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ON p-ADIC GIBBS MEASURES FOR HARD CORE MODEL ON A

CAYLEY TREE

D. GANDOLFO, U. A. ROZIKOV, J. RUIZ

Abstract. In this paper we consider a nearest-neighbor p-adic hard core (HC) model,
with fugacity λ, on a homogeneous Cayley tree of order k (with k + 1 neighbors). We
focus on p-adic Gibbs measures for the HC model, in particular on p-adic ”splitting”
Gibbs measures generating a p-adic Markov chain along each path on the tree. We show
that the p-adic HC model is completely different from real HC model: For a fixed k we
prove that the p-adic HC model may have a splitting Gibbs measure only if p divides
2k − 1. Moreover if p divides 2k − 1 but does not divide k+2 then there exists unique
translational invariant p-adic Gibbs measure. We also study p-adic periodic splitting
Gibbs measures and show that the above model admits only translational invariant and
periodic with period two (chess-board) Gibbs measures. For p ≥ 7 (resp. p = 2, 3, 5) we
give necessary and sufficient (resp. necessary) conditions for the existence of a periodic
p-adic measure. For k = 2 a p-adic splitting Gibbs measures exists if and only if p = 3,
in this case we show that if λ belongs to a p-adic ball of radius 1/27 then there are
precisely two periodic (non translational invariant) p-adic Gibbs measures. We prove
that a p-adic Gibbs measure is bounded if and only if p 6= 3.

Mathematics Subject Classifications (2010). 46S10, 82B26, 12J12 (primary);
60K35 (secondary)

Key words. Cayley trees, hard core interaction, Gibbs measures, translation invari-
ant measures, periodic measures, splitting measures, p-adic numbers.

1. Introduction

In [40] a hard core (HC) model with nearest neighbor interaction and spin values 0, 1
on a Cayley tree was studied. In this paper we consider p-adic version of this model.

One of the central problems in the theory of Gibbs measures of lattice systems
is to describe infinite-volume (or limiting) Gibbs measures corresponding to a given
Hamiltonian. A complete analysis of this set is often a difficult problem. Many pa-
pers have been devoted to these studies when the underlying lattice is a Cayley tree
[5, 7, 8, 10,11,13,24,30,32,34,40,45].

In all these works the models under consideration have a finite set of spin values on the
field of real numbers. These models have the following common property: the existence of
finitely many translation-invariant and uncountable numbers of non-translation-invariant
extreme Gibbs measures. Also for several models it was proved that there exist periodic
Gibbs measures (which are invariant with respect to normal subgroups of finite index
of the group representation of Cayley tree) and that there are uncountable number of
non-periodic Gibbs measures.
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On the other hand, various models described in the language of p-adic analysis have
been actively studied, see e.g. [3,9,23,42] and numerous applications of p-adic analysis to
mathematical physics have been proposed in [4, 16–18]. Well-known studies in this area
were devoted to quantum mechanical models [41,43]. One of the first applications of p-
adic numbers in quantum physics appeared in the framework of quantum logic [6]. This
model is of special interest to us because it cannot be described by using conventional
real-valued probability.

It is also known [17, 21, 23, 41] that a number of p-adic models in physics cannot be
described using ordinary Kolmogorov’s probability theory. In [20] an abstract p-adic
probability theory was developed by means of the theory of non-Archimedean measures
[31].

A non-Archimedean analog of the Kolmogorov theorem was proved in [12]. Such
a result allows to construct wide classes of stochastic processes and the possibility to
develop statistical mechanics in the context of p-adic theory.

We refer the reader to [14], [19], [26], [27]- [29] where various models of statistical
physics in the context of p-adic field are studied.

In the present paper we consider p-adic Gibbs measures of a hard core model on the
Cayley tree over the p-adic field (we refer the reader to [40] for the real case).

The paper is organized as follows. Section 2 presents definitions and known results.
Section 3 is devoted to the standard construction of (p-adic) Gibbs measures charac-
terized by a functional equation. Section 4 contains conditions of solvability of this
equation. Under conditions on p and on the degree k of the tree, we prove in Section 5
the existence and uniqueness of translational-invariant p-adic Gibbs measure. In Section
6 we study p-adic periodic Gibbs measures and show that the HC model admits only
translational invariant and periodic with period two (chess-board) Gibbs measures. For
k = 2 a p-adic splitting Gibbs measures exists if and only if p = 3, in this case we show
that if λ belongs to a p-adic ball of radius 1/27 then there are precisely two periodic
(non translational invariant) p-adic Gibbs measures. In Section 7 we prove that a p-adic
Gibbs measure is bounded if and only if p 6= 3. In the last section devoted to concluding
remarks, we present comparisons between real and p-adic Gibbs measures.

