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PA-ISOMORPHISMS OF INVERSE SEMIGROUPS

SIMON M. GOBERSTEIN

Abstract. A partial automorphism of a semigroup S is any isomorphism between its sub-
semigroups, and the set all partial automorphisms of S with respect to composition is the
inverse monoid called the partial automorphism monoid of S. Two semigroups are said to
be PA-isomorphic if their partial automorphism monoids are isomorphic. A class K of semi-
groups is called PA-closed if it contains every semigroup PA-isomorphic to some semigroup
from K. Although the class of all inverse semigroups is not PA-closed, we prove that the
class of inverse semigroups, in which no maximal isolated subgroup is a direct product of
an involution-free periodic group and the two-element cyclic group, is PA-closed. It follows
that the class of all combinatorial inverse semigroups (those with no nontrivial subgroups)
is PA-closed. A semigroup is called PA-determined if it is isomorphic or anti-isomorphic to
any semigroup that is PA-isomorphic to it. We show that combinatorial inverse semigroups
which are either shortly connected [5] or quasi-archimedean [10] are PA-determined.

2000 Mathematics Subject Classification: 20M10, 20M18, 20M20

0. Introduction

Let A be an algebraic structure of a certain type (e.g., a ring, a group, a semigroup, etc.);
we will call it, for short, an algebra and refer to its substructures as subalgebras of A. In
many cases, it is convenient to regard the empty set as a subalgebra of A (especially if the
intersection of two nonempty subalgebras of A may be empty), and we will adhere to this
convention if A is a semigroup or an inverse semigroup. A partial automorphism of A is
any isomorphism between its subalgebras, and the set of all partial automorphisms of A
with respect to composition is an inverse monoid called the partial automorphism monoid of
A. The problem of characterizing algebras of various types by their partial automorphism
monoids was posed by Preston in [17]. It has been considered in a number of publications
for several classes of groups and semigroups. In [5] the present author studied the problem
of characterizing inverse semigroups S by their partial automorphism monoids, composed of
all isomorphisms between inverse subsemigroups of S, in the class of all inverse semigroups.
In this article we investigate to what extent an inverse semigroup S is characterized by its
partial automorphism monoid, consisting of all isomorphisms between subsemigroups of S,
in the class of all semigroups.
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The main results of the paper are contained in Sections 3 and 4. Since the two-element
cyclic group is clearly PA-isomorphic to the two-element null semigroup, the classes of groups
and of inverse semigroups are not PA-closed. We show that, in some sense, this is the only
“anomaly” – according to Theorem 3.13 of Section 3, the class of all those inverse semigroups,
in which no maximal isolated subgroup is a direct product of C2 and a periodic group
containing no elements of even order, is PA-closed. It follows that several other large classes
of inverse semigroups are PA-closed (Corollary 3.14), including the class of all combinatorial
inverse semigroups. Combining this fact with some earlier results from [5] and [10], we prove
in Section 4 (Theorem 4.7) that combinatorial inverse semigroups are PA-determined if they
are either shortly connected [5] or faintly archimedean [10] (for definitions see Section 4). We
also show (Examples 4.5 and 4.6) that there exist shortly connected combinatorial inverse
semigroups which are not faintly archimedean.

We use [3] and [7] as standard references for the algebraic theory of semigroups and,
in general, follow the terminology and notation of these monographs. For an extensive
treatment of the theory of inverse semigroups we refer to [16]. However, for the reader’s
convenience, the basic semigroup-theoretic concepts and facts used in the paper are reviewed
in Section 1 and all the necessary preliminaries on lattice isomorphisms and PA-isomorphisms
of semigroups are included in Section 2. This makes the paper essentially self-contained.

The main results of this paper were reported at the International Conference on Algebra
in Honor of Ralph McKenzie held at Vanderbilt University on May 21-24, 2002.

1. The background

Let S be an arbitrary semigroup. An element x ∈ S is called regular (in the sense of von
Neumann for rings) if there is y ∈ S such that xyx = x. If x, y ∈ S satisfy xyx = x, then
for x′ = yxy we have xx′x = x and x′xx′ = x′, in which case x′ is called an inverse of x.
Thus an element of S is regular if and only if it has an inverse in S (in general, more than
one). Denote by Reg (S) the set of all regular elements of S. For any A ⊆ S, the set of
all those idempotents of S which are contained in A will be denoted by EA. In particular,
ES is the set of all idempotents of S. It is clear that ES 6= ∅ if and only if Reg (S) 6= ∅.
A semigroup S is called regular if Reg (S) = S, and idempotent-commutative if ES 6= ∅ and
ef = fe for all e, f ∈ ES. It is easily shown [22, Theorem 3.1] that every regular element x
of an idempotent-commutative semigroup has a unique inverse (denoted usually by x−1).

A regular idempotent-commutative semigroup is called an inverse semigroup, and an in-
verse monoid is an inverse semigroup with an identity element. Thus every element of an
inverse semigroup has exactly one inverse. Note that if S is an idempotent-commutative
semigroup, it is immediate from [22, Theorem 3.2] that Reg (S) is the largest inverse sub-
semigroup of S. If S is an inverse semigroup, set x ≤ y if and only if x = xx−1y for x, y ∈ S;
then ≤ is a partial order relation on S, compatible with the operations of multiplication
and inversion, which is called the natural order relation on S. Clearly, if S is an inverse
semigroup, ES is a semilattice whose natural order relation is the restriction to ES of the
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natural order relation on S. Let E be a semilattice. In what follows, we will have an occasion
to consider simultaneously (E,≤) and (E,≤d) where ≤d denotes the partial order on E dual
to ≤; to shorten notation, we will write E instead of (E,≤) and Ed instead of (E,≤d).

Let X be any set. The symmetric inverse semigroup IX on X is the inverse monoid under
composition consisting of all partial bijections of X (that is, all bijections between various
subsets of X , including ∅). It is easily seen that the natural order relation on IX is precisely
the extension ⊆ of partial bijections of X and that the idempotents of IX are the identity
mappings 1A : a 7→ a (a ∈ A) where A is an arbitrary subset of X (we will not distinguish
1A from the identity relation {(a, a) | a ∈ A} on A). Note that 1∅ = ∅ and 1A ◦ 1B = 1A∩B

for any A, B ⊆ X . It follows that the semilattice of idempotents of IX is actually a lattice
isomorphic to the lattice of all subsets of X . By the Wagner-Preston representation theorem
[16, Theorem IV.1.6], each inverse semigroup S is isomorphically embeddable into IS and
the natural order relation ≤ on S corresponds to ⊆ under this embedding.

Let X, Y,X ′, and Y ′ be any sets, ρ ⊆ X × Y , and ρ′ ⊆ X ′ × Y ′. As in [23], we define
ρ � ρ′ ⊆ (X ×X ′)× (Y × Y ′) as follows: ((x, x′), (y, y′)) ∈ ρ � ρ′ if and only if (x, y) ∈ ρ and
(x′, y′) ∈ ρ′. We will often encounter the situation when X = X ′, Y = Y ′, and ϕ is a certain
bijection of X onto Y . In this case, it is clear that ϕ �ϕ is a bijection of IX onto IY , and
α(ϕ �ϕ) = ϕ−1 ◦ α ◦ ϕ for any α ∈ IX .

Let S be a semigroup. For a, b ∈ S, let aLb [aRb, aJ b] if and only if a and b generate
the same principal left [right, two-sided] ideal of S. Set H = L ∩ R and D = L ∨ R. Thus
H ⊆ L ⊆ D, H ⊆ R ⊆ D and D ⊆ J . The equivalences H,L,R,D and J are called
the Green’s relations on S [3, Chapter 2]. It is easily seen that S is regular [inverse] if and
only if each L-class and each R-class of S contains at least one [exactly one] idempotent.
For K ∈ {H,L,R,D,J}, denote by Kx the K-class of S containing x ∈ S. Note that if
x ∈ Reg (S), then every element of the D-class Dx is regular [3, Theorem 2.11 (i)]. Thus if
D is a D-class of S, then either no element of D is regular or all elements of D are regular;
in the latter case, we say that D is a regular D-class of S. If D is a regular D-class of S,
each L-class and each R-class in D contains at least one idempotent [3, Theorem 2.11 (ii)],
and if, in addition, it is assumed that S is an idempotent-commutative semigroup, it is clear
that each L-class and each R-class in D contains exactly one idempotent.

Let S be a semigroup and U a subsemigroup of S. We will use the superscript U for
the Green’s relations on U in order to distinguish them from the corresponding relations
on S (which we will write without superscripts). If K ∈ {H,L,R,D,J}, it is clear that
KU ⊆ K∩(U×U). In general, these inclusions may be proper for every K ∈ {H,L,R,D,J}.
However, if Reg (S) is a subsemigroup of S (in particular, if S is idempotent-commutative),
it is immediate that if U = Reg (S), a ∈ U , and K ∈ {H,L,R,D}, then KU

a = Ka.
Let S be a semigroup. Denote by J(x) the principal ideal of S generated by x ∈ S. The

set of J -classes of S is partially ordered by the relation ≤ defined as follows: Jx ≤ Jy if and
only if J(x) ⊆ J(y) for x, y ∈ S. Similarly one can partially order the set of L-classes and
the set of R-classes of S. We say that x ∈ S is a group element of S if it belongs to some
subgroup of S; otherwise x is a nongroup element of S. Thus x ∈ S is a group element if and
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only if x ∈ He for some e ∈ ES, and a nongroup element if and only if either x 6∈ Reg (S) or
x ∈ Reg (S) but xx′ 6= x′x where x′ is some (any) inverse of x in S. If A ⊆ S, denote by NA

the set of all nongroup elements of S contained in A (so, in particular, NS is the set of all
nongroup elements of S). Let D be a D-class of S. We say that D is a nongroup D-class if
ND 6= ∅; otherwise D is a group D-class. Following Jones, we will also say that an idempotent
e of S (and each subgroup of He) is isolated if De = He, and nonisolated otherwise (see, for
example, [9, p. 325] where these terms were introduced for inverse semigroups). Thus an
idempotent e of S is isolated if and only if De is a group D-class.

