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Abstract

A random motion on the Poincaré half-plane is studied. A particle
runs on the geodesic lines changing direction at Poisson-paced times. The
hyperbolic distance is analyzed, also in the case where returns to the
starting point are admitted. The main results concern the mean hyper-
bolic distance (and also the conditional mean distance) in all versions of
the motion envisaged. Also an analogous motion on orthogonal circles of
the sphere is examined and the evolution of the mean distance from the
starting point is investigated.
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1 Introduction

Motions on hyperbolic spaces have been studied since the end of the Fifties
and most of the papers devoted to them deal with the so-called hyperbolic
Brownian motion (see, e.g., Gertsenshtein and Vasiliev [4], Gruet [5], Monthus
and Texier [9], Lao and Orsingher [7]).

More recently also works concerning two-dimensional random motions at
finite velocity on planar hyperbolic spaces have been introduced and analyzed
(Orsingher and De Gregorio [11]).

While in [11] the components of motion are supposed to be independent, we
present here a planar random motion with interacting components. Its coun-
terpart on the unit sphere is also examined and discussed.

1Corresponding author. Tel.: +390649910585, fax: +39064959241.
E-mail address: enzo.orsingher@uniroma1.it .
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The space on which our motion develops is the Poincaré upper half-plane
H+

2 = {(x, y) : y > 0} which is certainly the most popular model of the
Lobachevsky hyperbolic space. In the space H+

2 the distance between points is
measured by means of the metric

ds2 =
dx2 + dy2

y2
. (1.1)

The propagation of light in a planar non-homogeneous medium, according
to the Fermat principle, must obey the law

sinα(y)

c(x, y)
= cost (1.2)

where α(y) is the angle formed by the tangent to the curve of propagation
with the vertical at the point with ordinate y. In the case where the velocity
c(x, y) = y is independent from the direction, the light propagates on half-circles
as in H+

2 .
In [2] it is shown that the light propagates in a non-homogeneous half-plane

H+
2 with refracting index n(x, y) = 1/y with rays having the structure of half-

circles.
Scattered obstacles in the non-homogeneous medium cause random devia-

tions in the propagation of light and this leads to the random model analyzed
below.

The position of points in H+
2 can be given either in terms of Cartesian

coordinates (x, y) or by means of the hyperbolic coordinates (η, α). In particular,
η represents the hyperbolic distance of a point of H+

2 from the origin O which
has Cartesian coordinates (0, 1). We recall that η is evaluated by means of (1.1)
on the arc of a circumference with center located on the x axis and joining
(x, y) with the origin O. The upper half-circumferences centered on the x axis
represent the geodesic lines of the space H+

2 and play the same role of the
straight lines in the Euclidean plane.

The angle α represents the slope of the tangent in O to the half-circumference
passing through (x, y) (see Figure ??(a)).

The formulas which relate the polar hyperbolic coordinates (η, α) to the
Cartesian coordinates (x, y) are (see Rogers and Williams [12], page 213){

x = sinh η cosα
cosh η−sinh η sinα η > 0,

y = 1
cosh η−sinh η sinα −π2 < α < π

2 .
(1.3)

For each value of α the relevant geodesic curve is represented by the half-
circumference with equation

(x− tanα)2 + y2 =
1

cos2 α
. (1.4)

For α = π
2 we get from (1.4) the positive y axis which also is a geodesic curve

of H+
2 .

From (1.3) it is easy to obtain the following expression of the hyperbolic
distance η of (x, y) from the origin O:

cosh η =
x2 + y2 + 1

2y
. (1.5)
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(a) (b)

Figure 1: Figure 1(a) illustrates the hyperbolic coordinates. Figure 1(b) refers to
the hyperbolic triangle of Carnot formula.

From (1.5) it can be seen that all the points having hyperbolic distance η from
the origin O form a Euclidean circumference with center at (0, cosh η) and radius
sinh η.