2. Preliminaries

2.1. p-adic numbers and measures. Let Q be the field of rational numbers. For a
fixed prime number p, every rational number x 6= 0 can be represented in the form
x = pr n

m , where r, n ∈ Z, m is a positive integer, and n and m are relatively prime with
p: (p, n) = 1, (p,m) = 1. The p-adic norm of x is given by

|x|p =
{

p−r for x 6= 0
0 for x = 0.

This norm is non-Archimedean and satisfies the so called strong triangle inequality

|x+ y|p ≤ max{|x|p, |y|p}.
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We will often use the following fact: If |x|p 6= |y|p then

|x+ y|p = max{|x|p, |y|p}.
The completion of Q with respect to the p-adic norm defines the p-adic field Qp. Any

p-adic number x 6= 0 can be uniquely represented in the canonical form

x = pγ(x)(x0 + x1p+ x2p
2 + . . . ), (2.1)

where γ(x) ∈ Z and the integers xj satisfy: x0 > 0, 0 ≤ xj ≤ p− 1 (see [21, 36, 41]). In

this case |x|p = p−γ(x).

Theorem 2.2. [21], [41] The equation x2 = a, 0 6= a = pγ(a)(a0+a1p+...), 0 ≤ aj ≤ p−1,
a0 > 0 has a solution x ∈ Qp if and only if the following conditions are fulfilled:

i) γ(a) is even;
ii) a0 is a quadratic residue modulo p if p 6= 2; a1 = a2 = 0 if p = 2.

The elements of the set Zp = {x ∈ Qp : |x|p ≤ 1} are called p-adic integers.
The following statement is known as Hensel’s lemma [21].

Theorem 2.3. Let F (x) =
∑n

i=0 cix
i be a polynomial whose coefficients are p-adic

integers. Let F ′(x) =
∑n

i=0 icix
i−1 be the derivative of F (x). Let a0 be a p-adic integer

such that F (a0) ≡ 0 (mod p) and F ′(a0) 6= 0 (mod p). Then there exists a unique p-adic
integer a such that F (a) = 0 and a = a0 (mod p).

Given a ∈ Qp and r > 0 put

B(a, r) = {x ∈ Qp : |x− a|p < r}.
The p-adic logarithm is defined by the series

logp(x) = logp(1 + (x− 1)) =

∞
∑

n=1

(−1)n+1 (x− 1)n

n
,

which converges for x ∈ B(1, 1); the p-adic exponential is defined by

expp(x) =

∞
∑

n=0

xn

n!
,

which converges for x ∈ B(0, p−1/(p−1)).

Lemma 2.4. [21,36]. Let x ∈ B(0, p−1/(p.1), then

| expp(x)|p = 1, | expp(x)− 1|p = |x|p, | logp(1 + x)|p = |x|p,

logp(expp(x)) = x, expp(logp(1 + x)) = 1 + x.

We refer the reader to [21, 36, 41] for the basics of p-adic analysis and p-adic mathe-
matical physics.
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Let (X,B) be a measurable space, where B is an algebra of subsets of X. A function
µ : B → Qp is said to be a p-adic measure if for any A1, ..., An ∈ B such that Ai∩Aj = ∅,
i 6= j, the following holds:

µ(

n
⋃

j=1

Aj) =

n
∑

j=1

µ(Aj).

A p-adic measure is called a probability measure if µ(X) = 1, see, e.g. [15], [31].

2.5. Cayley tree. The Cayley tree (Bethe lattice [5]) Γk of order k ≥ 1 is an infinite
tree, i.e., a graph without cycles, such that exactly k+1 edges originate from each vertex.
Let Γk = (V,L) where V is the set of vertices and L the set of edges. Two vertices x and
y are called nearest neighbors if there exists an edge l ∈ L connecting them. We will use
the notation l = 〈x, y〉. A collection of nearest neighbor pairs 〈x, x1〉, 〈x1, x2〉, ..., 〈xd−1, y〉
is called a path from x to y. The distance d(x, y) on the Cayley tree is the number of
edges of the shortest path from x to y.

For a fixed x0 ∈ V , called the root, we set

Wn = {x ∈ V |d(x, x0) = n}, Vn =

n
⋃

k=1

Wk

and denote

S(x) = {y ∈ Wn+1 : d(x, y) = 1}, x ∈ Wn,

the set of direct successors of x.

2.6. Hard Core model. We consider HC model with nearest neighbor interactions on
a Cayley tree where the spins assigned to the vertices of the tree take values in the set
Φ := {0, 1}. A configuration σ on A ⊂ V is then defined as a function x ∈ A 7→ σ(x) ∈ Φ.
The set of all configurations is ΦA. A site x is called “occupied” if σ(x) = 1 and “vacant”
if σ(x) = 0.