Let T be any semigroup with zero and T ∗ = T \ {0}. Take an arbitrary semigroup A
disjoint from T ∗, and let η : T ∗ → A be a partial homomorphism (that is, (xy)η = (xη)(yη)
whenever x, y, xy ∈ T ∗). Denote S = A ∪ T ∗. For any x, y ∈ S, define x ◦ y as follows:
x ◦ y = x(yη) if x ∈ A, y ∈ T ∗; x ◦ y = (xη)y if x ∈ T ∗, y ∈ A; x ◦ y = (xη)(yη) if x, y ∈ T ∗

and xy = 0 in T ; and if x, y ∈ T ∗ and xy ∈ T ∗ or if x, y ∈ A, then x ◦ y coincides with
the product of x and y in T or A, respectively. Then (S, ◦) is a semigroup whose operation
is determined by the partial homomorphism η, and S is a retract ideal extension of A by T
[16, §I.9]; conversely, if a semigroup is a retract ideal extension of A by T , then its operation
is determined by some partial homomorphism of T ∗ to A [16, Proposition I.9.14]. In what
follows the word “extension” will be used instead of “retract ideal extension” since we will
be dealing only with such ideal extensions of semigroups.

Let S be an arbitrary semigroup. If X is a nonempty subset of S, the subsemigroup of S
generated by X will be denoted by 〈X〉. Take any x ∈ S. Then 〈x〉 is called the monogenic
subsemigroup of S generated by x. If 〈x〉 is finite, the order of x is the number of elements of
〈x〉; it will be denoted by o(x). If 〈x〉 is infinite, we write o(x) = ∞ and say that x has infinite
order. If o(x) < ∞, the index of x (to be denoted by ind x) is defined as the least positive
integer m satisfying xm = xm+k for some positive integer k, and the smallest of such integers
k is called the period of x [7, p. 8]. If x has infinite order, we set ind x = ∞. If x has finite
order and if m and n stand for its index and period, respectively, the monogenic semigroup
〈x〉 (or any semigroup isomorphic to it) will be denoted byM(m,n). It is easily seen that for
any m,n ∈ N, there is one and (up to isomorphism) only one monogenic semigroup M(m,n)
[7, Section I.2]. Clearly, M(1, n) is the cyclic group of order n for which we will adopt the
commonly used notation Cn. Denote by MS the set of all x ∈ S such that the monogenic
semigroup 〈x〉 has a unique generator. It is immediate that x ∈ MS if and only if either
ind x = 1 and o(x) ≤ 2 or ind x > 1. Thus NS ∪ ES ⊆ MS, and if x is a nonidempotent
group element of MS, then o(x) = 2 or o(x) = ∞. Recall also that a semigroup 〈a, b〉 with
identity 1 given by one defining relation ab = 1 is said to be bicyclic [3, § 1.12]; we will denote
it by B(a, b). The idempotents of B(a, b) form a chain: 1 = ab > ba > b2a2 > . . ., and B(a, b)
is an inverse monoid consisting of a single D-class [3, Theorem 2.53]. A semigroup S is said
to be completely semisimple if it contains no bicyclic subsemigroup.

Let S be an inverse semigroup. If X is a nonempty subset of S, the inverse subsemigroup
of S generated by X will be denoted by [[X ]], so [[X ]] = 〈X ∪ X−1〉 = [[X−1]] where X−1 =
{x−1 | x ∈ X}. If X = {x} for some x ∈ S, we will write [[x]] instead of [[X ]] and call [[x]]
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the monogenic inverse subsemigroup of S generated by x; if S = [[x]], we will say that the
inverse semigroup S is monogenic. A detailed analysis of the structure of monogenic inverse
semigroups is contained in [16, Chapter IX]). We recall only a few basic facts about them. Let
S = [[x]] be a monogenic inverse semigroup. Then D = J and the partially ordered set of J -
classes (=D-classes) of S is a chain with the largest element Jx (= Dx). It is obvious that one
of the following holds: (a) xx−1 = x−1x, (b) xx−1 ‖ x−1x, (c) xx−1 > x−1x or x−1x > xx−1.
In case (a), S = Dx is a cyclic group. In case (b), Dx = {x, x−1, xx−1, x−1x} (= Jx) is the
“top” J -class of S (and, of course, S \Dx is an ideal of S). Finally, in case (c), S = Dx is a
bicyclic semigroup – it is either B(x, x−1) if xx−1 > x−1x, or B(x−1, x) if x−1x > xx−1.

2. Lattice isomorphisms and PA-isomorphisms of semigroups, preliminaries

Let S be a semigroup. Since we assume that ∅ is a subsemigroup of S, the set of all
subsemigroups of S, partially ordered by inclusion, is a complete lattice which we will denote
by Sub(S). It is clear that H ∩K is the greatest lower bound and 〈H ∪K〉 is the least upper
bound of H, K ∈ Sub(S); we will usually denote the latter by H ∨K. Let T be a semigroup
such that Sub(S) ∼= Sub(T ). Then S and T are said to be lattice isomorphic, and any
isomorphism of Sub(S) onto Sub(T ) is called a lattice isomorphism of S onto T . If Ψ is a
lattice isomorphism of S onto T , we say that Ψ is induced by a mapping ψ : S → T (or that
ψ induces Ψ) if HΨ = Hψ for all H ∈ Sub(S).

Let S and T be lattice isomorphic semigroups, and let Ψ be an isomorphism of Sub(S)
onto Sub(T ). It is obvious (and well-known [21, Lemma 3.1(b)]) that a subsemigroup U of
S is an atom of Sub(S) if and only if U = 〈e〉 = {e} for some idempotent e ∈ S. Thus
ES 6= ∅ if and only if ET 6= ∅, and there is a unique bijection ψE of ES onto ET defined by
the formula {e}Ψ = {eψE} for all e ∈ ES. We will say that ψE is the E-bijection associated
with Ψ. It is also easily seen (and well-known [21, Proposition 36.6]) that for all e, f ∈ ES,
we have e ∦ f if and only if eψE ∦ fψE , and if e‖f , then (ef)ψE = (eψE)(fψE), which is
expressed by saying that ψE is a weak isomorphism of ES onto ET .

A partial automorphism of a semigroup S is any isomorphism between its subsemigroups.
We denote by PA(S) the set of all partial automorphisms of S. Since ∅ ∈ Sub(S), it is
natural to regard ∅ as the (unique) isomorphism of the empty subsemigroup of S onto itself,
so ∅ ∈ PA(S). With respect to composition PA(S) is an inverse semigroup which is an inverse
subsemigroup of IS. In particular, the natural order relation on PA(S) coincides with the
extension ⊆ of partial automorphisms of S and the idempotents of PA(S) are precisely the
identity mappings 1H : h 7→ h (h ∈ H) where H ∈ Sub(S). Clearly, 1∅ (= ∅) is the zero
while 1S is the identity of PA(S). Thus PA(S) is an inverse monoid with zero; it is called
the partial automorphism monoid of S. The group of units of PA(S) is the automorphism
group of S, and the semilattice of idempotents of PA(S) is a lattice isomorphic to Sub(S).

Let S and T be semigroups. If PA(S) ∼= PA(T ), then S and T are said to be PA-
isomorphic, and any isomorphism of PA(S) onto PA(T ) is called a PA-isomorphism of S
onto T . Let Φ be a PA-isomorphism of S onto T . For any H ∈ Sub(S), define HΦ∗ by the
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formula 1HΦ = 1HΦ∗ . Then Φ∗ is a lattice isomorphism of S onto T . If ES 6= ∅, we will
denote by ϕE the E-bijection associated with Φ∗ and say that it is associated with Φ; thus
{e}Φ∗ = {eϕE} for all e ∈ ES. If there is a bijection ϕ : S → T such that Φ = (ϕ �ϕ)|PA(S),
we say that ϕ induces Φ (or Φ is induced by ϕ). Thus Φ is induced by ϕ if for all α ∈ PA(S)
and x, y ∈ S, we have xα = y if and only if (xϕ)(αΦ) = yϕ. Let θ be an arbitrary bijection
of S onto T . It is clear that (θ � θ)|PA(S) is a PA-isomorphism of S onto T precisely when
for all α ∈ IS, we have α ∈ PA(S) if and only if α(θ � θ) ∈ PA(T ). In particular, any
isomorphism or anti-isomorphism of S onto T induces a PA-isomorphism of S onto T .

