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MINIMAL MODEL PROGRAM WITH SCALING AND

ADJUNCTION THEORY

MARCO ANDREATTA

Abstract. Let (X,L) be a quasi polarized pairs, i.e. X is a normal complex
projective variety and L is a nef and big line bundle on it. We study, up to

birational equivalence, the positivity (nefness) of the adjoint bundles KX +rL

for high rational number r. For this we run a Minimal Model Program with
scaling relative to the divisor KX + rL. We give some applications, namely
the classification up to birational equivalence of quasi polarized pairs with
sectional genus 0, 1 or 2 and of embedded projective varieties X ⊂ PN with
degree smaller than 2codimPN (X) + 2.

1. Introduction

Let X be a complex projective normal variety of dimension n and L be a nef and
big line bundle on X . The pair (X,L) is called a quasi polarized pair. The
goal of Adjunction Theory is to classify quasi polarized pairs via the study of the
positivity of the adjunction divisors KX + rL, with r a positive rational number.
This has been done extensively in the case in which L is ample, i.e. (X,L) is a
polarized pair; [BS95] is the best account on this case .
However the set up of quasi polarized pairs is certainly more natural: in particular
when passing to a resolution of the singularities and taking the pull back of L. The
classification of quasi polarized pairs will be up to birational equivalence. Quasi
polarized pairs were first considered by T. Fujita (see [Fu89]). In that paper he
made a connection between this theory and the Minimal Model Program (MMP
for short) and he proved some results under the assumption of the existence of the
MMP (more precisely under the assumption of existence and termination of flips).
In this paper, following T. Fujita ideas as re-proposed by A. Höring in [Ho10], and
with the use of the MMP developed in [BCHM10], we describe a MMP with scaling
related to divisors of type KX + rL (see Section 4).
Using the KX + rL-MMP we prove that, either the pair (X,L) is birational equiv-
alent to some very special quasi polarized pairs, or it is birational equivalent to a
pair (X ′, L′), which we call a zero reduction, where K ′

X + rL′ is nef for r ≥ (n− 1)
(Theorem 5.1).
In a further step we prove that there exists a quasi polarized pair (X ′′, L′′), which
we call a first reduction of the pair (X,L) and which is related to the original (X,L)
via birational equivalences or blow up of smooth points, such that, a part a finite
list of special pairs, KX′′ + rL′′ is nef for r ≥ (n− 2) (Theorem 5.6).

1991 Mathematics Subject Classification. 14E30, 14J40, 14N30, 14N25.
Key words and phrases. Quasi polarized pairs, Adjunction Theory, Minimal Model Program

with scaling.
Many thanks to Paolo Cascini for explaining some details of the MMP.

The author was supported by a grant of the Italian Minister of Research - PRIN..

1

http://arxiv.org/abs/1107.4878v1


2 ANDREATTA

We give then some applications, namely the classification, up to birational equiv-
alence, of quasi polarized pairs with sectional genus 0, 1 or 2 (Corollary 6.1) and,
up to first reduction, of embedded projective varieties X ⊂ PN with degree smaller
than 2codimPN (X) + 2 (Corollary 6.2).

2. Notation and Preliminaries

Our notation is consistent with the books [BS95] and [KM98] and the paper [BCHM10],
to which we constantly refer. We give however some basic definition in order to
state our main objects.
In general X will be a normal (complex projective) variety, that is an irreducible
and reduced projective scheme over C, of dimension n. Two Q-divisors D1, D2 are
Q-linearly equivalent, D1 ∼Q D2, if there exists a integer m > 0 such that mDi are
lineraly equivalent. A Q-divisor D is Q-Cartier if some integral multiple is Cartier.
Let D be an R-divisor; it is nef if D.C ≥ 0 for any curve C ⊂ X . It is is big if
D ∼R A+B where A is ample and B ≥ 0. It is pseudo-effective if it is in the closure
of the cone of effective divisors. Effective or nef divisors are pseudoeffective.

A quasi polarized variety is a pair (X,L) where is X is a (complex projective)
variety and L is a nef and big Cartier divisor.