A configuration is called admissible if the product σ(x)σ(y) = 0 for all nearest neighbor
pair 〈x, y〉. We denote ΩA the set of all admissible configurations on A ⊂ V and set
Ω = ΩV .

Let p be a fixed prime number. The (formal) p-adic Hamiltonian of the HC model is
the mapping H : Ω → Qp given by

H(σ) = −J
∑

x∈V
σ(x), (2.2)

where J ∈ Qp is a constant such that

|J |p < p−1/(p−1). (2.3)

Note that such a condition provides the existence of a p-adic Gibbs measure defined
through the p-adic exponential. As it was mentioned above the set of values of a p-adic
norm | · |p is {pm : m ∈ Z}, consequently the condition (2.3) is equivalent to the condition

|J |p ≤ 1
p .
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3. Construction of p-adic Gibbs measure

Let us construct p-adic Gibbs measures of this HC model. Since we use expp(x) to
define the p-adic Gibbs measure, all quantities which arise below must belong to the set:

Ep = {x ∈ Qp : |x|p = 1, |x − 1|p < p−1/(p−1)}.
As in classical (real) case we consider a special class of Gibbs measures. We call them

p-adic splitting Gibbs measures, a formal definition follows.
Write x < y if the pathes from x0 to y go through x. By this notation a vertex y is a

direct successor of x if y > x and x, y are nearest neighbors. Note that the root x0 has
k + 1 direct successors and any vertex x 6= x0 has k direct successors.

Let z : x → zx = (z0,x, z1,x) ∈ E2
p be a vector-valued function on V , we will consider

the p-adic probability measures on ΩVn defined by

µ(n)(σn) =
1

Zn
expp

(

J
∑

x∈Vn

σ(x)

)

∏

x∈Wn

zσ(x),x (3.1)

where Zn is the corresponding partition function:

Zn =
∑

ϕ∈ΩVn

expp

(

J
∑

x∈Vn

ϕ(x)

)

∏

x∈Wn

zϕ(x),x. (3.2)

Let us mention that function z plays the role of a generalized boundary condition.
One of the central results of probability theory concerns the construction of an infinite-

volume distribution with given finite-dimensional distributions. In this paper we consider
this problem in p-adic context. More precisely, we want to define a p-adic probability
measure µ on the set Ω of admissible configurations. In general, the existence of such a
measure is not known, since there is not enough information on the topological properties
of the set of all p-adic measures defined even on compact spaces. Therefore, we can
only use the p-adic Kolmogorov extension theorem (see [12, 22]) based on the so-called
compatibility condition.

We say that the p-adic probability measures µ(n) are compatible if for all n ≥ 1 and
σn−1 ∈ ΩVn−1

:
∑

ωn∈ΩWn

µ(n)(σn−1 ∨ ωn)1(σn−1 ∨ ωn ∈ ΩVn) = µ(n−1)(σn−1). (3.3)

where the symbol ∨ denotes concatenation of configurations.
This condition implies the existence of a unique p-adic measure µ defined on Ω such

that, for all n and σn ∈ ΩVn , µ({σ|Vn = σn}) = µ(n)(σn).

Definition 3.1. Measure µ defined by (3.1), (3.3) is called a p-adic splitting (hard core)
Gibbs measure, corresponding to the function z.

The following statement describes conditions on the function z that ensure compati-
bility of measures µ(n).
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Proposition 3.2. Probability measures µ(n), n = 1, 2, ..., in (3.1) are compatible iff for
any x ∈ V the following equation holds:

z′x =
∏

y∈S(x)

λ+ z′y
z′y

, (3.4)

here z′x =
z0,x
z1,x

, λ = expp(J).

Proof. The proof consists in checking condition (3.3) for the measures (3.1). It is analo-
gous to that of Proposition 2.1 in [40]. �

Without loss of generality, we set hereafter z1,x = 1 and zx = z′x = z0,x ∈ Ep. Then
condition (3.4) reads

zx =
∏

y∈S(x)

λ+ zy
zy

. (3.5)

4. Conditions of solvability of equation (3.5)

In this section, we examine the conditions on the parameters k ≥ 1, p and λ for
the existence of solutions of equation (3.5). Notice that by Lemma 2.4 we have λ =
expp(J) ∈ Ep.

Theorem 4.1. If p does not divide 2k − 1, then the equation (3.5) has no solution
zx ∈ Ep, x ∈ V .

Proof. Let zx ∈ Ep, x ∈ V be a solution then from (3.5) we get

|zx|p =
∏

y∈S(x)

∣

∣

∣

∣

λ+ zy
zy

∣

∣

∣

∣

p

=
∏

y∈S(x)
|λ+ zy|p =

∏

y∈S(x)
|λ− 1 + zy − 1 + 2|p =

{

1, if p 6= 2,

< p−k/(p−1), if p = 2.