A semigroup S is called PA-determined if S is isomorphic or anti-isomorphic to a semigroup
T whenever T is PA-isomorphic to S. We say that S is strongly PA-determined if each PA-
isomorphism of S onto a semigroup T is induced by an isomorphism or an anti-isomorphism
of S upon T . Let K be a certain class of semigroups. The PA-closure of K is the class PA(K)
of semigroups such that T ∈ PA(K) if and only if T is PA-isomorphic to some S ∈ K. We
say that K is PA-closed if PA(K) = K, that is, if K contains every semigroup which is
PA-isomorphic to some semigroup from K.

Result 2.1. (A corollary to [19, Main Theorem and its proof].) Let S be a semilattice
(that is, an inverse semigroup such that S = ES) and T an arbitrary semigroup. Then
PA(S) ∼= PA(T ) if and only if S ∼= T or S is a chain and T ∼= Sd. Moreover, any PA-
isomorphism Φ of S onto T is induced by the E-bijection ϕE associated with Φ, and ϕE is
either an isomorphism or, if S is a chain and T ∼= Sd, a dual isomorphism of S onto T .

In addition, it is easy to see that if a bijection γ of S (= ES) onto T (= ET ) induces a
PA-isomorphism Φ of S onto T , then γ = ϕE.

Let S be an inverse semigroup. Since we assume that ∅ ∈ Subi (S), the set of all inverse
subsemigroups of S, partially ordered by inclusion, is a complete lattice which we will denote
by Subi (S). It is clear that Subi (S) is a sublattice of Sub(S). Among all the partial
automorphisms of S it is natural to distinguish those which are isomorphisms between inverse
subsemigroups of S; we call them partial i-automorphisms of S. Since ∅ ∈ Subi (S), we can
also regard ∅ as a partial i-automorphism of S. Denote by PAi (S) the set of all partial i-
automorphisms of S. It is clear that PAi (S) is closed under composition. Actually, PAi (S)
is an inverse monoid with zero which is an inverse submonoid of PA(S). The idempotents
of PAi (S) are the identity mappings 1H for H ∈ Subi (S), and EPAi (S)

∼= Subi (S).
Let S and T be inverse semigroups. If Subi (S) ∼= Subi (T ), then S and T are said

to be projectively isomorphic, and any isomorphism of Subi (S) onto Subi (T ) is called a
projectivity of S upon T (here we use the terminology of [21]). Again it is clear that an
inverse subsemigroup U of S is an atom of Subi (S) if and only if U = [[e]] = {e} for some
e ∈ ES. Thus if Ψ is a projectivity of S onto T , there is a unique bijection ψE of ES

onto ET defined by the formula {e}Ψ = {eψE} for all e ∈ ES, and we say that ψE is the
E-bijection associated with Ψ. Since Sub(E) = Subi (E) for any semilattice E, there is no
difference between lattice isomorphisms and projectivities of semilattices. In particular, it
is again immediate (and well-known) that ψE is a weak isomorphism of ES onto ET . An
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important role in the study of projectivities of inverse semigroups is played by the following
result established by Jones in [9]:

Result 2.2. (From [9, Proposition 1.6 and Corollary 1.7]) Let S and T be projectively
isomorphic inverse semigroups, and let Ψ be a projectivity of S onto T . Then there is a
(unique) bijection ψ : NS ∪ ES → NT ∪ ET with the following properties:
(a) ψ extends ψE, that is, ψ|ES

= ψE;
(b) ψ and ψ−1 preserve R- and L-classes;
(c) [[x]]Ψ = [[xψ]] for every x ∈ NS ∪ ES;
(d) if a homomorphism γ : S → T induces Ψ, then xψ = xγ for all x ∈ NS ∪ ES.

Following [21], we say that the bijection ψ : NS ∪ES → NT ∪ET in Result 2.2 is the base
partial bijection associated with the projectivity Ψ of S onto T . Recall that a semigroup S is
said to be combinatorial [16, p. 363] if H = 1S. Clearly a regular semigroup is combinatorial
if and only if it has no nontrivial subgroups. If S in Result 2.2 is combinatorial, then T
is combinatorial as well by [8, Corollary 1.3], and since in this case, S = NS ∪ ES and
T = NT ∪ ET , the base partial bijection ψ is actually a bijection of S onto T .

Let S and T be inverse semigroups. If PAi (S) ∼= PAi (T ), then S and T are said
to be PAi -isomorphic, and any isomorphism of PAi (S) onto PAi (T ) is called a PAi -
isomorphism of S onto T . Let Φ be a PAi -isomorphism of S onto T . Similarly to the
case of PA-isomorphisms of semigroups, for any H ∈ Subi (S) we define HΦ∗ by the formula
1HΦ = 1HΦ∗ , obtaining a projectivity Φ∗ of S onto T . As for PA-isomorphisms, the E-
bijection associated with Φ∗ will be denoted by ϕE and said to be associated with Φ. Also
as for PA-isomorphisms, we say that a bijection ϕ : S → T induces Φ if for all α ∈ PAi (S)
and x, y ∈ S, we have xα = y if and only if (xϕ)(αΦ) = yϕ. Again it is obvious that if ϕ
is an isomorphism or an anti-isomorphism of S onto T , then ϕ induces a PAi -isomorphism
of S onto T . This time, however, if a PAi -isomorphism Φ of S onto T is induced by an
anti-isomorphism ϕ of S onto T , it is also induced by an isomorphism ιS ◦ ϕ of S onto T
where ιS is the natural involution on S defined by ιS : x 7→ x−1 (x ∈ S).

Result 2.3. [4, Lemma 2.3] Let S and T be PA-isomorphic inverse semigroups, and let Φ be
a PA-isomorphism of S onto T . Then the restriction of Φ to PAi (S) is a PAi -isomorphism
of S onto T .

A statement analogous to the following lemma but dealing with PAi -isomorphisms of
inverse semigroups was proved in [5, Lemma 7]. Actually, both assertions are special cases
of the corresponding general result about PA-isomorphisms of algebras of any type, the proof
of which is entirely similar to that of [5, Lemma 7].

Lemma 2.4. Let S and T be PA-isomorphic semigroups, and let Φ be an isomorphism of
PA(S) onto PA(T ). Then for each α ∈ PA(S), we have dom (αΦ) = (domα)Φ∗ and
ran (αΦ) = (ranα)Φ∗, and hence for any subsemigroup H of S, the restriction of Φ to
PA(H) is a PA-isomorphism of H onto HΦ∗.
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A null semigroup is a semigroup N with zero such that xy = 0 for all x, y ∈ N . In what
follows we will denote by N2 the 2-element null semigroup {0, z}. Let G be an arbitrary
group such that z 6∈ G, and let e be the identity of G. It is plain that the mapping z 7→ e is
a partial homomorphism of N∗

2 to G; it determines an extension of G by N2 which we will
denote by G〈1〉 and call an extension of G at the identity by N2. Thus G〈1〉 = G ∪ {z} is a
semigroup with the operation extending that of G and such that z2 = e and zx = xz = x for
all x ∈ G. (Note that G〈1〉 is an inflation of G [3, § 3.2, Exercise 10] with e being replaced
by {e, z} and all other elements of G left unchanged.) It is easy to check directly that

PA(C2) ∼= PA(N2) (and it is obvious that N2
∼= C

〈1〉
1 ), so C2 and C

〈1〉
1 are PA-isomorphic.

Actually, this simple fact is a special case of part (b) of the following

Result 2.5. [11, Theorem 1] Let S be a monogenic semigroup and T an arbitrary semigroup.
Then PA(S) ∼= PA(T ) if and only if one of the following holds:

(a) S ∼= T ; (b) S ∼= C2n and T ∼= C
〈1〉
n for an odd n ≥ 1; (c) S and T are finite monogenic

semigroups such that either {S, T} = {M(2, 2),M(3, 1)} or {S, T} = {M(3, 6),M(4, 3)}.

This result has the following immediate corollary:

Lemma 2.6. Let S and T be PA-isomorphic semigroups and Φ a PA-isomorphism of S onto
T . Then for every x ∈ MS , there is a unique y ∈ MT satisfying 〈x〉Φ∗ = 〈y〉, and the mapping
ϕ : x 7→ y is a bijection of MS onto MT , extending ϕE, such that exactly one of the following
holds: (a) ind x > 1 and ind (xϕ) > 1; (b) {〈x〉, 〈xϕ〉} = {C2, N2}; (c) 〈x〉 ∼= C2

∼= 〈xϕ〉.
Moreover, if S = MS, then T = MT and ϕ is the unique bijection of S onto T inducing Φ.

We will say that the mapping ϕ, described in Lemma 2.6, is the Φ-associated bijection of
MS onto MT (or, if S = MS , the Φ-associated bijection of S onto T ).

Let S and T be PA-isomorphic combinatorial inverse semigroups, and let Φ be a PA-
isomorphism of S onto T . Denote, for short, Ψ = Φ|PAi(S). By Result 2.3, Ψ is a PAi -
isomorphism of S onto T . Let ϕ be the Φ-associated bijection of S onto T , and let ψ be the
base bijection of S onto T associated with the projectivity Ψ∗. It is plain that ϕE = ψE .
However, it might happen that for some x, y ∈ NS, we have xϕ = xψ but yϕ = y−1ψ; thus,
in general, ϕ 6= ψ and ϕ 6= ιS ◦ ψ (where ιS is the natural involution of S).