A log pair (X,∆) is a normal variety X and an effective R divisor ∆ such that
KX + ∆ is R-Cartier. A log resolution of the pair (X,∆) is projective birational
morphism g : Y → X such that Y is smooth and the exceptional locus is a divisor
which, together with g−1(∆), is simple normal crossing. We can write

KY +ΣbiΓi = g∗(KX +∆).

The log pair (X,∆) is Kawamata log terminal (klt) if for every (equivalently for
one) log resolution as above bi < 1 for all i. If ∆ = 0 and bi < 0 then X has
terminal singularities.

3. Polarized Pairs and Adjunction Theory

Definition 3.1. Two quasi polarized pairs (X1, L1) and (X2, L2) are said to be
birationally equivalent if there is another variety Y with birational morphisms
ϕi : Y → Xi such that ϕ∗

1L1 = ϕ∗
2L2.

Definition 3.2. The Hilbert polynomial of the quasi polarized pair (X,L) is given
by χ(X, tL) = Σj=0,....,nχjt

[j]/j! for some integers χ0, ..., χn, where t[j] = t(t +

1)...(t+ j − 1) and t[0] = 1.
By Riemann-Roch Theorem we have χn = Ln and, if X is normal, −2χn−1 =
(KX + (n− 1)L)Ln−1, for a canonical divisor KX on X .
The sectional genus of the pair (X,L) is defined as g(X,L) = 1− χn−1.
The ∆-genus is defined as ∆(X,L) = n+ χn − h0(X,L).

Assume that that X has at most terminal singularities and that KX is not nef.
Let R = R+[C] be an extremal ray on X , where C ⊂ X is a rational curve with
−KX

.C > 0. Let ϕR : X → Z be the contraction associated to R: that is ϕR is a
morphism with connected fibers onto a normal projective variety Z and C ⊂ X is
in a fiber of ϕR if and only if it is in the ray R.
The existence of ϕR is the famous base point free theorem of Kawamata-Shokurov
in the MMP theory.
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If ϕR is of fiber type (i.e. dimX > dimZ) then ϕR : X → Z is called a Mori fiber

space.
Otherwise the contraction ϕR is birational; it can be either divisorial or small.

For a normal quasi polarized pair (X,L) let

r(X,L) := sup{t ∈ R : tKX + L is nef}.

By the Kawamata rationality theorem r(X,L) is a rational non negative number.
If r(X,L) 6= 0 we define τ(X,L) := 1/r(X,L).

Lemma 3.3. Let ϕR : X → Z be a Mori fiber space associated to the extremal ray
R = R+[C]. A nef and big line bundle L on X is ϕR-ample (i.e. L.C > 0).

Proof. In fact if by contradiction L.C = 0 then there exists a line bundle A on Z
such that L = ϕ∗

R(A) (see Corollary 3.17 in [KM98]). But this implies that Ln = 0,
which is a contradiction since L is nef and big.

Remark 3.4. Let ϕR : X → Z be the contraction of the extremal ray R = R+[C].
Assume that L is ϕ-ample. By adding the pull back of a sufficiently ample line
bundle from Z we can assume that
i) L is ample,
ii) r(X,L) 6= 0 and
iii) the intersection of (KX + τ(X,L)L) with curves in R is zero and positive with
all other curves.
(The proof of these remarks is standard in the theory of ample line bundle; use for
instance section 1.5, in particular proposition 1.45, of [KM98]).

Proposition 3.5. Let ϕR : X → Z be a Mori fiber space associated to the extremal
ray R = R+[C] and let L be a nef and big line bundle on X.
Let r be a positive rational number such that (KX + rL).C < 0; note that this
implies that τ(X,L) > r (possibly adding the pull back of a sufficiently ample line
bundle from Z).
A) If r ≥ (n− 1) then (X,L) is one of the following pairs:

• (Pn,O(1)) and r < (n+ 1),
• (Q,O(1)|Q), where Q ⊂ Pn+1 is a quadric and r < n,

• Cn(P
2,O(2)), a generalized cone over (P2,O(2)) and r < n,

• ϕR gives X the structure of a Pn−1-bundle over a smooth curve C and L
restricted to any fiber is O(1)) and r < n.