The expression of the hyperbolic distance between two arbitrary points
(x1, y1) and (x2, y2) is instead given by

cosh η =
(x1 − x2)2 + y2

1 + y2
2

2y1y2
. (1.6)

In fact, by considering the hyperbolic triangle with vertices at (0, 1), (x1, y1)
and (x2, y2), by means of the Carnot hyperbolic formula it is simple to show
that the distance η between (x1, y1) and (x2, y2) is given by

cosh η = cosh η1 cosh η2 − sinh η1 sinh η2 cos(α1 − α2) (1.7)

where (η1, α1) and (η2, α2) are the hyperbolic coordinates of (x1, y1) and (x2, y2),
respectively (see Figure ??(b)). From (1.4) we obtain that

tanαi =
x2
i + y2

i − 1

2xi
for i = 1, 2, (1.8)

and view of (1.5) and (1.8), after some calculations, formula (1.6) appears.
Instead of the elementary arguments of the proof above we can also invoke the
group theory which reduces (x1, y1) to (0, 1).

If α1−α2 = π
2 , the hyperbolic Carnot formula (1.7) reduces to the hyperbolic

Pythagorean theorem
cosh η = cosh η1 cosh η2 (1.9)

which plays an important role in the present paper.
The motion considered here is the non-Euclidean counterpart of the planar

motion with orthogonal deviations studied in Orsingher [10]. The main object
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of the investigation is the hyperbolic distance of the moving point from the
origin. We are able to give explicit expressions for its mean value, also under
the condition that the number of changes of direction is known. In the case of
motion in H+

2 with independent components (Orsingher and De Gregorio [11])
an explicit expression for the distribution of the hyperbolic distance η has been
obtained. Here, however, the components of motion are dependent and this
excludes any possibility of finding the distribution of the hyperbolic distance
η(t).

We obtain the following explicit formula for the mean value of the hyperbolic
distance which reads

E{cosh η(t)} = e−
λt
2

{
cosh

t

2

√
λ2 + 4c2 +

λ√
λ2 + 4c2

sinh
t

2

√
λ2 + 4c2

}
= EeT (t) (1.10)

where T (t) is a telegraph process with parameters λ
2 and 2c.

The telegraph process represents the random motion of a particle moving
with constant velocity and changing direction at Poisson-paced times (see, for
example [11]).

Section 5 is devoted to motions on the Poincaré half-plane where the re-
turn to the starting point is admitted and occurs at the instants of changes of
direction. The mean distance from the origin of these jumping-back motions
is obtained explicitly by exploiting their relationship with the motion without
jumps. In the case where the return to the starting point occurs at the first
Poisson event T1, the mean value of the hyperbolic distance η1(t) reads

E{cosh η1(t)|N(t) ≥ 1} =
λ√

λ2 + 4c2
sinh t

2

√
λ2 + 4c2

sinh λt
2

. (1.11)

The last section considers the motion at finite velocity, with orthogonal
deviations at Poisson times, on the unit-radius sphere. The main results concern
the mean value E{cos d(P0Pt)}, where d(P0Pt) is the distance of the current
point Pt from the starting position P0. We take profit of the analogy of the
spherical motion with its counterpart on the Poincaré half-plane to discuss the
different situations due to the finiteness of the space where the random motion
develops.

2 Description of the Planar Random Motion on
the Poincaré Half-Plane H+

2

We start our analysis by considering a particle located at the origin O of H+
2 .

The particle initially moves on the half-circumference with center at (0, 0) and
radius 1. The motion of the particle develops on the geodesic lines represented
by half-circles with the center located on the x axis. Changes of direction are
governed by a homogeneous Poisson process of rate λ.

At the occurrence of the first Poisson event, the particle starts moving on
the circumference orthogonal to the previous one.

After having reached the point P2, where the second Poisson event happened,
the particle continues its motion on the circumference orthogonal to that joining
O with P2 (see Figure 2).
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Figure 2: In the first three figures a sample path where the particle chooses the
outward direction is depicted. In the last one a trajectory with one step moving

towards the origin is depicted.

