filip Lindskog. Regular variation for measures on metric spaces. Publ. Inst. Math. (Beograd) (N.S.), 80(94):121–140, 2006.
- [6] Olav Kallenberg. Series of random processes without discontinuities of the second kind. Ann. Probability, 2:729–737, 1974.
- [7] Michel Ledoux and Michel Talagrand. Probability in Banach spaces, volume 23 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1991. Isoperimetry and processes.
- [8] Jan Rosiński. Series representations of Lévy processes from the perspective of point processes. In *Lévy processes*, pages 401–415. Birkhäuser Boston, Boston, MA, 2001.
- [9] Gennady Samorodnitsky and Murad S. Taqqu. Stable non-Gaussian random processes. Stochastic Modeling. Chapman & Hall, New York, 1994. Stochastic models with infinite variance.