We shall use the following (see Lemma 4.6 of [27])

Lemma 4.2. If ai ∈ Ep for all i = 1, . . . ,m. Then

m
∏

i=1

ai ∈ Ep.

Assume S(x) = {x1, . . . , xk} then from (3.5) we get

|zx − 1|p =
∣

∣

∣

∣

∣

k
∏

i=1

λ+ zxi

zxi

− 1

∣

∣

∣

∣

∣

p

=

∣

∣

∣

∣

∣

k
∏

i=1

(λ+ zxi
)−

k
∏

i=1

zxi

∣

∣

∣

∣

∣

p

=
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∣

∣

∣

∣

∣

∣

∣

λ
k
∑

i=1

k
∏

j=1

j 6=i

zxj
+ λ2

k
∑

i=1

k
∑

j=1

j 6=i

k
∏

q=1

q 6=i,j

zxq + · · ·+ λk−1
k
∑

i=1

zxi
+ λk

∣

∣

∣

∣

∣

∣

∣

p

=

∣

∣

∣

∣

∣

∣

∣

k
∑

i=1






λ

k
∏

j=1

j 6=i

zxj
− 1






+

k
∑

i=1

k
∑

j=1

j 6=i






λ2

k
∏

q=1

q 6=i,j

zxq − 1






+ . . .

+
k
∑

i=1

(

λk−1zxi
− 1
)

+
(

λk − 1
)

+
(

2k − 1
)

∣

∣

∣

∣

∣

p

. (4.1)

Now using Lemma 4.2, we get from (4.1)

RHS of (4.1) =

{

1, if p ∤ 2k − 1,

< p−1/(p−1), if p | 2k − 1.

Thus the solution zx belongs to Ep iff p divides 2k − 1. �

Using this theorem, for given k ≥ 1, one can find values of the prime number p for
which the equation (3.5) may have solutions (see the following table for small values of k).

k p
1 ∅
2 3
3 7
4 3, 5
5 31
6 3, 7
7 127
8 3, 5, 17
9 7, 73
10 3, 11, 31

The following theorem gives a sufficient condition for the existence of a solution.

Theorem 4.3. If p divides 2k − 1 and p does not divide k + 2 then the equation (3.5)
has at least one solution zx ∈ Ep, x ∈ V .

Proof. We shall prove that under conditions of theorem the equation (3.5) has a constant
(translational-invariant) solution zx = z, ∀x ∈ V . In this case from (3.5) we get

z =

(

λ+ z

z

)k

. (4.2)



8 D. GANDOLFO, U. A. ROZIKOV, J. RUIZ

This equation can be written as F (z) = 0 with F (z) = zk+1− (λ+ z)k. Since |λ|p = 1 we
have that the polynomial F (z) has only p-adic integer coefficients. Hence we shall check
other conditions of Hensel’s lemma. Take a0 = 1 then we have

F (1) = −(λk+kλk−1+· · ·+kλ) = −
(

(λk − 1) + k(λk−1 − 1) + · · ·+ k(λ− 1) + (2k − 1)
)

.

Since |λ− 1|p ≤ 1
p , using Lemma 4.2 we get |λm − 1|p ≤ 1

p for each m = 1, 2, ...

This means that p divides all λm − 1 and also divides 2k − 1. Consequently p divides
F (1), i.e. F (1) ≡ 0 (mod p). Now let us check that if p does not divide k + 2, then
F ′(1) 6= 0 (mod p). We have

F ′(1) = k + 1− k(λ+ 1)k−1 = k + 1− k ((λ− 1) + 2)k−1 =

k + 1− k
(

(λ− 1)k−1 + (k − 1)(λ− 1)k−22 + · · · + (k − 1)(λ − 1)2k−2 + 2k−1
)

.

Since p divides λ− 1 we must have p ∤ (k + 1− k2k−1). Using p|2k − 1 one can see that
p ∤ (k + 1 − k2k−1) is equivalent to p ∤ (k + 2). Thus conditions of Hensel’s lemma are
satisfied for F (z) hence there exists a unique p-adic integer a such that F (a) = 0 and
a ≡ a0 (mod p), i.e. F (z) = 0 has a solution z = a. Since a0 = 1 and a ≡ 1 (mod p) we
conclude a ∈ Ep. This proves the theorem. �

As a corollary of this Theorem, we have the following

Theorem 4.4. If p divides 2k − 1 and p does not divide k + 2 then for the p-adic HC
model on Cayley tree of order k ≥ 1 there exists at least one p-adic (splitting) Gibbs
measure.