In general, at the n-th Poisson event, the particle is located at the point
Pn and starts moving on the circumference orthogonal to the geodesic curve
passing through Pn and the origin O (consult again Figure 2).

At each Poisson event the particle moves from the reached position P clock-
wise or counter-clockwise (with probability 1

2 ) on the circumference orthogonal
to the geodesic line passing through P and O.

The hyperbolic length of the arc run by the particle during the inter-time
between two successive changes of direction, occurring at tk−1 and tk respec-
tively, is given by c(tk− tk−1), with k ≥ 1 and t0 = 0. The velocity c is assumed
to be the constant hyperbolic velocity

c =
ds

dt
=

1

y

√
dx2 + dy2

dt2
. (2.1)

The Cartesian coordinates of the points Pk, where the changes of direction
occur, can be explicitly evaluated, but they are not important in our analysis
because we study only the evolution of the hyperbolic distance from the origin
of the moving particle.

The construction outlined above shows that the arcs OPk−1, Pk−1Pk, and
OPk form right triangles with the vertex of the right angle at Pk−1.
In force of the hyperbolic Pythagorean theorem we have that

cosh d(OPk) = cosh d(OPk−1) cosh d(Pk−1Pk). (2.2)

The hyperbolic distance η(t) of the moving point Pt after n changes of direction
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is thus given by

cosh η(t) = cosh d(OPt)

= cosh d(PnPt) cosh d(OPn)

= cosh c(t− tn)

n∏
k=1

cosh c(tk − tk−1)

=

n+1∏
k=1

cosh c(tk − tk−1), (2.3)

where t0 = 0 and tn+1 = t. The instants tk, k = 0, 1, . . . , n are uniformly
distributed in the set

T = {0 = t0 < t1 < · · · < tk < · · · < tn < tn+1 = t}. (2.4)

This means that cosh η(t), defined in (2.3), can be viewed as the hyperbolic
distance from O of the moving particle for fixed time points of the underlying
Poisson process and for a fixed number N(t) = n of changes of direction.

We remark that the geodesic distance (2.3) depends on how much time the
particle spends on each geodesic curve (but not on the chosen direction). Of
course, (2.3) depends on the number n of changes of direction and on the speed
c of the moving particle, as well.

The set of possible positions at different times t is depicted in Figure 3. The
vertices A and B are reached when the particle never changes direction, whereas
C and D are reached if the deviation occurs immediately after the start.

The ensemble of points having the same hyperbolic distance from O at time
t, forms the circle with center C = (0, cosh η(t)) and radius sinh η(t). Since

cosh η(t) =

n+1∏
k=1

cosh c(tk − tk−1), (2.5)

the ordinate of the center C is obtained by successively multiplying the ordinates
of the centers of equally distant points at each step. For the radius, however,
such a fine interpretation is not possible (the radii do not exhibit the same
multiplicative behavior) but nevertheless we will study their product

n+1∏
k=1

sinh c(tk − tk−1) (2.6)

because

sinh η(t) ≥
n+1∏
k=1

sinh c(tk − tk−1) (2.7)

and (2.6) represents a lower bound for the circle of equally distant points at
time t.

3 The Equations Related to the Mean Hyper-
bolic Distance

In this section we study the conditional and unconditional mean values of the
hyperbolic distance η(t). Our first result concerns the derivation of the equations

6
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Figure 3: The set of all possible points reachable by the process for different values
of t is drawn. In each domain a trajectory of the process, with c = 0.05 and

N(t) = 2, is depicted.

satisfied by the mean values

En(t) = E{cosh η(t)|N(t) = n} (3.1)

=
n!

tn

∫ t

0

dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtn

n+1∏
k=1

cosh c(tk − tk−1)

=
n!

tn
In(t),

where

In(t) =

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n+1∏
k=1

cosh c(tk − tk−1), (3.2)
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and by

E(t) = E{cosh η(t)} (3.3)

=

∞∑
n=0

E{cosh η(t)|N(t) = n}Pr{N(t) = n}

= e−λt
∞∑
n=0

λnIn(t).