B) If r ≥ (n− 2) then (X,L) is one of the following pairs:

• one of the pair in the previous list,
• a del Pezzo variety, that is −KX ∼Q (n− 1)L with L ample, r < (n− 1),
• (P4,O(2),
• (P3,O(3),
• (Q,O(2)|Q), where Q ⊂ P4 is a quadric,
• ϕR gives X the structure of a quadric fibration over a smooth curve C and
L restricted to any fiber is O(1)|Q, r < (n− 1),

• ϕR gives X the structure of a Pn−2-bundle over a normal surface S and L
restricted to any fiber is O(1), r < (n− 1),

• n = 3, Z is a smooth curve and the general fiber of ϕR is P2 and L restricted
to it is O(1).
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Proof. Using Lemma 3.3 and Remark 3.4 we can assume that L is ample. The
proposition follows then by the ”classic” adjunction theory developed by T. Fujita
and by A. Sommese and his school: more precisely the results are summarized in
section 7.2 and 7.3 of [BS95]. One of my personal contribution to this theory is its
extension to the case with terminal or even log-terminal singularities in the papers
[An94] and [An95]

Proposition 3.6. Let ϕR : X → Z be a birational contraction associated to the
extremal ray R = R+[C]; let L be a nef and big line bundle on X. Let r be a
rational number such that (KX + rL).C < 0.
Assume that r ≥ (n− 2) and that L.C 6= 0.
Then τ(X,L) = (n− 1) > r, Z has at most terminal singularities and ϕR : X → Z
is the blow-up of a smooth point. Moreover on Z there exists a nef and big line
bundle L′ such that ϕ∗

RL
′ = L + E, where E ≃ Pn−1 is the exceptional divisor of

the blow-up.

Proof. By the assumption, using the Remark 3.4, we can assume that L is ample,
that the intersection of (KX + τ(X,L)L) with the curves in R is zero and positive
on all other curves and that τ(X,L) > r ≥ (n− 2).
If τ(X,L) ≥ (n−1) Theorem 3.1 of [An95] applies (see also the Theorem 2.1 there):
we get that ϕR is the blow up of a smooth point, and everything is as stated in the
proposition.
The case (n − 2) < τ(X,L) < (n − 1) cannot happen: one can use for instance
Theorem 7.3.4 in [BS95], which says that under this assumption ϕR has to be of
fiber type.

4. Minimal Model Program with scaling

Let (X,L) be a quasi polarized variety and assume that X has at most terminal
singularities. Let also r be a rational positive number.

Lemma 4.1. Under the above assumption (in particular L is nef and big) there
exists an effective Q-divisor ∆r on X such that

∆r ∼Q rL and (X,∆r) is Kawamata log terminal.

Proof. This lemma is well known to specialists and it can be proved in different
ways. Since L is nef and big the asymptotic multiplier ideal of rL is trivial, i.e.
J (X, ||rL||) = OX (Proposition 11.2.18 in [La04] in the smooth case or Corollary
5.2 in [CD11] in the terminal case and under the weaker assumption that L is nef
and abundant). Take D a generic divisor in mrL for sufficently large m and let
∆r := 1

m
D. ∆r is effective and Q linearly equivalent to rL.

Moreover, for m sufficently large, J (X,∆r) = J (X, 1
m
(|mrL|) = J (X, ||rL||) =

OX , i.e. (X,∆r) is Kawamata log terminal.

Consider the pair (X,∆r) and the Q-Cartier divisor KX +∆r ∼Q KX + rL.
By the Theorem 1.2 and the Corollary 1.3.3 of [BCHM10] we can run a

KX +∆r- Minimal Model Program with scaling:

(X0,∆
r
0) = (X,∆r) → (X1,∆

r
1) → −−−− → (Xs,∆

r
s)

such that:
1) each map ϕi : Xi → Xi+1 is a birational map which is ether a divisorial contrac-
tion or a flip associated to an extremal ray Ri,
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2) if KX +∆r is pseudeffective then KXs
+∆r

s is nef,
ifKX+∆r is not pseudeffective then Xs is a Mori fiber space relatively toKXs

+∆r
s.