3. PA-closed classes of inverse semigroups

Since C2 and N2 are PA-isomorphic, the class of inverse semigroups is not PA-closed. In
this section we will show that this “anomaly” is, in a sense, the only one: if we remove from
the class of all inverse semigroups those having at least one isolated subgroup which is a
direct product of C2 and a periodic group with no elements of even order, we will obtain a
PA-closed class of inverse semigroup. It is natural to begin our discussion with groups.

Result 3.1. [12, Lemma] Let G be a group and S a semigroup PA-isomorphic to G. Then
either S is a group or S = Q〈1〉 where Q is a periodic subgroup of S with no elements of even
order, which is possible only if G is a periodic group with a unique 2-element subgroup.



PA-ISOMORPHISMS OF INVERSE SEMIGROUPS 9

This lemma was used in [12] in order to prove that a semigroup S is PA-isomorphic to an
abelian group G if and only if either S ∼= G or G is a periodic abelian group with a unique
2-element subgroup C2 and S ∼= (G/C2)

〈1〉 [12, Main Theorem]. This gives a complete
description of the PA-closure of the class of abelian groups and shows, moreover, that an
abelian group G is PA-determined if it is not a periodic group with a unique 2-element
subgroup. The latter result does not hold, of course, for nonabelian groups. However, one
can strengthen Result 3.1 and obtain a description of the PA-closure of the class of all groups.

Let G be an arbitrary group. Denote by Z(G) the center of G. If G has elements of
order 2, they are usually called involutions. We will say that G is involution-free if it has
no elements of order 2. Suppose that G has a unique 2-element subgroup A = {e, a}. It is
obvious that A ⊆ Z(G), so A is a normal subgroup of G. Assume that G splits over A, that
is, G has a subgroup P (a complement of A in G) such that A ∩ P = {e} and AP = G.
In this case, since A ⊆ Z(G), it is clear that G = A × P . Thus a group G with a unique
2-element subgroup A splits over A if and only if A is a direct factor of G. Of course, if G is
abelian, A is a direct factor of G. If G is a finite group, it is immediate from the Burnside
normal complement theorem [18, Theorem 7.50] that G contains a normal complement P
of A and hence G = A × P . However, in general, it is not true that a periodic group G
with a unique 2-element subgroup A splits over A. Indeed, as follows from [15, Theorem
31.7], there exists a periodic group G with a unique 2-element subgroup A such that A is
not a direct factor of G (the author is grateful to A. Yu. Ol’shanskii for this remark and
reference). At the same time, according to the following lemma, no such periodic group can
be PA-isomorphic to a semigroup that is not a group.

Lemma 3.2. Let G be a group, S a semigroup which is not a group, and Φ a PA-isomorphism
of G onto S. Then S contains a periodic involution-free subgroup Q such that S = Q〈1〉. Let
P = Q(Φ−1)∗. Then P is an involution-free periodic subgroup of G and G = C2 × P .

Proof. According to Result 3.1, S = Q〈1〉 is an extension of its involution-free peri-
odic subgroup Q at the identity by the 2-element null semigroup N2 = {0, z}, and A =
{e, z}(Φ−1)∗ is a unique 2-element subgroup of G. Since Q is involution-free, by Lemma 2.4
and Result 2.5, P is also involution-free and thus A∩P = {e}. It is plain that S = {e, z}∨Q
whence G = {e, z}(Φ−1)∗ ∨ Q(Φ−1)∗ = A ∨ P = AP . Therefore G splits over A. As men-
tioned above, this implies that G = A× P .

A special case of the next lemma for abelian groups was proved in [12]. The corresponding
part of the proof of [12, Main Theorem] can be easily adjusted to cover our more general
situation. For completeness, we include a full proof modifying some arguments from [12].

Lemma 3.3. Let P and Q be PA-isomorphic involution-free periodic groups, let S = Q〈1〉

be an extension of Q at the identity by the 2-element null semigroup N2 = {0, z}, and let
G = A× P where A = {e, a} ∼= C2. Then G and S are PA-isomorphic.

Proof. Take an arbitrary α ∈ PA(G). Suppose that ranα 6⊆ P . Then ax ∈ ranα for
some x ∈ P . Since o(x) is odd and o(a) = 2, we have a = (ax)o(x) ∈ ranα. Hence a = aα
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since a is the only involution in G. Thus domα 6⊆ P . For any X ⊆ G, denote by αX the
restriction of α to X ∩ domα. We have shown that αP ∈ PA(P ) for every α ∈ PA(G). It
follows also from the above remarks that α = αP if and only if a 6∈ domα, and if a ∈ domα,
then α(aP ) 6= ∅ and α = αP ∪ α(aP ).

Let Ψ be an arbitrary PA-isomorphism of P onto Q. Define αΦ = αΨ if α = αP , and
αΦ = αPΨ ∪ {(z, z)} if α 6= αP . Clearly, Φ is a bijection of PA(G) onto PA(S); let us show
that it is a PA-isomorphism of G onto S. Take any α, β ∈ PA(G). If α = αP and β = βP ,
then α ◦ β = (α ◦ β)P and hence (α ◦ β)Φ = (α ◦ β)Ψ = αΨ ◦ βΨ = αΦ ◦ βΦ. Assume that
α 6= αP and β = βP . Then α ◦ β = (αP ∪ α(aP )) ◦ βP = (αP ◦ βP ) ∪ (α(aP ) ◦ βP ) = αP ◦ βP
since aP ∩ P = ∅. Thus (α ◦ β)Φ = (αP ◦ βP )Φ = (αP ◦ βP )Ψ = αPΨ ◦ βPΨ, and

αΦ ◦ βΦ = (αPΨ ∪ {(z, z)}) ◦ βPΨ = (αPΨ ◦ βPΨ) ∪ ({(z, z)} ◦ βPΨ) = αPΨ ◦ βPΨ

since z 6∈ dom (βPΨ) ⊆ Q. Therefore (α ◦ β)Φ = αΦ ◦ βΦ. Similarly, (α ◦ β)Φ = αΦ ◦ βΦ if
α = αP and β 6= βP . Suppose, finally, that α 6= αP and β 6= βP . Since aP ∩ P = ∅, we have

α ◦ β = (αP ∪ α(aP )) ◦ (βP ∪ β(aP )) = (αP ◦ βP ) ∪ (α(aP ) ◦ β(aP )).

Hence
(α ◦ β)Φ = (αP ◦ βP )Ψ ∪ {(z, z)} = (αPΨ ◦ βPΨ) ∪ {(z, z)}.

Using the fact that z 6∈ dom (βPΨ) and z 6∈ ran (αPΨ), we also obtain

αΦ ◦ βΦ = (αPΨ ∪ {(z, z)}) ◦ (βPΨ ∪ {(z, z)}) = (αPΨ ◦ βPΨ) ∪ {(z, z)}.

Therefore (α ◦ β)Φ = αΦ ◦ βΦ in this case as well. The lemma is proved.

A complete description of the PA-closure of the class of all groups is an immediate conse-
quence of the following proposition obtained by combining Lemmas 3.2 and 3.3:

Proposition 3.4. A group G is PA-isomorphic to a semigroup S that is not a group if and
only if G = A× P and S = Q〈1〉 where P and Q are PA-isomorphic involution-free periodic
subgroups of G and S, respectively, and A ∼= C2.

The next natural step is to consider PA-isomorphisms of monogenic inverse semigroups.

Result 3.5. (From [13, Main Theorem and its proof] Let S = 〈x, x−1〉 be a monogenic
inverse semigroup which is neither a group nor a bicyclic semigroup, and let T be an arbitrary
semigroup. Then PA(S) ∼= PA(T ) if and only if S ∼= T . More precisely, let Φ be a PA-
isomorphism of S onto T , let ϕ be the Φ-associated bijection of MS onto MT , and let y = xϕ
and z = x−1ϕ. Then T = 〈y, z〉 is a monogenic inverse semigroup with z = y−1. Moreover,
ϕ extends to a bijection ϕ̃ : S → T which is either an isomorphism of S onto T if (xx−1)ϕ =
yy−1, or an anti-isomorphism of S onto T if (xx−1)ϕ = y−1y.

It should be noted that in [13] the Main Theorem stated that if A is a monogenic inverse
semigroup which is not a group and B is any semigroup, then PA(A) ∼= PA(B) if and only
if A ∼= B. However the proof of that theorem (see [13], the proof of Lemma 1 on page 55)
was based on an erroneous assertion that if A = 〈a, a−1〉 is a monogenic inverse semigroup
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which is not a group, then A \ {a, a−1, aa−1, a−1a} is an ideal of A. That assertion is true
if, in addition, it is assumed that A is not a bicyclic semigroup. Thus we had to state the
quoted theorem with an additional assumption that the given monogenic inverse semigroup
is not bicyclic (that is, how it had actually been proved in [13]). On the other hand, it is
immediate from the proof given in [13], that if Φ is a PA-isomorphism of a monogenic inverse
semigroup S onto a semigroup T and S is neither a group nor a bicyclic semigroup, then
there is a bijection ϕ̃, extending the Φ-associated bijection ϕ of MS onto MT , which is either
an isomorphism or an anti-isomorphism of S onto T , and we stated the quoted theorem in
that slightly sharper form.