5. Uniqueness of translational-invariant measure

In the previous section under conditions of Theorem 4.3 we have shown that equation
(4.2) has at least one solution. Consequently by Proposition 3.2 there exists at least one
translational invariant p-adic Gibbs measure. The following theorem asserts that such a
measure is unique.

Theorem 5.1. If p divides 2k − 1 and p does not divide k+2 then there exists a unique
translational invariant p-adic Gibbs measure.

Proof. We shall prove that the equation (4.2) has a unique solution z = a ∈ Ep. Assume
that there are two such solutions a and b, a 6= b. Then we have F (a) = F (b) = 0. Hence

F (a)− F (b) = (a− b)
(

(ak + ak−1b+ · · ·+ bk)−

((a+ λ)k−1 + (a+ λ)k−2(b+ λ) + · · · + (b+ λ)k−1)
)

= 0.

Since a 6= b we get

ak + · · ·+ bk = (a+ λ)k−1 + · · ·+ (b+ λ)k−1

which can be written

(ak−1)+ · · ·+(bk−1)+k+1 = [(a−1)+(λ−1)]k−1+ · · ·+(k−1)[(a−1)+(λ−1)]2k−2+
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[(b− 1) + (λ− 1)]k−1 + · · ·+ (k − 1)[(b− 1) + (λ− 1)]2k−2 + k2k−1.

Consequently,

2(ak −1)+ · · ·+2(bk −1)−2[(a−1)+(λ−1)]k−1 −· · ·−2(k−1)[(a−1)+(λ−1)]2k−2−
2[(b− 1) + (λ− 1)]k−1 − · · · − 2(k − 1)[(b − 1) + (λ− 1)]2k−2 = k(2k − 1)− (k + 2).

This equality is not satisfied for any a, b ∈ Ep since the p-adic norm of its LHS is ≤ 1
p

while the p-adic norm of the RHS is 1. �

6. Periodic p-adic measures

In this section, we shall consider periodic measures and use the group structure of the
Cayley tree. It is known (see [11]) that there exists a one-to-one correspondence between
the set of vertices V of a Cayley tree of order k ≥ 1 and the group Gk, free product of
k + 1 second-order cyclic groups with generators a1, a2, ..., ak+1.

Definition 6.1. Let G̃ be a normal subgroup of the group Gk. The set z = {zx : x ∈ Gk}
is said to be G̃-periodic if zyx = zx for any x ∈ Gk and y ∈ G̃.

Definition 6.2. The (p-adic) Gibbs measure corresponding to a G̃-periodic set of quan-

tities z is said to be G̃-periodic.

It is easy to see that a Gk-periodic measure is translational invariant. Denote

G(2) = {x ∈ Gk : the length of wordx is even}.
This set is a normal subgroup of index two [11,32].

The following theorem characterizes the set of all periodic measures.

Theorem 6.3. Let G̃ be a normal subgroup of finite index in Gk. Then each G̃- periodic
p-adic Gibbs measure for HC model is either translation-invariant or G(2)- periodic.

Proof. Denote f(z) = λ+z
z . It is easy to check that f(z) = f(t) if and only if z = t. This

property together with arguments similar to the ones given in the proof of Theorem 2
in [24] lead to the statement. �

Let G̃ be a normal subgroup of finite index in Gk. Let us state condition on G̃ for
each G̃-periodic p-adic Gibbs measure to be translation invariant.
Set I(G̃) = G̃ ∩ {a1, ..., ak+1}, where the ai are the generators of Gk.

Theorem 6.4. If I(G̃) 6= ∅ then each G̃- periodic p-adic Gibbs measure is translational-
invariant.

Proof. Similar to proof of Theorem 3 in [24]. �

By Theorems 6.3 and 6.4, the description of a G̃-periodic p-adic Gibbs measure for
I(G̃) 6= ∅ reduces to finding that of fixed points of the map (f(z))k (these fixed points
correspond to translational invariant p-adic Gibbs measures).

For I(G̃) = ∅, it reduces to the solutions of system (6.1) below. This system describes
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periodic measures with period two, more precisely, G(2)-periodic p-adic measures. They
correspond to functions

zx =

{

z1, if x ∈ G(2),

z2, if x ∈ Gk \G(2).

