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On the convergence of Le Page series in Skohorod
space

Youri Davydov* and Clément Dombry'

Abstract

We consider the problem of the convergence of the so-called Le Page series in the
Skohorod space D¢ = D(]o, 1],]Rd) and provide a simple criterion based on the mo-
ments of the increments of the random process involved in the series. This provides
a simple sufficient condition for the existence of an a-stable distribution on D? with
given spectral measure.
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1 Introduction

We are interested in the convergence in the Skohorod space D* = D)([0,1],R%)
endowed with the Ji-topology of random series of the form

X0 =3 v, e o] (1)
=1

where a € (0,2) and

- (I';)i>1 is the increasing enumeration of the points of a Poisson point process
on [0,400) with Lebesgue intensity;

- (&i)i>1 is an i.i.d. sequence of real random variables;
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- (Y3)i>1 is an i.i.d. sequence of D?-valued random variables;
- the sequences (I';), (¢;) and (Y;) are independent.

Note that a more constructive definition for the sequence (I';);>; is given by

7
Ti=> v, i>1,
7j=1

where (7;);>1 is an i.i.d. sequence of random variables with exponential distribution
of parameter 1, and independent of (g;) and (Y;).

Series of the form (II) are known as Le Page series. For fixed ¢ € [0, 1], the con-
vergence in R? of the series () is ensured as soon as one of the following conditions
is satisfied:

- 0<a<l, Elgl* <ooand ElYi(t)]* < oo,
-1<a<2,Ee =0, Ele1]* < 0o and E|Y7 ()] < oc.

Here |.| denotes the usual Euclidean norm on R or on R%. The random variable
X (t) has then an a-stable distribution on RY. Conversely, it is well known that any
a-stable distributions on R? admits a representation in terms of Le Page series (see
for example Samorodnitsky and Taqqu [9] section 3.9).

There is a vast literature on symmetric a-stable distributions on separable Ba-
nach spaces (see e.g. Ledoux and Talagrand [7] or Araujo and Giné [I]). In par-
ticular, any symmetric a-stable distribution on a separable Banach space can be
represented as an almost surely convergent Le Page series (see Corollary 5.5 in [7]).
The existence of a symmetric a-stable distribution with a given spectral measure is
not automatic and is linked with the notion of stable type of a Banach space; see
Theorem 9.27 in [7] for a precise statement. In [3], Davydov, Molchanov and Zuyev
consider a-stable distributions in the more general framework of abstract convex
cones.

The space D¢ equipped with the norm

H‘T” = Sup{’xi(t)‘7 te [07 1]7 1= 17 7d}7 €T = (‘Tla"' 7‘Td) € Ddu

is a Banach space but is not separable. The uniform topology associated with this
norm is finer than the Ji-topology. On the other hand, the space D? with the Ji-
topology is Polish, i.e. there exists a metric on D¢ compatible with the Ji-topology
that makes D¢ a complete and separable metric space. However, such a metric
can not be compatible with the vector space structure since the addition is not
continuous in the Ji-topology. These properties explains why the general theory of
stable distributions on separable Banach space can not be applied to the space D
Nevertheless, in the case when the series () converges, the distribution of the
sum X defines an a-stable distribution on D?. We can determine the associated
spectral measure o on the unit sphere S* = {z € D% |z =1 }. It is given by

E(lﬁl\aHYlﬂal{sign(a Wi /|IYi ||eA})
o 1 1 1 d
o(4) = N EEIAB) » AEBED.
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This is closely related to regular variations theory (see Hult and Lindskog [5] or

Davis and Mikosch [2] ): for all 7 > 0 and A € B(S?) such that o(9A) = 0, it holds
that

: X —a
nh_)llolon]p<m € A‘ I X > Tbn) =r % (A),

with

by =inf{r >0; P(|X| <r)<n™'}, n>1.
The random variable X is said to be regularly varying in D? with index o and
spectral measure o.