Result 3.6. (From [20, Main Theorem and its proof].) Let S = B(x, x−1) be a bicyclic
semigroup, T a semigroup and Ψ a lattice isomorphism of S onto T . Then T is also a bicyclic
semigroup and Ψ is induced by a bijection ψ : S → T , uniquely determined by Ψ, such that
either T = B(xψ, (xψ)−1), in which case ψ is an isomorphism, or T = B((xψ)−1, xψ), in
which case ψ is an anti-isomorphism of S onto T .

Now we can prove the following generalization of Result 3.5:

Lemma 3.7. Let S = 〈x, x−1〉 be a monogenic inverse semigroup, which is not a group, and T
an arbitrary semigroup. Then S and T are PA-isomorphic if and only if they are isomorphic.
More specifically, let Φ be a PA-isomorphism of S onto T , and let ϕ be the Φ-associated
bijection of MS onto MT . Then there is a bijection ϕ̃ : S → T such that ϕ̃|MS

= ϕ, T =
〈xϕ, (xϕ)−1〉 is a monogenic inverse semigroup, and ϕ̃ is either an isomorphism of S onto
T if (xx−1)ϕ = (xϕ)(xϕ)−1, or an anti-isomorphism of S onto T if (xx−1)ϕ = (xϕ)−1(xϕ).
Furthermore, if S = MS, then ϕ is the unique bijection of S onto T inducing Φ.

Proof. If S is not a bicyclic semigroup, all statements of the lemma (except the one
in the last sentence) follow from Result 3.5, and if S = MS, then S is a “C-semigroup”
in the terminology of [21], so according to [21, Lemma 31.5], the lattice isomorphism Φ∗

is induced by a unique bijection ϕ (which, in this case, coincides with ϕ̃). Now assume
that S = B(x, x−1) is a bicyclic semigroup. Since Φ∗ is a lattice isomorphism of S onto T ,
by Result 3.6, T is also a bicyclic semigroup and Φ∗ is induced by a unique bijection of S
onto T which obviously coincides with ϕ. Moreover, either T = B(xϕ, (xϕ)−1) and ϕ is an
isomorphism, or T = B((xϕ)−1, xϕ) and ϕ is an anti-isomorphism of S onto T .

It remains to show that if S = MS, then ϕ induces Φ. Thus suppose that S = MS (this
holds, of course, if S is combinatorial and, in particular, if S is bicyclic). Take an arbitrary
α ∈ PA(S) and any (x, y) ∈ α. Set αx = α|〈x〉. Then αx is an isomorphism of 〈x〉 onto 〈y〉
and αx ⊆ α. By Lemma 2.4, αxΦ is an isomorphism of 〈x〉Φ∗ onto 〈y〉Φ∗. Since ϕ induces
Φ∗, we have 〈x〉Φ∗ = 〈xϕ〉 and 〈y〉Φ∗ = 〈yϕ〉. Therefore αxΦ is an isomorphism of 〈xϕ〉 onto
〈yϕ〉 and hence (xϕ, yϕ) ∈ αxΦ ⊆ αΦ. Considering Φ−1 and using the (obvious) fact that
(Φ−1)∗ is induced by ϕ−1, we obtain, by symmetry, that if (xϕ, yϕ) ∈ αΦ, then (x, y) ∈ α.
This completes the proof.
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Let S be an inverse semigroup and T an arbitrary semigroup PA-isomorphic to S. Let Φ
be a PA-isomorphism of S onto T and ϕ the Φ-associated bijection of MS onto MT . It is clear
that ET 6= ∅ and ϕE (= ϕ|ES

) is a bijection of ES onto ET . By Lemma 2.4, Φ|PA(ES ) is a PA-
isomorphism of ES onto ESΦ

∗(= ET ). Hence, according to Result 2.1, ϕE is an isomorphism
or, if ES is a chain, perhaps a dual isomorphism of ES onto ET . In any case, ET is a
semilattice, that is, T is an idempotent-commutative semigroup. Therefore Reg (T ) is the
largest inverse subsemigroup of T . In what follows, we will denote Reg (T ) by V and V (Φ−1)∗

by U , so Φ|PA(U) is a PA-isomorphism of U onto V . It is clear that EV = ET and KV
v = Kv

for any K ∈ {H,L,R,D} and v ∈ V . To simplify notation, we will also set Ψ = Φ−1 (so
Ψ|PA(V ) is a PA-isomorphism of V onto U), and denote by ψ the Ψ-associated bijection of
MT onto MS. Let x be an arbitrary nongroup element of S. Then [[x]] is a monogenic inverse
semigroup which is not a group. Set Φx = Φ|PA([[x]]). By Lemma 3.7, there is a bijection
ϕx of [[x]] onto [[xϕ]] (= [[x]]Φ∗) which extends ϕ|M[[x]]

. Moreover, according to Lemma 3.7, ϕx

is either an isomorphism or an anti-isomorphism of [[x]] onto [[xϕ]]; it is an isomorphism if
(xx−1)ϕ = (xϕ)(xϕ)−1, and an anti-isomorphism if (xx−1)ϕ = (xϕ)−1(xϕ). Since [[xϕ]] is not
a group, Dxϕ is a regular nongroup D-class of T and hence Dxϕ = DV

xϕ. The notation and
observations of this paragraph will be used, frequently without further explanation, throughout
the rest of this section. From the above discussion, using also Ψ|PA(V ) instead of Φ, we obtain

Lemma 3.8. If y ∈ NV , then [[yψ]] (∼= [[y]]) is a monogenic inverse semigroup which is not
a group, so yψ ∈ NU . It follows that NS ∪ ES = NU ∪ EU and ϕ|NU∪EU

is a bijection of
NU ∪EU onto NV ∪EV . Furthermore, if e ∈ ES, then De is a nongroup D-class of S if and
only if Deϕ is a regular nongroup D-class of T (that is, a nongroup D-class of V ), and for
all g ∈ ES, g ∈ De if and only if gϕ ∈ Deϕ; in particular, e is isolated in S if and only if eϕ
is isolated in T .

We will show later that He∩U is a subgroup of He for any e ∈ ES. Together with the fact
that NS ∪ES = NU ∪EU , this will imply that U is an inverse subsemigroup of S and hence,
by Result 2.3, Φ|PAi(U) is a PAi -isomorphism of U onto V . However, as noted at the end of
Section 2, ϕ|NU∪EU

may still be different from the base partial bijection associated with the
projectivity (Φ|PAi(U))

∗ of U onto V .

Lemma 3.9. For any idempotent e of S, either HeΦ
∗ = Heϕ or HeΦ

∗ = H
〈1〉
eϕ = Heϕ ∪ {z},

and in the latter case, z 6∈ Reg (T ).

Proof. Let e ∈ ES and f = eϕ. By Lemma 2.4 and Result 3.1, either HeΦ
∗ is a subgroup

of T orHeΦ
∗ = Q〈1〉 = Q∪{z} where Q is a subgroup of T . Suppose the latter holds. Assume

that z ∈ Reg (T ). Since f = z2 ∈ [[z]], it is immediate that [[z]] is not a group (otherwise,
z = zf = f 6= z, a contradiction). Hence, by Lemma 3.7, [[zψ]] (= [[z]]Ψ∗) is a monogenic
inverse subsemigroup of S which is not a group. However, it is obvious that zψ ∈ He which
implies that [[zψ]] is a group. This contradiction shows that z 6∈ Reg (T ).

It is clear that f ∈ Q, so Q is a subgroup of Hf . Applying the above argument to Ψ|PA(V )

and using the fact that S has no nonregular elements, we conclude that HfΨ
∗ is a subgroup
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of He. Hence Q ⊆ Hf ⊆ HeΦ
∗ = Q ∪ {z}. If Q were properly contained in Hf , we would

have z ∈ Hf , which is impossible since z 6∈ Reg (T ). Therefore Q = Hf and HeΦ
∗ = H

〈1〉
f .

Finally, assume that HeΦ
∗ is a subgroup of T . Denote HeΦ

∗ by K. Clearly f ∈ K,
so K is a subgroup of Hf . As above, we see that HfΨ

∗ is a subgroup of He and hence
Hf ⊆ HeΦ

∗ = K ⊆ Hf . Therefore K = Hf , that is, HeΦ
∗ = Hf . This completes the proof.

Lemma 3.10. If e is an arbitrary nonisolated idempotent of S, then HeΦ
∗ = Heϕ. Therefore

if HeΦ
∗ = H

〈1〉
eϕ for some idempotent e of S, then e is isolated.

Proof. Let e ∈ ES be nonisolated. By Lemma 3.9, to prove that HeΦ
∗ = Heϕ, we

only need to show that HeΦ
∗ ⊆ Reg (T ). Since e is nonisolated, De contains an idempotent

g 6= e. Let s be an arbitrary element of He. Take any a ∈ Re ∩ Lg and b ∈ Rg ∩ Le. Then
HaHb = He by [3, Theorem 2.2.17], so s = xy for some x ∈ Ha and y ∈ Hb. Therefore
s ∈ [[x, y]] = [[x]] ∨ [[y]] whence [[s]] ⊆ [[x]] ∨ [[y]]. According to [3, Theorem 2.18], x−1 ∈ Hb and
y−1 ∈ Ha. Hence, by [3, Lemma 2.12], xx−1 = y−1y = e and x−1x = yy−1 = g, so that [[x]]
and [[y]] are monogenic inverse subsemigroups of S which are not groups. By Lemma 3.7,
[[x]]Φ∗ ∼= [[x]] and [[y]]Φ∗ ∼= [[y]]. Since [[x]]Φ∗ and [[y]]Φ∗ are inverse subsemigroups of T , they
are contained in Reg (T ). Thus [[s]]Φ∗ ⊆ ([[x]]∨ [[y]])Φ∗ = [[x]]Φ∗ ∨ [[y]]Φ∗ ⊆ Reg (T ), and hence

HeΦ
∗ = (

∨

s∈He

[[s]])Φ∗ =
∨

s∈He

([[s]]Φ∗) ⊆ Reg (T ).