At first, we state the following result concerning the evaluation of the integrals
In(t), n ≥ 1.

Lemma 3.1. The functions

In(t) =

∫ t

0

dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtn

n+1∏
k=1

cosh c(tk − tk−1), (3.4)

with t0 = 0 and tn+1 = t, satisfy the difference-differential equations

d2

dt2
In =

d

dt
In−1 + c2In (3.5)

where t > 0, n ≥ 1, and I0(t) = cosh ct.

Proof
We first note that

d

dt
In =

∫ t

0

dt1 · · ·
∫ t

tn−2

dtn−1

n∏
k=1

cosh c(tk − tk−1) (3.6)

+ c

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

cosh c(tk − tk−1) sinh c(t− tn)

= In−1 + c

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

cosh c(tk − tk−1) sinh c(t− tn)

and therefore

d2

dt2
In =

d

dt
In−1 + c2

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n+1∏
k=1

cosh c(tk − tk−1)

=
d

dt
In−1 + c2In. (3.7)

�

In view of Lemma 3.1 we can prove also the following:

Theorem 3.2. The mean value E(t) = E{cosh η(t)} satisfies the second-order
linear homogeneous differential equation

d2

dt2
E(t) = −λ d

dt
E(t) + c2E(t) (3.8)

8



with initial conditions {
E(0) = 1,
d
dtE(t)

∣∣
t=0

= 0.
(3.9)

The explicit value of the mean hyperbolic distance is therefore

E(t) = e−
λt
2

{
cosh

t
√
λ2 + 4c2

2
+

λ√
λ2 + 4c2

sinh
t
√
λ2 + 4c2

2

}
. (3.10)

Proof
From (3.3), it follows that

d

dt
E(t) = −λE(t) + e−λt

∞∑
n=0

λn
d

dt
In (3.11)

and thus, in view of (3.7) and by letting I−1 = 0, we have that

d2

dt2
E(t)

= −λ d

dt
E(t)− λ

(
d

dt
E(t) + λE(t)

)
+ e−λt

∞∑
n=0

λn
(

d

dt
In−1 + c2In

)

= −2λ
d

dt
E(t)− λ2E(t) + c2E(t) + e−λt

∞∑
n=0

λn
d

dt
In−1

= −2λ
d

dt
E(t)− λ2E(t) + c2E(t) + λ

(
d

dt
E(t) + λE(t)

)
= −λ d

dt
E(t) + c2E(t). (3.12)

While it is straightforward to see that the first condition in (3.9) is verified,
the second one needs some explanations: if we write

d

dt
E(t)

∣∣∣∣
t=0

= lim
∆t↓0

E(∆t)− 1

∆t
(3.13)

and observe that

E(∆t) (3.14)

= (1− λ∆t) cosh c∆t+ λ

∫ ∆t

0

cosh ct1 cosh c(∆t− t1)dt1 + o(∆t)

= (1− λ∆t) cosh c∆t+
λ∆t

2
cosh c∆t+

λ

2c
sinh c∆t+ o(∆t),

by substituting (3.14) in (3.13), the second condition emerges. The integral
in (3.14) represents the mean value E{cosh η(∆t)|N(∆t) = 1} and is in fact
evaluated by applying the Pythagorean hyperbolic theorem, as in (3.1), for
k = 1 and t = ∆t.

The general solution to equation (3.12) has the form

E(t) = e−
λt
2

{
Ae

t
2

√
λ2+4c2 + Be−

t
2

√
λ2+4c2

}
. (3.15)
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By imposing the initial conditions, the constants A and B can be evaluated and
coincide with:

A =
λ+
√
λ2 + 4c2

2
√
λ2 + 4c2

, B =

√
λ2 + 4c2 − λ
2
√
λ2 + 4c2

. (3.16)

From (3.15) and (3.16) we obtain

E(t) =
e−

λt
2

2

{
λ+
√
λ2 + 4c2√

λ2 + 4c2
e
t
2

√
λ2+4c2 +

√
λ2 + 4c2 − λ√
λ2 + 4c2

e−
t
2

√
λ2+4c2

}
so that (3.10) emerges. �

Remark 3.1. The mean value E(t) tends to infinity as t → ∞ so that the
moving particle, in the long run, either reaches the x axis or moves away towards
the infinity.