The next proposition has been proved by T. Fujita in section 4 of [Fu89], under
the assumption of the existence of Minimal Models (more precisely subordinated
to the Flip conjecture). A. Höring ([Ho10]) has adapted Fujita argument to the
notations and the spirit of [BCHM10]; see the Claim in the course of the proof of
his Proposition 1.3.

Proposition 4.2. Under the above notations and assumptions suppose moreover
that r ≥ (n− 1).
For every i = 0, ..., s, we have ∆r

i
.Ri = 0 and therefore there exist nef and big

Cartier divisors Li on Xi such that ϕ∗
i (Li+1) = Li and ∆r

i ∼Q rLi.
Since the KXi

+ ∆r
i negative contraction ϕi is KXi

negative, Xi+1 has at most
terminal singularities.
Thus at every step of the MMP we have a quasi polarized variety (Xi, Li) with at
most terminal singularities. Note also that H0(KXi

+ tLi) = H0(KXi+1
+ tLi+1)

for any t = 0, ...., r.

Proof. The proposition follows by induction on i.
Each map ϕi : Xi → Xi+1 is a birational map associated to an extremal ray
Ri = R+[Ci] with

(KXi
+ rLi)

.Ci = (KXi
+∆r

i )
.Ci < 0.

Since r ≥ (n− 1), by Proposition 3.6, we have that Li
.Ci = ∆r

i
.Ci = 0.

Let ϕRi
: Xi → Z be the contraction of the extremal ray Ri; since Li

.Ci = 0 there
exists a nef and big line bundle L on Z such that ϕ∗

Ri
L = Li (Corollary 3.17 of

[KM98]).
If ϕRi

is birational then ϕRi
= ϕi and we take Li+1 to be L itself. If ϕRi

is small
let ϕ+ : Xi+1 → Z be its flip; define then Li+1 to be ϕ+∗

(L).
Note that ∆r

i+1 = ϕ∗∆
r
i ∼Q ϕ∗(rLi) = rLi+1.

Let us prove the last statement, namely H0(KXi
+ tLi) = H0(KXi+1

+ tLi+1) for
any t = 0, ...., r. This is obvious if ϕi is a flip, since Xi and Xi+1 are isomorphic
in codimension 1. If ϕi is birational then ϕ∗

i (KXi+1
) = KXi

− Ei, where Ei is an
effective Q-divisor. For any t = 0, ...., r we have (KXi

+ tLi)
.Ri < 0, which implies

that H0(Ei,KXi
+ tLi) = 0. Thus the claim follows from the exact sequence

0 → ϕ∗
i (KXi+1

+ tLi+1) = KXi
+ tLi − Ei → KXi

+ tLi → (KXi
+ tLi)|Ei

→ 0.

Corollary 4.3. Let (X,L) be a quasi polarized variety such that X has at most
terminal singularities.
A KX + ∆(n−1)- Minimal Model Program with scaling is a KX + ∆r- Minimal
Model Program with scaling for any r ≥ (n − 1), with possibly a difference in the
last step. Namely if Xs is a Mori fiber space relative to KXs

+ ∆(n−1) it can be
that, for r > (n− 1), the divisor KXs

+∆r is nef.

Proof. In the spirit of [BCHM10] take A be an ample line bundle on X and run
a KX + ∆(n−1) minimal model with scaling A. This means that at each step

i = 0, ..., s we take λi and Ri = R+[Ci] such that λi = min{l : KXi
+∆

(n−1)
i + lAi}

is nef and (KXi
+∆

(n−1)
i + λiAi)

.Ci = 0.
The Proposition says that Li

.Ri = ∆r
i
.Ri = 0. Therefore λi = min{l : KXi

+∆r
i +

lAi} is nef and (KXi
+∆r

i + λiAi)
.Ci = 0 for every r ≥ (n− 1).
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If KXs
+∆

(n−1)
s is nef then, for r ≥ (n− 1), KXs

+∆r
s is nef as well. However if Xs

is a Mori fiber space relative to the ray R = R+[C] such that (KXs
+∆

(n−1)
s ).C < 0,

it can be that KXs
+∆r

s is positive or zero on C, i.e. it is nef.