The second assertion of the lemma follows immediately from the first and from Lemma 3.9.

Lemma 3.11. Suppose that T is not an inverse semigroup. Let z be any nonregular element
of T , and let a = zψ. Then 〈a〉 is an isolated subgroup of S isomorphic to C2. Let e denote
the identity of 〈a〉 (that is, e = a2). Then Heϕ and HeϕΨ

∗ are involution-free periodic groups,
HeΦ

∗ = Heϕ ∪ {z} is an extension of Heϕ at the identity by the 2-element null semigroup
N2 = {0, z}, and He = 〈a〉 × (HeϕΨ

∗).

Proof. Since z 6∈ Reg (T ), it is clear that ind z > 1 and hence z ∈ MT . Suppose that
a ∈ NS. Then, by Lemma 3.7, [[a]]Φ∗ (∼= [[a]]) is a monogenic inverse semigroup, so z, being
an element of [[a]]Φ∗, has an inverse, contradicting the assumption that z 6∈ Reg (T ). Thus
a is a group element of S. Assume that ind a = ∞. Then [[a]] is an infinite cyclic group, so
[[a]]Φ∗ ∼= [[a]] by [21, Lemma 34.8]. Hence z, as an element of the (infinite cyclic) group [[a]]Φ∗,
has an inverse, again contradicting the assumption that z 6∈ Reg (T ). Therefore ind a = 1.
Since ind z > 1 and a = zψ, by Lemma 2.6, 〈a〉 ∼= C2 and 〈z〉 ∼= N2. Moreover, HeΦ

∗ 6= Heϕ

because z ∈ HeΦ
∗ and z 6∈ Reg (T ). Thus, by Lemma 3.9, HeΦ

∗ = H
〈1〉
eϕ and, by Lemma 3.10,

e is an isolated idempotent (and so 〈a〉 is an isolated subgroup) of S. Since H
〈1〉
eϕ = Heϕ ∪Z

∗
2

is an extension of Heϕ at the identity by N2 and since the nonzero element of N2 is the only

nonregular element of H
〈1〉
eϕ , we have N2 = {0, z} where z is the given nonregular element of

T . The remaining assertions of the lemma follow from Lemma 3.2.
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We summarize some of the results obtained so far in the following proposition which is an
immediate consequence of Lemmas 3.8 – 3.11.

Proposition 3.12. Let e be an arbitrary idempotent of S. If e is nonisolated, then DU
e = De.

If e is isolated, then either HeΦ
∗ = Heϕ, in which case He = HU

e , or HeΦ
∗ = H

〈1〉
eϕ , in

which case He = Ae × HU
e where Ae

∼= C2 and the group HU
e is periodic and involution-

free. It follows that U is an inverse subsemigroup of S, and if HeΦ
∗ = Heϕ for all isolated

idempotents e of S, then S = U and T = V so, in particular, T is an inverse semigroup.

Now we can establish the main result of this section.

Theorem 3.13. Let S be an inverse semigroup such that no maximal isolated subgroup of
S is a direct product of C2 and an involution-free periodic group. Let T be an arbitrary
semigroup PA-isomorphic to S. Then T is also an inverse semigroup in which no maximal
isolated subgroup is a direct product of C2 and an involution-free periodic group. Thus the
class of all inverse semigroups, in which no maximal isolated subgroup is a direct product of
a periodic involution-free group and the 2-element cyclic group, is PA-closed.

Proof. Recall that we use the notations fixed in the paragraph preceding Lemma 3.8. In
particular, Φ denotes a PA-isomorphism of S onto T , and Ψ = Φ−1. Let e be any isolated
idempotent of S. By assumption, He is not a direct product of C2 and a periodic involution-
free group. Hence, according to Proposition 3.12, HeΦ

∗ = Heϕ. Since e is an arbitrary
isolated idempotent of S, by Proposition 3.12, T is an inverse semigroup.

Suppose that f is an isolated idempotent of T such that Hf = B ×Q where B ∼= C2 and
Q is a periodic involution-free group. Let e = fψ. In view of Lemma 3.8, e is an isolated
idempotent of S, and HfΨ

∗ = He by Lemma 3.9. Let A = BΨ∗ and P = QΨ∗. According
to Result 2.5, A ∼= C2. Since Q is a periodic group, it follows from [1, Theorem 3.2] that P
is also periodic, and by Result 2.5, P is involution-free. Since

He = HfΨ
∗ = (B ∨Q)Ψ∗ = (BΨ∗) ∨ (QΨ∗) = A ∨ P,

we have He = A×P , which contradicts the condition imposed on S. Therefore no maximal
isolated subgroup of T is a direct product of C2 and an involution-free periodic group.

From this theorem, we can easily deduce that various classes of inverse semigroups are
PA-closed (in the class of all semigroups). For example, we have

Corollary 3.14. The following classes of inverse semigroups are PA-closed:
(a) the class of all inverse semigroups with no isolated subgroups of order 2;
(b) the class of all inverse semigroups with no nontrivial isolated subgroups;
(c) the class of all combinatorial inverse semigroups.

Proof. Recall again that we use the notation of the paragraph preceding Lemma 3.8.
Suppose that S has no isolated subgroups of order 2. Then no maximal isolated subgroup of
S is a direct product of C2 and a periodic involution-free group. Thus, by Theorem 3.13, T is
an inverse semigroup. Assume that T contains an isolated subgroup B of order 2 and denote
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by f the identity of B. Let e = fψ and A = BΨ∗. Then e is an isolated idempotent of S,
and it is clear that A ∼= C2, so A is an isolated subgroup of S of order 2; a contradiction.
This proves (a), whereas (b) and (c) follow immediately from Theorem 3.13 and Lemma 3.9.

We conclude this section with an example of a class of Clifford semigroups which are
PA-isomorphic to semigroups that are not inverse. Recall that a Clifford semigroup is a
regular semigroup in which the idempotents are central. The structure of Clifford semigroups
was completely determined in [2] by means of the following construction. Let E be an
arbitrary semilattice, and let Se (e ∈ E) be a family of pairwise disjoint semigroups. Suppose
that for all e, f ∈ E with e ≥ f , there is a homomorphism ϕe,f : Se → Sf such that
ϕe,e = 1Se

and ϕe,f ◦ ϕf,g = ϕe,g for all e, f, g ∈ E satisfying e ≥ f ≥ g. If we define
multiplication on S =

⋃
{Se | e ∈ E} by the formula s ∗ t = (sϕe,ef)(tϕf,ef) for all s, t ∈ S

(where s ∈ Se, t ∈ Sf), then (S, ∗) becomes a semigroup called a strong semilattice E of
semigroups Se determined by the homomorphisms ϕe,f , which is written as S = [E;Se, ϕe,f ]
(see [16, II.2.2 and II.2.3]). In [2] Clifford proved that S is a regular semigroup with central
idempotents if and only if S is a strong semilattice of groups.

Let E be an arbitrary semilattice, and let A = [E;Ae, ϕe,f ] where Ae = {e, ae} ∼= C2

for each e ∈ E and Aeϕe,f = {f} for all e, f ∈ E such that e > f . Let B = [E;Be, ψe,f ]
where Be = {e, ze} ∼= N2 for each e ∈ E and Beψe,f = {f} for all e, f ∈ E such that
e > f . Now let θ be a bijection of A onto B such that eθ = e and aeθ = ze for every
e ∈ E. Let Θ = (θ � θ)|PA(A). It is easily seen that if α ∈ IA, then α ∈ PA(A) if and only if
α(θ � θ) ∈ PA(B), and thus Θ is an isomorphism of PA(A) onto PA(B). In short, we have

Example 3.15. Let A, B, θ, and Θ be as defined in the preceding paragraph. Then A is a
Clifford semigroup, B is a combinatorial semigroup which is not inverse, and Θ is a PA-
isomorphism of A onto B induced by θ.

Thus the class of Clifford semigroups (which are not groups) is not PA-closed and neither
is the class of (nontrivial) combinatorial semigroups. Using Example 3.15 (and its modifica-
tions) and taking Lemma 3.11 as a starting point, we can obtain a complete description of
the PA-closure of the class of all inverse semigroups, which will be given in another article.