In this case, we have from (3.5):

z1 =

(

z2 + λ

z2

)k

, z2 =

(

z1 + λ

z1

)k

. (6.1)

Namely, z1 and z2 satisfy

z = g(g(z)), where g(z) = ((z + λ)/z)k. (6.2)

Note that to get periodic (non translational invariant) measure we must find solutions
z1, z2 ∈ Ep of (6.1) with z1 6= z2. Obviously, such solutions are roots of the equation

g(g(z)) − z

g(z) − z
= 0, (6.3)

which is equivalent to the equation

L(z)

M(z)
= 0, with L(z) =

(

λzk + (λ+ z)k
)k

−z(λ+z)k
2

; M(z) = (λ+z)k−zk+1. (6.4)

We have

L(z) =
(

(λ+ z)zk +M(z)
)k

− z
(

zk+1 +M(z)
)k

= (λ+ z)kzk
2

+

k
∑

i=1

(

k

i

)

M i(z)((λ + z)zk)k−i − zk
2+k+1 − z

k
∑

j=1

(

k

j

)

M j(z)(zk+1)k−j = M(z)U(z),

where

U(z) = (1− k)zk
2

+ k
(

(λ+ z)zk
)k−1

+

k
∑

i=2

(

k

i

)

M i−1(z)zk(k−i)
(

(λ+ z)k−i − zk−i+1
)

.

Hence in order to get G(2)-periodic (not translation invariant) solutions of (6.1) we
must find solutions of equation U(z) = 0. Conditions for existence of such solutions are
given in the following theorem.

Theorem 6.5. Let p 6= 3, 5. The equation U(z) = 0 has a solution z ∈ Ep if and only if

p divides 2k − 1 and p divides k − 2.

Proof. Necessity: from above, it follows that if p divides 2k − 1 then |M(z)|p ≤ 1
p . The

function U(z) can be written as

U(z) = (1− k)(zk
2 − 1) + k

(

(λ− 1 + z − 1)zk
)k−1

+ k(2k−1 − 1) + 1+
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k
∑

i=2

(

k

i

)

M i−1(z)zk(k−i)
(

(λ+ z)k−i − zk−i+1
)

.

Since p divides M(z), it must divide (k(2k−1 − 1) + 1). By using p | 2k − 1 one can see
that p | (k(2k−1 − 1) + 1) is equivalent to p | (k − 2).

Sufficiency: Since |λ|p = 1, the polynomial U(z) has only p-adic integer coefficients.
Hence we shall check other conditions of Hensel’s lemma. Take a0 = 1 then it is easy to
see that U(1) ≡ 0 (mod p). Now we shall check that U ′(1) 6= 0 (mod p). We have

U ′(1) = (1− k)k2 + k(k − 1)(kλ + k + 1)(λ+ 1)k−1+

k(k − 1)

2

(

k(λ+ 1)k−1 − (k + 1)
) (

(λ+ 1)k−2 − 1
)

+ pN,

where N ∈ N. Now using hypothesis of theorem, we get

U ′(1) = 15 + pN1, N1 ∈ N.

Hence if p 6= 3, 5 all conditions of Hensel’s lemma are satisfied. This completes the
proof. �

For given k ≥ 1, one can easily find values of prime number p for which the equation
U(z) = 0 has a solution (see the following table for small values of k)

k p
1 ∅
2 3
3 ∅
4 ∅
5 ∅
6 ∅
7 ∅
8 3
9 7
10 ∅

Now we are going to give all G(2)-periodic solutions for k = 2. In this case the equation
(6.3) has the following form:

z2 − (λ2 − 2λ)z + λ2 = 0. (6.5)

The solutions of this quadratic equation are

z1,2 =
λ

2

(

λ− 2±
√

λ(λ− 4)
)

. (6.6)

We must check the existence of
√

λ(λ− 4) and additionally that z1,2 ∈ Ep. For k = 2,
following Theorem 4.1, only the case p = 3 has to be considered. Since λ ∈ E3 we have
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its following representation

λ = 1 + λ1 · 3 + λ2 · 32 + λ3 · 33 + · · · .
It is easy to see that λ satisfies hypothesis of Theorem 2.2. Hence

√
λ exists in Q3. So

we must check the existence of
√
λ− 4 in Q3. We have

−3 = 3 · 2

1− 3
= 2 · 3 + 2 · 32 + 2 · 32 + · · · .

Consequently

λ−4 = −3+λ1 ·3+λ2 ·32+λ3 ·33+ · · · = 3
(

(λ1 + 2) + (λ2 + 2) · 3 + (λ3 + 2) · 32 + · · ·
)

.

From this equality and Theorem 2.2, it follows that λ1 = 1 ensures the existence of√
λ− 4. Then we have

λ− 4 = 32
(

λ2 + λ3 · 3 + λ4 · 32 + λ5 · 33 + · · ·
)

which implies that λ2 must be a quadratic residue modulo 3 by refering again to Theorem
2.2. This leads to λ2 = 1 only, therefore

λ− 13 = 33
(

λ3 + λ4 · 3 + λ5 · 32 + · · ·
)

, 0 ≤ λi ≤ 2, i = 3, 4, 5, · · · .
Now we check that z1,2 ∈ E3. We have

|z1,2|3 =
∣

∣

∣
λ− 2±

√

λ(λ− 4)
∣

∣

∣

3
=
∣

∣

∣
(λ− 1)− 1±

√

λ((λ− 1) − 3)
∣

∣

∣

3
= 1. (6.7)

|z1,2 − 1|3 =
∣

∣

∣
(λ− 1)2 − 3± λ

√

λ((λ− 1)− 3)
∣

∣

∣

3
< 3

−1

2 . (6.8)

Hence we have proven the following

Theorem 6.6. If k = 2, p = 3 and λ ∈ {x ∈ Q3 : |x − 13|3 ≤ 1
27} then there exist

precisely two G(2)-periodic p-adic Gibbs measures.