Definition 4.4. Let (X,L) be a quasi polarized variety such that X has at most
terminal singularities. Let (Xs, Ls) be a quasi polarized pair where Xs is the last
variety in a KX + ∆(n−1)- Minimal Model Program with scaling and Ls be the
corresponding nef and big line bundle on Xs coming from Proposition 4.2.
We will call (X ′, L′) = (Xs, Ls) a zero reduction of the pair (X,L).

Remark 4.5. i) A zero reduction is birationally equivalent to the original pair.
ii) Long ago with A. Sommese we studied the surface case (n = 2) in [AS89]; in
particular Proposition 1.7 in that paper gives the construction of the zero reduction
for Gorenstein surfaces (note that for n = 2 terminal singularities are actually
smooth).

5. Adjunction theory via MMP with scaling

5.1. Adjunction on the zero reduction. The following theorem is the first step
in the Adjunction Theory of quasi polarized pairs; Part 3) was first proved by A.
Höring ([Ho10], Proposition 1.3).

Theorem 5.1. Let (X,L) be a quasi polarized variety such that X has at most
terminal singularities.
1) KX +(n+1)L is pseudoeffective and on a zero reduction (X ′, L′) the Q-Cartier
divisor KX′ + (n+ 1)L′ is nef.
2) KX+nL is not pseudoeffective if and only any zero reduction (X ′, L′) is (Pn,O(1)).
If KX+nL is pseudoeffective then on a zero reduction (X ′, L′) the Q-Cartier divisor
KX′ + nL′ is nef.
3) KX + (n − 1)L is not pseudoeffective if and only if any zero reduction (X ′, L′)
is one of the pairs in 3.5 A).
If KX +(n− 1)L is pseudoeffective then on a zero reduction (X ′, L′) the Q-Cartier
divisor KX′ + (n− 1)L′ is nef.

Proof. We use the construction in Section 4 and Proposition 3.5.
Assume, by contradiction, that KX +(n+1)L is not pseudoeffective. Run a KX +
(n+1)L-Minimal Model Program on (X,L) as in Section 4 and let (Xs, Ls) be the
last pair of the process (i.e., by Corollary 4.3, a zero reduction of the pair (X,L) as
in Definition 4.4). Xs is a Mori fiber space associated to an extremal ray R = R+[C]
such that (KXs

+ (n+ 1)Ls)
.C < 0. This cannot exists by Proposition 3.5.

ThereforeKX+(n+1)L has to be pseudoeffective and, on a zero reduction (X ′, L′),
the divisor KX′ + (n+ 1)L′ ∼Q KXs

+∆n+1
s is nef.

Points 2) and 3) can be proved similarly; let us prove for instance point 3). Let
(X ′, L′) be a zero reduction of (X,L) defined in 4.4: if KX + (n − 1)L is not
pseudoeffective. X ′ is a Mori fiber space associated to an extremal ray R = R+[C]
such that (KX′ + (n − 1)L′).C < 0. By Proposition 3.5, it has to be one of the
pairs in 3.5 A).
If KX + (n− 1)L is pseudoeffective then KX′ + (n− 1)L′ is nef.

Corollary 5.2. On the zero reduction (X ′, L′) there are no extremal rays R =
R+[C] such that L′.C = 0.
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Proof. In fact KX′ + (n + 1)L′ is nef and therefore for every curve C ⊂ X ′ such
that −KX′

.C < 0 it must be L′.C > 0.

Remark 5.3. The zero reduction is related to the almost holomorphic map con-
structed in [BCEKPRSW00], a reduction map for nef line bundles. Actually their
map will factor through the zero reduction; this last in fact ’reduces’ the curves on
which L is zero and which are extremal rays. In particular on a Fano variety X a
zero reduction is a map as in [BCEKPRSW00].