4. PA-determined inverse semigroups

In this section we consider the problem of PA-determinability of inverse semigroups. Let S
be an inverse semigroup. If a ∈ S and e ∈ ES are such that e < aa−1 and there is no f ∈ E[[a]]

satisfying e < f < aa−1, we say that e is a-covered by aa−1. Take any a ∈ S and e ∈ ES with
e < aa−1. Suppose that for some positive integer n, there exist e0, e1, . . . , en ∈ ES such that
e = e0 < e1 < · · · < en = aa−1 and for every k = 1, . . . , n, the idempotent ek−1 is ak-covered
by ek where ak = eka (and hence aka

−1
k = ek). Then (e0, e1, . . . , en) is called a short bypass

from e to aa−1. If for all e, a ∈ S such that e < aa−1, there is a short bypass from e to aa−1,
then S is said to be a shortly connected inverse semigroup. This property was introduced in
[5] in connection with the following theorem:
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Result 4.1. [5, Theorem 5] Let S be a combinatorial inverse semigroup, T an inverse
semigroup projectively isomorphic to S, and Ψ a projectivity of S onto T . Let ψ be the
base bijection of S onto T associated with Ψ (so, in particular, ψE = ψ|ES

). Suppose that
S is shortly connected and ψE is an isomorphism of ES onto ET . Then ψ is the unique
isomorphism of S onto T which induces Ψ.

An inverse semigroup S is called shortly linked if for all a ∈ S and e ∈ ES such that
e < aa−1, the set Fe,a = {f ∈ E[[a]] : e < f ≤ aa−1} is finite. By [5, Proposition 3], any
shortly linked inverse semigroup is shortly connected. In fact, the class of shortly linked
inverse semigroups is properly contained in the class of shortly connected ones [6]. However,
the property of being shortly linked is easier to check than the property of being shortly
connected, and precisely for this reason shortly linked inverse semigroups were introduced
in [5]. Thus it might be useful to formulate the following specialization of Result 4.1 (as an
obvious consequence of [5, Theorem 5], it was not explicitly stated in [5]):

Result 4.2. (A corollary to [5, Theorem 5]) Let S be a combinatorial inverse semigroup, T
an inverse semigroup projectively isomorphic to S, and Ψ a projectivity of S onto T . Let ψ
be the base bijection of S onto T associated with Ψ. Suppose S is shortly linked and ψE is
an isomorphism of ES onto ET . Then ψ is the unique isomorphism of S onto T inducing Ψ.

In general, if Ψ is a projectivity of a combinatorial inverse semigroup S onto an inverse
semigroup T , the E-bijection ψE associated with Ψ may not be an isomorphism but just a
weak isomorphism of ES onto ET ; however, in many interesting special cases ψE is, in fact,
an isomorphism of ES onto ET (see [5] and [10] for more details). The original reason for
imposing this condition in Results 4.1 and 4.2 was the fact that if Φ is a PAi -isomorphism
of a combinatorial inverse semigroup S onto an inverse semigroup T , then the base bijection
ϕ of S onto T associated with Φ∗ is such that ϕE is indeed an isomorphism of ES onto ET ,
except for the case when (S,≤) is a chain, T = Sd, and ϕE (= ϕ) is a dual isomorphism of
S onto T . More precisely, using Result 4.1, we proved in [5] the following theorem:

Result 4.3. [5, Theorem 8] Let S be a shortly connected combinatorial inverse semigroup
and T an inverse semigroup. Then PAi(S) ∼= PAi(T ) if and only if either S ∼= T or (S,≤)
and (T,≤) are dually isomorphic chains. Moreover, any PAi -isomorphism of S onto T is
induced by a unique isomorphism of S onto T or, if (S,≤) is a chain and T ∼= Sd, by a
unique dual isomorphism of S onto T .

Let S be an inverse semigroup. As indicated above, the requirement that S be shortly
connected is strictly weaker than the requirement that it be shortly linked. Several other
properties of S which are strictly weaker than the property of being shortly linked were
introduced recently in [10]. Following Jones [10], we will call S pseudo-archimedean if none
of its idempotents is strictly below every idempotent of a bicyclic or free monogenic inverse
subsemigroup of S, faintly archimedean if whenever an idempotent e of S is strictly be-
low every idempotent of a bicyclic or free monogenic inverse subsemigroup [[a]] of S then
e < a, and quasi-archimedean if it is faintly archimedean and [[x]] is combinatorial for each
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x ∈ NS. Thus it is immediate that every pseudo-archimedean inverse semigroup is faintly
archimedean. Note that Jones defined the property of S being quasi-archimedean differently
and then proved it to be equivalent to the one given above in [10, Proposition 3.3(3)], which
makes apparent the fact that for combinatorial inverse semigroups the properties of being
faintly archimedean and quasi-archimedean coincide [10, Corollary 3.4].) According to [10,
Example 3.2], there exists a pseudo-archimedean inverse semigroup S which is also combi-
natorial and E-unitary (that is, such that for any a ∈ S and e ∈ ES, if e ≤ a, then a ∈ ES)
but which is not shortly linked. For quasi-archimedean combinatorial inverse semigroups,
the following theorem was proved in [10]:

Result 4.4. [10, Theorem 4.3] Let S be a combinatorial inverse semigroup, T an inverse
semigroup projectively isomorphic to S, and Ψ a projectivity of S onto T . Let ψ be the base
bijection of S onto T associated with Ψ. Suppose that S is quasi-archimedean (equivalently,
faintly archimedean) and ψE is an isomorphism of ES onto ET . Then ψ is the unique
isomorphism of S onto T which induces Ψ.

As pointed out in [10], this theorem generalizes Result 4.2 since every shortly linked inverse
semigroup is faintly archimedean. However, the question of whether every shortly connected
inverse semigroup is faintly archimedean was not addressed in [10]. Now we will construct
two examples of shortly connected combinatorial inverse semigroups which are not faintly
archimedean (one of them will contain a bicyclic subsemigroup while the other one will be
completely semisimple), showing therefore that Result 4.4 does not generalize Result 4.1.

Recall that an inverse semigroup S is said to be fundamental if 1S is the only congruence
on S contained in H, so every combinatorial inverse semigroup is certainly fundamental.
Fundamental inverse semigroups, introduced by Munn [14] (and independently by Wagner
[24] under a different name), form one of the most important classes of inverse semigroups
(see [7] and [14] for details). Let E be an arbitrary semilattice. Recall that the Munn
semigroup TE is an inverse semigroup (under composition) consisting of all isomorphisms
between principal ideals of E [7, §V.4]. If S is an inverse semigroup, a subset K of S is
called full ifES ⊆ K [16, p. 118]. Munn proved (see [14, Theorem 2.6] or [7, Theorem V.4.10])
that an inverse semigroup S with ES = E is fundamental if and only if S is isomorphic to a
full inverse subsemigroup of TE , and hence TE itself is fundamental.

Let E = {e0, e1, e2, . . . , f0, f1, f2, . . . , g0, g1, 0} be the semilattice given by the diagram
in Figure 1. Let S = TE be the Munn semigroup of the semilattice E. As usual, we
will identify each e ∈ E with 1Ee ∈ ES (so that ES is identified with E). It is immedi-
ate that Eem ∼= Een and Efm ∼= Efn for all integers m,n ≥ 0, and Eem ≇ Efm and
Eem ≇ Eg0 ∼= Eg1 ≇ Efm for every m ≥ 0. In fact, it is easy to see that for any in-
tegers m,n ≥ 0, there is exactly one isomorphism ϕm,n of Eem onto Een; it is defined as
follows: ekϕm,n = ek−m+n and fkϕm,n = fk−m+n for all integers k ≥ m, g0ϕm,n = g0 and
g1ϕm,n = g1 if m − n ≡ 0 (mod 2), g0ϕm,n = g1 and g1ϕm,n = g0 if m − n ≡ 1 (mod 2), and
0ϕm,n = 0. It is clear that (ϕm,n)

−1 = ϕn,m and the restriction of ϕm,n to Efm is the only
isomorphism of Efm onto Efn (while the restriction of ϕm,n to Eg0 or to Eg1 is also the
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only isomorphism between the corresponding principal ideals of E).
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Figure 1

As observed in [7, the proof of Proposition V.6.1], if F is an arbitrary semilattice, then
for any e, f ∈ F , we have (e, f) ∈ D in TF if and only if Fe ∼= Ff . It follows that S
is a combinatorial inverse semigroup with exactly four D-classes: D0, Dg0

, Df0
, and De0

;
moreover, ED0 = D0 = {0}, EDg0

= {g0, g1}, EDf0
= {f0, f1, . . .}, and EDe0

= {e0, e1, . . .}.

Let a = ϕ0,1. It is obvious that De0
is the bicyclic semigroup B(a, a−1) and D0 ∪Dg0

∪Df0

is a completely semisimple inverse subsemigroup of S containing the five-element Brandt
subsemigroup D0 ∪ Dg0

. Note that g0 < em for all m ≥ 0 (that is, each idempotent of

B(a, a−1) is strictly above g0) but g0 ≮ a. This means that S is not faintly archimedean. On
the other hand, it is easily seen that S is shortly connected. Thus we have the following

Example 4.5. Let E be the semilattice whose diagram is shown in Figure 1. Then the
Munn semigroup TE is a shortly connected combinatorial inverse semigroup which contains
a bicyclic subsemigroup and is not faintly archimedean.