In this framework, convergence of the Le Page series (I) in D? is known in some
particular cases only:

- When 0 < a < 1, E|e1|* < oo and E|Y1||* < oo, the series () converges
almost surely uniformly in [0, 1] (see example 4.2 in Davis and Mikoch [2]);

- When 1 < a < 2, the distribution of the &;’s is symmetric, Ele1|* < oo
and Y;(t) = 1j9,4(U) with (U;);>1 an i.i.d. sequence of random variables with
uniform distribution on [0, 1], the series (IJ) converges almost surely uniformly
on [0,1] and the limit process X is a symmetric a-stable Lévy process (see

Rosinski [§]).

The purpose of this note is to complete these results and to provide a general
criterion for almost sure convergence in D? of the random series (@. Our main result
is the following:

Theorem 1 Suppose that 1 < a < 2,
Ee; =0 , Elg1|* <00 and E[Y1[|* < oc.

Suppose furthermore that there exist 81, By > % and Fy ,F5 nondecreasing continuous
functions on [0,1] such that, for all0 <t; <t <ty <1,

E|Yi(t2) - Yi(t)* < [Fi(t2) - Fi(t)]™, (2)
E|Yi(t2) = Yi(O)P[Y1(t) = Ya(t)* < [Fa(ta) — Fa(t)[*2. (3)
Then, the Le Page series () converges almost surely in D,

The proof of this Theorem is detailled in the next section. We provide hereafter
a few cases where Theorem [I] can be applied.

Example 1 The example considered by Davis and Mikosh [2] follows easily from
Theorem [Tl let U be a random variable with uniform distribution on [0,1] and
consider Y1 (t) = 1/ 4(U), t € [0,1]. Then, for 0 <#; <t <tp <1,

E(Yi(t2) = Yi(t1))* =ta —t1 and  E(Yi(t2) — Y1(£))*(Ya(t) — Yi(t1))* =0,

so that conditions (2]) and (3) are satisfied.



Example 2 Example[Ilcan be generalized in the following way: let p > 1, (U;)1<i<p
independent random variables on [0, 1] and (R;)1<i<p random variables on R¢. Con-
sider

p
Yi(t) =) Rilpg(Ui).
i=1

Assume that for each ¢ € {1,--- ,p}, the cumulative distribution function F; of U;
is continuous on [0, 1]. Assume furthermore that there is some M > 0 such that for
allie{1,---,p}

E[R! | Fy] < M almost surely, (4)

where Fiy = o(Uy, -+ ,U,). This is for example the case when the R;’s are uniformly
bounded by M4 or when the R;’s have finite fourth moment and are independent
of the U;’s. Simple computations entails that under condition (), it holds for all
0<t <t<ty <1,

E(Yi(t2) — Yi(t1))® < MYV?p*|F(tz) — F(t1)[?

and

E(Yi(t2) — Y1 (1)’ (Ya(t) — Ya(t1))* < Mp'|F(t2) — F(t1)|".

with F(t) = >F | F;(t). So conditions (2)) and (3)) are satisfied and Theorem ()
can be applied in this case.

Example 3 A further natural example is the case when Yj(t) is a Poisson process
with intensity A > 0 on [0,1]. Then, for all 0 <t; <t <ty <1,

E(Yi(t2) — Y1(t1))? = Mtg — t1] + A2ty — t1]?
and
E(Y1(t2) — Yi(£)*(Yi(t) = Yi(t1))? = (Alta — ] + N[t — t|*) (At — ta] + N[t — t1]%)

and we easily see that conditions (2) and (3] are satisfied.

2 Proof

For the sake of clarity, we divide the proof of Theorem [l into five steps.