5.2. First reduction for quasi polarized pairs. Let (X,L) be a quasi polarized
pair with at most terminal singularities and let (X ′, L′) be the zero reduction of
(X,L). We proceed with a further step in Adjunction theory.
Namely let r ≥ (n− 2) and, as in Lemma 4.1, take ∆′r an effective Q-divisor on X
such that:
∆′r ∼Q rL′ and (X ′,∆′r) is Kawamata log terminal.
Consider a KX′ +∆′r- Minimal Model Program with scaling as in the first part of
Section 4.

(X ′
0,∆

′r
0) = (X ′,∆′r) → (X ′

1,∆
′r
1) → −−−− → (X ′

s,∆
′r
s)

Proposition 5.4. Under the above notations and assumptions, at every step i =
0, ..., s, the morphism ϕi : X

′
i → X ′

i+1 is the blow-up of a smooth point; in particular
X ′

i+1 has at most terminal singularities.
On X ′

i+1 there exists a nef and big line bundle L′
i+1 such that ϕ∗

i (L
′
i+1) = L′

i +Ei,

where Ei ≃ Pn−1 is the exceptional divisor of the blow-up.
In particular ϕ∗

i (KXi+1
+ (n − 1)Li+1) = KXi

+ (n − 1)Li and H0(KXi
+ tLi) =

H0(KXi+1
+ tLi+1) for any t = 0, ...., r.

Moreover ∆′r
i ∼Q rL′

i.

Proof. The proof is by induction on i. Each map ϕi : Xi → Xi+1 is a birational
map associated to an extremal ray Ri = R+[Ci] with

(KXi
+ rLi)

.Ci = (KXi
+∆i)

.Ci < 0.

The Proposition will follow directly from Proposition 3.6 if we prove that ∆′
i
.
Ri =

rL′
i
.
Ri 6= 0.

By Corollary 5.2 this is the case for i = 0. Assume by contradiction that, at a
further step k, we have a ray Rk = R+[Ck] with L′

k
.
Ck = 0. At the previous

step, by induction, ϕk−1 : X ′
k−1 → X ′

k is the blow up at a smooth point p and

L′
k−1 = ϕ∗

k−1L
′
k + Ek. Therefore we have that L′

k−1
.
C̄ = −Ek

.C̄, where C̄ is the
strict tranform of Ck. Since L′

k−1 is nef and Ek effective this implies that this

intersection is zero and C̄ doesn’t pass through p. We have a diagram

(5.2.1) BlpX
′
k

ϕk−1

��

BlpX
′
k+1

ϕ

��

X ′
k

ϕk
// X ′

k+1

where the vertical arrows are blow ups at p. By the universal property of the blow
up there exists a map BlpX

′
k → BlpX

′
k+1 closing the diagram. This will be the

contraction of the curves numerically equivalent to C̄ and therefore R+[C̄] will be an
extremal ray on X ′

r. But it has zero intersection with L′
k, which is a contradiction.
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The proof that H0(KXi
+ tLi) = H0(KXi+1

+ tLi+1) for any t = 0, ...., r is similar
to the one in Proposition 4.2, it can be find in the proof of Proposition 7.6.1 in
[BS95].

As for the last claim recall that ∆′r
i+1 := ϕ∗∆

′r
i and rL′

i+1 = (ϕ∗(rL
′
i))

∗∗. By the

inductive assumption, we can assume ∆′r
i ∼Q rL′

i, i.e. that there exists an integer
m such that m∆′r

i ∈ |mrL′
i|. Since ϕi is a blow up of a smooth point m∆′r

i+1 is
Cartier and m∆′r

i+1 ∈ |mrL′
i+1|, i.e. ∆

′r
i+1 ∼Q rL′

i+1.