Remark 6.7. In classical (real) models of statistical mechanics, a phase transition is
said to occur whenever varying a parameter leads to a change in the number of Gibbs
states. For example, on a Cayley tree, Ising and Potts models exhibit a phase transition
at some critical temperature Tc. Similar phenomena also occurs for real HC model at
some λc. This is not the case for p-adic models since the field of p-adic numbers Qp is

not ordered. However in the case k = 2, p = 3 the sphere {x ∈ Qp : |x − 13|p = 1
27} can

be considered as a critical “curve”.
Note that in p-adic case the geometry of balls and spheres are more complicated than

in real case [15–17,21,31,36,41].

7. Boundedness of p-adic Gibbs measures

Now we are interested to find out whether a p-adic Gibbs measure is bounded.
For a set A we denote by |A| its number of elements and recall that Ωn is the set of

all admissible configurations σn : Vn → {0, 1}. We need the following
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Lemma 7.1. The number of admissible configurations is given by

|Ωn| = 2(k+1)k
n−1

k−1 + 1.

Proof. We first compute the number of non admissible configurations. It is known that
if a connected subset M of a tree contains m vertices then it contains m − 1 edges.
Thus Vn contains |Vn| − 1 edges. Note that a configuration σn is non admissible if there
exists at least one edge 〈x, y〉 such that σ(x) = σ(y) = 1. Therefore, the number of non
admissible configurations on Vn is equal to

|Vn|−1
∑

m=1

(|Vn| − 1

m

)

= 2|Vn|−1 − 1.

Consequently

|Ωn| = 2|Vn| −
(

2|Vn|−1 − 1
)

= 2|Vn|−1 + 1.

This, together with the following formula

|Vn| = 1 + (k + 1)
kn − 1

k − 1

completes the proof �

Theorem 7.2. Assume p | 2k −1, then the p-adic Gibbs measure µ corresponding to the
p-adic HC-model on the Cayley tree of order k ≥ 1 is bounded if and only if p 6= 3.

Proof. It suffices to show that the values of µ on cylindrical subsets are bounded.
Denote

H̃(σn) = J
∑

x∈Vn

σ(x) +
∑

x∈Wn

logp zσ(x),x.

Let us estimate
∣

∣µ(n)(σn)
∣

∣

p
:

∣

∣

∣µ(n)(σn)
∣

∣

∣

p
=

∣

∣

∣

∣

∣

∣

expp

(

H̃(σn)
)

∑

ϕn∈Ωn
expp

(

H̃(ϕn)
)

∣

∣

∣

∣

∣

∣

p

=

1
∣

∣

∣

∑

ϕn∈Ωn

[

expp

(

H̃(ϕn)
)

− 1
]

+ |Ωn|
∣

∣

∣

p

. (7.1)

Using Lemma 7.1 we get

|Ωn| = 2kK+1 + 1 = 2
[

(2k − 1)K +K(2k − 1)K−1 + · · ·+ (2k − 1)
]

+ 3,

where K = 2 + 2k + · · ·+ 2kn−2 + kn−1. Consequently,

||Ωn||p =
{

≤ 1
p if p = 3

1 if p 6= 3.
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Now from (7.1) we get
∣

∣

∣
µ(n)(σn)

∣

∣

∣

p
=

{

≥ p if p = 3

1 if p 6= 3.

Thus boundedness is proved for p 6= 3.
Now we shall prove that µ is not bounded if p = 3. Put

px,yij =











expp(J(i+j)+zi,x+zj,y)∑
u,v∈{0,1}
u+v 6=2

expp(J(u+v)+zu,x+zv,y)
if i, j = 0, 1; i+ j 6= 2

0 if i = j = 1.

In order to show that the measure µ is not bounded at p = 3, it is enough to show
that its marginal measure is not bounded. Let π = {..., x−1, x0, x1, ...} be an arbitrary
infinite path in Γk. From (3.1) we can see that a marginal measure µπ on admissible
configurations on {0, 1}π has the form

µπ(ωn) = p
x−n,x−n+1

ω(x−n)

n−1
∏

m=−n

p
xm,xm+1

ω(xm)ω(xm+1)
(7.2)

Here ωn : {x−n, ..., x0, ..., xn} → {0, 1} is a configuration on {x−n, ..., x0, ..., xn} and pxyi
is a coordinate of the invariant vector of the matrix

(

px,yij

)

i,j=0,1
.