Step 1. According to Lemma 1.5.1 in [9], it holds almost surely that for k large

enough
“1/a Inl
TV e < 2a ke /HTM‘ (5)

This implies the a.s. convergence of the series

o0

—1 .
ST =i g (| < oo (6)
=1

4



The series (6 has indeed nonnegative terms, and (B implies that the following
conditionnal expectation is finite,

o o
—1 L —1 o
E |0 =il vl | fF] = Ble1 | BYi]) 3 [ry " =i
i=1 =1
where Fr = o([y,i > 1).

This proves that (@) holds true and it is enough to prove the a.s. convergence in
D? of the series

Z(t) =) i ayi(t), te(o1), (7)
=1
Step 2. Next, consider
Z(t) = Zi_l/agin(t)v te [07 1] (8)
=1

with

&:i = Ei1{|ei\a§i}a 1 > 1.
We prove that the series (7) and (8] differ only by a finite number of terms. We
have indeed

o o

ZP(@ #ei) = ZP(’&‘Z"Q > i) < Elgg|* < 00
i=1 i=1

and the Borel-Cantelli Lemma implies that almost surely €; = ¢; for ¢ large enough.

So, both series (7)) and (8) have the same nature and it is enough to prove the
convergence in D? of the series (§).

Step 3. As a preliminary for step 4, we prove several estimates involving the moments
of the random variables (&;);>1. First, for all m > a,

Cla,m) = i ™E(|&|™) < oo. (9)
i=1
We have indeed

C(a,m) = ZZ_m/aE(‘EZ‘ml{‘{_:Z'SZl/a})
i=1

= £ (‘Eﬂm Z i_m/al{i2|€1|a}>

i=1
< CE(ler][[en|*™™) = CE(le1]*) < o0



where the constant C' = sup,o 2™ 13" i7"/ is finite since for m > a

lim 2™/~1 ii_m/o‘ =,

o
Z—00 4 m — «
i>x
Similarly, we also have
Cla,1) = > i VE(&)] < oo
i=1
Indeed, the assumption Ee; = 0 implies E(&;) = E(e;1;,jo>4}). Hence,
Yo iTVEE)] < Y i Bl siey)
1=1

1=1

[lea]®

(e S )
i=1

< E<|61|C'(|61|0‘)1_1/0‘) = O'Ele1|* < 0

where the constant C = sup,-qx"/*! ZE1 i~1/e is finite.

Step 4. For n > 1, consider the partial sum

Zolt) = S i Vezvie), te o],
i=1

(10)

(11)

We prove that the sequence of processes (Zn)n21 is tight in D Following Theorem
3 in Gikhman and Skohorod [4] chapter 6 section 3, it is enough to show that there

exists 8 > 1/2 and a non decreasing continuous function F' on [0, 1] such that

E|Zu(t2) = Zu(t)*| Za(t) = Zu(tr)* < |F(t2) — F(t1)*",

(12)

for all 0 < t; <t <ty < 1. Remark that in Gikhman and Skohorod [4], the result is
stated only for F'(t) = t. However, the case of a general continuous non decreasing

function F follows easily from a simple change of variable.

We use the notations Y'(t) = (Y?(t))1<p<d, [1,n] = {1,--- ,n} and



i = (i1,42,13,74) € [1,n]*. We have
E|Z(ts) = Zn(t)|*|Zn(t) = Zn(t1)]?

= B[S i - vi)| | 35w () - i)
i—1 j=1

= Y (iniaisia) VR £ G )BIYE () — YE(R))  (13)

1<p,q<die[1,n]*

(Y (1) = Y5 (40)) (Vg (f2) — Y5 () (Y] (t2) — Vi (1)) (14)
< d® ) (ivigisia) VO E(E, 0,8y Ei ) IDit 1, 1) (15)
ie[1,n]*

where
Di(t, tr, t2) = E[Y5, (1) = Ya, (60)|[Yay () — Yoo (62)|[Yis (£2) — Yig (8)[[Yiy (t2) — Vi, ()]

Consider ~; the equivalence relation on {1,--- 4} defined by

j~ij  if and only if ij =ij.