Definition 5.5. Let (X,L) be a quasi polarized variety such that X has at most
terminal singularities. and let (X ′, L′) be a zero reduction. Let (X ′

s, L
′
s) be a quasi

polarized pair where Xs is the last variety in a K ′
X + ∆′(n−2)- Minimal Model

Program and L′
s be the corresponding nef and big line bundle on X ′

s coming from
Proposition 5.4. Let ρ : X ′ → X ′′ be the composition ρ = ϕs−1 ◦ ... ◦ ϕo

We will call (X ′′, L′′) = (X ′
s, L

′
s), together with a zero reduction X ′ and the map

ρ : X ′ → X ′′, a first reduction of the pair (X,L).

Using the first reduction we can push adjunction theory a step further.

Theorem 5.6. Let (X,L) be a quasi polarized variety such that X has at most
terminal singularities.
1) KX + (n− 2)L is not pseudoeffective if and only if any first reduction (X ′′, L′′)
is one of the pairs in 3.5 A) or B).
2) If KX + (n − 2)L is pseudoeffective then on any first reduction (X ′′, L′′) the
divisor KX′′ + (n− 2)L′′ is nef.

Proof. The proof is similar to the one of Theorem 5.1. Take a KX′ + ∆′(n−2)
-

Minimal Model Program ending in the first reduction (X ′′, L′′). If KX + (n− 2)L
is not pseudoeffective then (X ′′, L′′) is a Mori fiber space and, by Proposition 3.5,
we are as in point 1). Otherwise KX′′ + (n− 2)L′′ is nef.

Remark 5.7. i) The definition of first reduction is in agreement with the Sommese’s
definition for the polarized case (see [BS95], section 7.3).

ii) The pairs (X,L) and (X ′′, L′′) are not birationally equivalent.
However the morphism ρ : X ′ → X ′′ is very simple, namely it consists of a series
of blow-up at smooth points. It is actually possible to prove other feature of ρ:
for instance that at each stage the smooth point to be blown up has to be either
outside the exceptional locus of the previous blow ups or in a component of it
isomorphic to Pn−1. That is the exceptional locus of ρ : X ′ → X ′′ consist of a finite
set of disjoint divisors Dj = ∪k=0,...,sjD

k
j and the components of Dj are as follows:

D0
j = Pn−1 and Dk

j = Blp(P
n−1) for k > 0. Moreover Dk

j ∩ Dk+1
j 6= ∅ and they

intersect along a Pn−1 (which is a section of the P1-bundle structure of Dk+1
j ); the

other intersections between the components are empty.
We do not give a proof of these facts as they are pretty straightforward.

iii) We could of course run directly a KX +∆(n−2)- Minimal Model Program with
scaling on (X,L). In this case, with the help of Proposition 3.6, we have at each
step i two possibilities. Either ∆i

.Ri = 0, and we define a nef and big line bundle
on Li+1 on Xi+1 such that ϕ∗

i (Li+1) = Li.
Or ∆i

.Ri 6= 0: in this case ϕi : Xi → Xi+1 is the blow-up of a smooth point and
we can define a nef and big line bundle Li+1 on Xi+1 (with ϕ∗

i (Li+1) = Li + Ei,
where Ei is the exceptional divisor of the blow-up.
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At the end we will reach a quasi polarized pair (Xs, Ls) which has the same property
of the first reduction (X ′′, L′′) in the Theorem 5.6.
The above construction, which splits the Program in two parts, namely a first part
contracting all rays with zero intersection with the polarization and a second with
all the blow up of smooth points, is more accurate and useful.

6. Applications

Parts 1) and 2) of the next corollary were proved by T. Fujita ([Fu89]), under the
assumption of the existence of a Minimal Model for X , and later by A. Höring
([Ho10]).

Corollary 6.1. Let (X,L) be a quasi polarized variety.
1) ([Ho10]) g(X,L) ≥ 0
2) ([Ho10]) g(X,L) = 0 if and only if (X,L) is birational equivalent to one of the
following quasi polarized pairs:

• (Pn,O(1)), or
• (Q,O(1)|Q), where Q ⊂ Pn+1 is a quadric, or

• Cn(P
2,O(2)), a generalized cone over (P2,O(2)), or

• X has the structure of a Pn−1-bundle over a smooth rational curve C and
L restricted to any fiber is O(1)) (a scroll over a rational curve).