Now let E be a semilattice whose diagram is shown in Figure 2. Its subsemilattice
E ′ = {e10, e01; e20, e11, e02; e30, e21, e12, e03; . . .} is the semilattice of idempotents of the free
monogenic inverse semigroup where, as in [6], {en−q, q : q = 0, 1, . . . , n} (n ∈ N) is the set
of all idempotents of that semigroup of weight n [16, Sections IX.1 and IX.2]. Again as
in [6], epq stands here for the idempotent that can be uniquely written in the form epfq in
the notation of [16, p. 408] where p, q ≥ 0 and p + q > 0. Furthermore, our semilattice E
contains a primitive subsemilattice {g0, g1, 0} and pairwise incomparable elements fpq (where
p + q = n and n runs through the set of all odd positive integers) such that every fpq is
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covered in E by epq, and fpq, in turn, covers either g0 if p is odd, or g1 if p is even.
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Let α be the isomorphism of Ee10 onto Ee01 that is uniquely determined by the formula
epqα = ep−1,q+1 (p ≥ 1, q ≥ 0). Note that whenever p ≥ 1 and q ≥ 0 are such that p + q
is odd, then fpqα = fp−1,q+1. Furthermore, g0α = g1, g1α = g0, and 0α = 0. Let S be the
full inverse subsemigroup of TE generated by α. It is easily seen that S is shortly connected
and combinatorial. Since [[α|E′]] is the free monogenic inverse subsemigroup of S and since
g0 < αα−1 (= e10) but g0 ≮ α, we conclude that S is not faintly archimedean. Note that S
does not contain a bicyclic subsemigroup, so it is completely semisimple. Thus we have

Example 4.6. Let E be the semilattice whose diagram is shown in Figure 2. Let α be an
isomorphism of Ee10 onto Ee01 uniquely determined by the formula epqα = ep−1,q+1 for any
p ≥ 1, q ≥ 0, and let S be the full inverse subsemigroup of the Munn semigroup TE generated
by α. Then S is a completely semisimple shortly connected combinatorial inverse semigroup
which is not faintly archimedean.

For any semigroup S, denote by S0 the semigroup obtained from S by adjoining an “extra”
zero element 0 to S. It is clear that if S is either a free monogenic inverse semigroup or
a bicyclic semigroup, then S0 is faintly archimedean but not shortly connected. Together
with the above two examples, this shows that the properties of being shortly connected and
faintly archimedean for inverse semigroups are independent of one another.

Theorem 4.7. Let S be a combinatorial inverse semigroup which is either shortly connected
or faintly archimedean, and let T be an arbitrary semigroup. Then PA(T ) ∼= PA(S) if
and only if T is an inverse semigroup such that either T ∼= S or (S,≤) is a chain and
(T,≤) ∼= (S,≤d). More specifically, if Φ is a PA-isomorphism of S onto T , it is induced by
a unique bijection ϕ of S onto T such that either (S,≤) and (T,≤) are dually isomorphic
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chains and ϕ (= ϕE) is a dual isomorphism of S onto T , or ϕE is an isomorphism of ES

onto ET , in which case ϕ|[[x]] is an isomorphism or an anti-isomorphism of [[x]] onto [[xϕ]]
for every x ∈ NS, and the PAi -isomorphism Φ|PAi(S) of S onto T is induced by a unique
isomorphism of S onto T .

Proof. Let Φ be a PA-isomorphism of S onto T . According to Corollary 3.14(c), T is a
combinatorial inverse semigroup. Let ϕ be the Φ-associated bijection of S onto T . Then, in
particular, ϕ|ES

= ϕE where ϕE is the E-bijection associated with Φ. By Result 2.1, either
ϕE is an isomorphism of ES onto ET , or (ES,≤) and ET ,≤) are dually isomorphic chains
and ϕE is an isomorphism of ES onto (ET )

d. Suppose that the latter holds. Then, since S
and T are combinatorial, it is not difficult to show that S = ES and T = ET (see the last
paragraph of the proof of [5, Theorem 8]), so that ϕ (= ϕE) is the unique bijection of S onto
T inducing Φ, and ϕ is a dual isomorphism of (S,≤) onto (T,≤). Now assume that ϕE is an
isomorphism of ES onto ET . From Result 2.3 and Lemma 3.7, it follows that ϕ is the unique
bijection of S onto T inducing Φ, and ϕ|[[x]] is an isomorphism or an anti-isomorphism of
[[x]] onto [[xϕ]] for every x ∈ NS. Finally, by Result 2.3, Φ|PAi(S) is a PAi -isomorphism of S
onto T , and hence (Φ|PAi(S))

∗ is a projectivity of S onto T . Therefore, if S is either shortly
connected or quasi-archimedean, then S ∼= T by Result 4.1 or by Result 4.4, respectively.
Using Result 2.3, we obtain the last assertion of the theorem by applying Result 4.3 in case
S is shortly connected, and deduce it from Result 4.4 if S is faintly archimedean.

Under the assumptions and in the notation of Theorem 4.7, it is natural to ask: Is it true
that the Φ-associated bijection ϕ of S onto T (in the case when ϕE is an isomorphism of
ES onto ET ) is either an isomorphism or an anti-isomorphism of S onto T ? In general, the
answer is no. For example, let A = 〈a, a−1〉 be the free monogenic inverse semigroup, let
B = {0, b, b−1, bb−1, b−1b} be the five-element Brandt semigroup, and let S be an extension
of B by A0 determined by the map a 7→ b. Then S is a faintly archimedean combinatorial
inverse semigroup. Define a bijection ϕ : S → S as follows: bϕ = b−1, b−1ϕ = b, and
ϕ|S\{b,b−1} = 1S\{b,b−1}, and let Φ = (ϕ �ϕ)|PA(S). Note that for every s ∈ S \ ES, if s ∈ A
then [[s]] is a free monogenic inverse subsemigroup of S, and if s ∈ B then [[s]] = B. It follows
that for an arbitrary α ∈ I(S), we have α ∈ PA(S) if and only if αΦ ∈ PA(S). Therefore Φ
is a PA-isomorphism of S onto T . By the very definition, Φ is induced by ϕ. However, ϕ is
neither an isomorphism nor an anti-isomorphism of S onto S because ϕ|A is an isomorphism
of A onto A whereas ϕ|B is an anti-isomorphism of B onto B. Using the same idea, one can
construct other faintly archimedean inverse semigroups with analogous properties. Thus we
have the following

Example 4.8. There exist faintly archimedean (combinatorial) inverse semigroups S such
that there is a PA-isomorphism of S onto an inverse semigroup T (∼= S) induced by a (unique)
bijection which is neither an isomorphism nor an anti-isomorphism of S onto T .

There are, of course, similar examples of shortly connected inverse semigroups. Neverthe-
less for some classes of combinatorial inverse semigroups S every PA-isomorphism of S onto
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a semigroup T is induced either by an isomorphism or by an anti-isomorphism of S onto T .
As an illustration, we will give one example of such class.

Proposition 4.9. Let S be a periodic combinatorial inverse semigroup, T an arbitrary
semigroup PA-isomorphic to S, and Φ any PA-isomorphism of S onto T . Then Φ is induced
by a unique bijection ϕ which is either an isomorphism or an anti-isomorphism of S onto T .

Proof. Since S is periodic, it is immediate that S is shortly linked, so it is both shortly
connected and faintly archimedean. According to Theorem 4.7, T is an inverse semigroup
isomorphic to S and the Φ-associated bijection ϕ : S → T has the following properties: ϕE

is an isomorphism of ES onto ET and for every s ∈ S \ ES, the restriction of ϕ to [[s]] is an
isomorphism or an anti-isomorphism of [[s]] onto [[sϕ]]. Suppose that x, y ∈ NS are such that
ϕ|[[x]] is an isomorphism of [[x]] onto [[xϕ]] but ϕ|[[y]] is an anti-isomorphism of [[y]] onto [[yϕ]].
Since S is periodic, [[x]] and [[y]] are finite combinatorial inverse subsemigroups of S. Denote
by e the least idempotent of [[x]] and by f the least idempotent of [[y]]. Take any a ∈ [[x]] and
b ∈ [[y]] such that aa−1 ≻ e and bb−1 ≻ f . Then [[a]] is a five-element Brandt subsemigroup
of [[x]] and [[b]] a five-element Brandt subsemigroup of [[y]]. Moreover, ϕ|[[a]] is an isomorphism
of [[a]] onto [[aϕ]], and ϕ|[[b]] is an anti-isomorphism of [[b]] onto [[bϕ]]. Let A = {a, aa−1, e} and
B = {b, bb−1, f}. It is clear that α : A → B given by: aα = b, (aa−1)α = bb−1, and eα = f ,
is the unique isomorphism of A onto B, so α ∈ PA(S). Hence αΦ ∈ PA(T ), that is, αΦ
is an isomorphism of AΦ∗ onto BΦ∗. At the same time, AΦ∗ = {aϕ, (aϕ)(aϕ)−1, eϕ} and
BΦ∗ = {bϕ, (bϕ)−1(bϕ), fϕ} because ϕ|A is an isomorphism of A onto AΦ∗ whereas ϕ|B is
an anti-isomorphism of B onto BΦ∗. Thus we have

bϕ = (aϕ)αΦ = [(aϕ)(aϕ)−1 · aϕ]αΦ = [(aϕ)(aϕ)−1]αΦ · (aϕ)αΦ = (bϕ)−1(bϕ) · bϕ = fϕ;

a contradiction. Therefore either ϕ|[[s]] is an isomorphism of [[s]] onto [[sϕ]] for all s ∈ NS or
ϕ|[[s]] is an anti-isomorphism of [[s]] onto [[sϕ]] for all s ∈ NS. From this it easily follows that
ϕ is either an isomorphism or an anti-isomorphism of S onto T .
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