We have
∣

∣

∣p
x,y
ij

∣

∣

∣

3
=

1
∣

∣

∣

∣

∑

u,v∈{0,1}
u+v 6=2

[exp3 (J(u+ v) + zu,x + zv,y)− 1] + 3

∣

∣

∣

∣

3

> 3 (7.3)

for all i, j. From (7.2) and (7.3) we find that µn is not bounded.
The theorem is proven. �

8. Concluding remarks

To conclude, we will give a brief description of the differences of behavior between
classical (real) models and p-adic models on Cayley trees.

Hard core models. Real case: In this model (see [40]), for all λ > 0 and k ≥
1, there exists a unique translational invariant splitting Gibbs measure µ0. Let λc =

1
(k−1)

(

k
k−1

)k
, then:

(i) for λ ≤ λc, the Gibbs measure is unique (and coincides with the above measure µ0),
(ii) for λ > λc, in addition to µ0, there exist two distinct extreme periodic measures, µ+

and µ−. In addition, there are a continuum set of distinct, extreme, non-translational-
invariant, Gibbs measures.

For λ > 1
(
√
k−1)

( √
k√

k−1

)k
, the measure µ0 is not extreme.

p-adic case: In this paper we have shown that the p-adic HC model is completely
different from real HC model. For a fixed k, the p-adic HC model may have a split-
ting Gibbs measure only if p divides 2k − 1. Moreover if p divides 2k − 1 and does not



ON p-ADIC GIBBS MEASURES OF HC MODEL 15

divide k + 2 then there exists unique translation invariant p-adic Gibbs measure. The
HC model admits only translation invariant and periodic with period two (chess-board)
Gibbs measures. For p ≥ 7, a periodic p-adic Gibbs measure exists iff p divides both
2k − 1 and k− 2. For k = 2, a p-adic splitting Gibbs measure exists if and only if p = 3;
in this case we have shown that if λ belongs to a p-adic ball of radius 1/27 then there
are precisely two periodic (non translation invariant) p-adic Gibbs measures. Finally, we
have proven that a p-adic Gibbs measure is bounded if and only if p 6= 3.

Potts model. Real case: The ferromagnetic q states Potts model for any q ≥ 2
exhibits possibly q + 1 distinct translation invariant Gibbs measures. Namely, there
exist two critical temperatures 0 < T ′

c < Tc such that:
(i) for T ∈ (T ′

c, Tc] there are q + 1 extreme Gibbs measures, one of them is called
unordered;
(ii) for T ≤ T ′

c, q extreme Gibbs measures coexist: there is the unordered which is not
extreme;
(iii) for T > Tc there is one Gibbs measure, [10, 25].

p-adic case: The model exhibits a phase transition whenever k = 2, q ∈ pN and p ≥ 3
(resp. q ∈ 22N, p = 2) [27]. Whenever k ≥ 3 a phase transition may occur only at q ∈ pN
if p ≥ 3 and q ∈ 22N if p = 2. Moreover for the p-adic Ising model (q = 2) there is no
phase transition. This is one interesting difference between real and p-adic Ising model
on trees.

λ-model. Real case: A nearest-neighbor λ-model with two spin values on Cayley tree
is considered in [33]. There, it was proven that this model has similar properties like
Ising model.

p-adic case: (see [14]) For p-adic non homogeneous λ-model there is no phase transition
and as well as being unique, the p-adic Gibbs measure is bounded if and only if p ≥ 3.
If p = 2, a condition asserting the non existence of a phase transition was given.

This result shows that, in p-adic case, even non homogeneous interactions do not lead
to the ocurence of a phase transition.

From the above given results it follows that the set of p-adic Gibbs measures is sparse
with respect to the set of real Gibbs measures. The main reasons for this could be
explained by the following:

(i) The set of values of real norm |x| is continuous [0,+∞), but the set of values of
p-adic norm is discrete {pm : m ∈ Z}.

(ii) Real function ex is defined for any x ∈ R but p-adic function expp(x) is defined

only for x ∈ Qp with |x|p ≤ 1
p .

(iii) The set of values of real function ex and its norm |ex| is continuous (0,+∞), but
the set of values of p-adic function expp(x) is {x : |x− 1|p ≤ 1

p} and the set of values of

its norm | expp(x)|p contains unique point 1, i.e., | expp(x)|p = 1 for all x with |x|p ≤ 1
p .

Nevertheless, we believe that p-adic Gibbs measures might have interesting applica-
tions.
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