3) )If X normal then g(X,L) = 1 if and only if (X,L) is birational equivalent to
one of the following quasi polarized pairs:

• a del Pezzo variety, i.e. −KX′ ∼Q (n− 1)L′ with L′ ample,
• X ′ has the structure of a Pn−1-bundle over an elliptlc curve C and L′

restricted to any fiber is O(1)) (a scroll over an elliptic curve).

Proof. Let ν : X ′ → X be the normalization of X ; it is straightforward to see that
g(X ′, ν∗L) ≤ g(X,L) (see for instance [Ho10], p. 128). Therefore we can assume
that X is normal also in 1) and 2).
By the Lemma 1.8 in [Fu89] the sectional genus is a birational invariant of normal
quasi polarized pairs, so we can replace (X,L) first with its resolution and then
with its zero reduction. Call this new pair (X ′, L′).
By the Theorem 5.1 if K ′

X + (n− 1)L′ is not nef then (X ′, L′) is one of the pair in
3.5 A). They give the first three cases in 2) and the case in which (X,L) is a scroll
over a curve C. In this last g(X,L) = g(C) and we get the fourth case in 2) and
the second in 3).
We can thus assume that K ′

X + (n− 1)L′ is nef; therefore 2g(X ′, L′)− 2 = (K ′
X +

(n− 1)L′)L′n−1 ≥ 0, i.e g(X,L) ≥ 1.
Assume that g(X ′, L′) = 1. By the previous equality, the facts that (K ′

X+(n−1)L′)
is nef and L′ is nef and big, we get that K ′

X +(n− 1)L′ is numerically trivial. It is
straightforward to see that K ′

X + (n− 1)L′ is effective (see for instance [Fu89], p.
115). Therefore K ′

X + (n− 1)L′ is trivial and we are in the first case of 3).

The following application extends the main result in [Io85] from the case of smooth
embedded varieties to the singular ones.

Corollary 6.2. Let X ⊂ PN be a projective variety of dimension n ≥ 3 and of
degree d. Assume that d < 2codimPN (X) + 2 (equivalently that d > 2∆(X,OX(1)).
Then either (X,O(1)) is birational equivalent to one of the quasi polarized pair in
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Proposition 3.5 A) or the first reduction of the resolution of X is one of the quasi
polarized variety in Proposition 3.5 B).

Proof. Let π : X̃ → X be a resolution of the singularities of X : let also L̃ := π∗L.
L̃ is globally generated and h0(X̃, L̃) ≥ N + 1. Take L1, ..., Ln−1 general members

in |L̃| such that
Xi := L1 ∩ ... ∩Hi, i = 1, ..., n− 1

is irreducible, smooth and of dimension n− i; let also X0 := X̃.
For each i = 1, ..., n− 2, from the exact sequence

0 → OXi
→ L̃Xi

→ L̃Xi+1
→ 0

we find that dim|L̃Xi+1
| ≥ dim|L̃Xi

| − 1, thereforere dim|L̃Xi
| ≥ N − i.

In particular for the smooth curve Xn−1 := C we have:

deg(L̃C)− 2dim|L̃C| ≤ d− 2(N − (n− 1)) = d− 2codimPN (X)− 2 < 0.

Thus, by Clifford’s theorem, we must have h1(L̃C) = 0, which gives

χ(L̃C) = h0(L̃C) ≥ N − (n− 1) + 1 = N − n+ 2.

Therefore on the smooth surface Xn−2 := S, by the Riemann-Roch theorem and
the short exact sequence above with i = n− 2, we get

KS
.C = C2 − 2(χ(L̃S)− χ(OS)) = C2 − 2χ(L̃C) ≤ d− 2(N − n+ 2) < −2.

By adjunction this implies that (KX̃ + (n− 2)L̃).C = KS
.C < −2.

By the Theorem 0.2 in [BDPP04] and the definition of C we have that (KX̃ +(n−

2)L̃) is not pseudoeffective.
The Corollary follows then by Theorem 5.6 1).
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