Let P be the set of all partitions of {1,--- ,4} and 7(i) be the partition of {1,2,3,4}
given by the equivalence classes of ~;. We introduce these definitions because, since
the Y;’s are i.i.d., the term Dj(t,t1,t2) depends on i only through the associated
partition 7(i). For example, if 7(i) = {1,2, 3,4}, i.e. if i1 = is = i35 = iy, then

Ds(t, t1,t2) = E|Y1(t) — Yi(t2) P |Ya(t2) — Ya(2)].

Orif 7(i) = {1} U {2} U {3} U {4}, i.e. if the indices 41, - ,i4 are pairwise distinct,
then
Di(t,t1,t2) = (E[Y1(t) - Y1 (t2)[E[Y1(t2) — Ya(t)])*.

For 7 € P, we denote by D,(t,t1,t2) the common value of the terms Dj(¢,t1,t2)
corresponding to indices i such that 7(i) = 7. Define also

Sy = > (ivigigiy) VR (&, EiyEiséiy)].
ie{l,-- n}tr(i)="7

With these notations, equation ([IH]) can be rewritten as

E|Zn(ts) = Zu(t)*|Zn(t) — Zn(t)* < d® " SprDy(t 1, ta). (16)
TEP

Under conditions (2]) and (3], we will prove that for each 7 € P, there exist 5, > 1/2,
a non decreasing continuous function F; on [0,1] and a constant S; > 0 such that

Dy (t,t1,t2) < |Fr(t1) — Fr(t2)]?7, 0<t; <t <ty (17)



and
Spr <S8, n>1 (18)

Equations (I6l),([I7) and (I8)) together imply inequality (I2) for some suitable choices
of 5>1/2 and F.

It remains to prove inequalities (I7)) and ([I8). If 7 = {1, 2, 3,4},

Dr(t,t1,t2) < EYi(t) = Yi(t)P|Yi(t2) = Ya(6)? < |Fa(t) — Fa(ty)[®
and .
Sp =Y iTEe! < C(a,4).
If r={1} u{2} U {3} U {4}, Caécﬁy—Schwartz inequality entails
D-(t,t1,t2) < (EJY1(t) = Yi(t1)[E[Yi(t2) = Ya($)])® < |Fi(t2) — Fa(t1) >

and
ST < > (irigigis) VRS, ||Eés, ||Eés | [Eés, | < Cla, 1)1

ie{l,-- n}tr(i)="7

Similarly, for 7 = {1,2,3} U {4},

Dr(t,t1,t2) = E[Yi(t) — Yi(t1)]?[Yi(t2) — Yi(t)[E[Y1(t2) — Yi(t)]
< |R(t) — ()12 Fa(te) — Fa(t)|P?| Fu(ta) — Fy ()2
< (B + By)(t2) — (Fy + Fo)(ty)| 72
and

Sp< > () 7VOEIEPIEE| < C(a,3)C(,3).
1<i#j<n
or for 7 = {1,2} U {3} U {4},

D-(t,t,t2) = E|Yi(t) — Yi(t1)?(E[Ya(t2) — Yi(2))*

n

< |F(t) — Fi(t) P Fi(t) — Fi ()|
< |Fi(t) — Fi(t) [
and
ST < Z (i2k)VOR|& P |EE;||Eéy| < C(a, 2)C(er, 1)2

1<ij#k<n
Similar computations can be checked in all remaining cases. The cardinality of P is
equal to 13.

Step 5. We prove Theorem[Il For each fixed ¢ € [0, 1], Kolmogorov’s three-series The-
orem implies that Zn(t) converge almost surely as n — 0o. So the finite-dimensional
distributions of (Zn)nzl converge. The tightness in D? of the sequence has already
been proved in step 4, so (Zn)n21 weakly convergence in D? as n — co. We then
apply Theorem 1 in Kallenberg [6] and deduce that Zn converges almost surely in
D% In view of step 1 and step 2, this yields the almost sure convergence of the series

@. O
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