Of course, if c = 0 we have that E(t) = 1, and for λ → ∞ we have again
that E(t) = 1 because in both cases the particle cannot leave the starting point.

If λ→ 0 we get E(t) = cosh ct because the particle will simply move on the
basic geodesic line and its hyperbolic distance grows linearly with t.

We note that the hyperbolic distance itself tends to infinity as t→∞ because

lim
t→∞

cosh η(t) =

∞∏
k=1

cosh d(PkPk−1) =∞ (3.17)

and (3.17) is the infinite product of terms bigger than one.

Remark 3.2. By taking into account the difference-differential equation (3.5),
or directly from (3.1), it follows that the conditional mean values En(t) satisfy
the following equation with non-constant coefficients

d2

dt2
En +

2n

t

d

dt
En −

n

t

d

dt
En−1 +

n2 − n
t2

(En − En−1)− c2En = 0. (3.18)

In order to obtain the explicit value of the conditional mean value En(t)
it is convenient to perform a series expansion of E(t), instead of solving the
difference-differential equation (3.18). In this way we can prove the following
result.

Theorem 3.3. The conditional mean values En(t), n ≥ 1, can be expressed as

En(t) =

[n2 ]∑
r=0

1

2n
n!

(n− 2r)!

∞∑
j=0

(
r + j

j

)
(ct)2j

(2r + 2j)!
(3.19)

+

[n−1
2 ]∑

r=0

1

2n
n!

(n− 2r − 1)!

∞∑
j=0

(
r + j

j

)
(ct)2j

(2r + 2j + 1)!

Proof
By expanding the hyperbolic functions in (3.10) we have that

E(t) = e−
λt
2

[ ∞∑
k=0

1

(2k)!

(
t

2

√
λ2 + 4c2

)2k

(3.20)

+
λ√

λ2 + 4c2

∞∑
k=0

1

(2k + 1)!

(
t

2

√
λ2 + 4c2

)2k+1
]
.
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By applying the Newton binomial formula to the terms in the round brackets
and by expanding e

λt
2 it follows that

E(t) = e−λt
∞∑
m=0

1

m!

(
λt

2

)m [ ∞∑
k=0

1

(2k)!

(
t

2

)2k k∑
r=0

(
k

r

)
λ2r(2c)2k−2r

+ λ

∞∑
k=0

1

(2k + 1)!

(
t

2

)2k+1 k∑
r=0

(
k

r

)
λ2r(2c)2k−2r

]
. (3.21)

Finally, interchanging the summation order, it results that

E(t) (3.22)

= e−λt

 ∞∑
m=0

∞∑
r=0

1

m!r!

(
λt

2

)2r+m
(2r +m)!

(2r +m)!

∞∑
j=0

(r + j)!

j!

(ct)2j

(2r + 2j)!

+
∞∑
m=0

∞∑
r=0

1

m!r!

(
λt

2

)2r+m+1
(2r +m+ 1)!

(2r +m+ 1)!

∞∑
j=0

(r + j)!

j!

(ct)2j

(2r + 2j + 1)!

 .
Since

E(t) = e−λt
∞∑
n=0

(λt)n

n!
En(t), (3.23)

from (3.22) and (3.23), we have that

En(t) (3.24)

=
∑

m, r: 2r+m=n

1

22r+m

(2r +m)!

m!

∞∑
j=0

(
r + j

j

)
(ct)2j

(2r + 2j)!

+
∑

m, r: 2r+m+1=n

1

22r+m+1

(2r +m+ 1)!

m!

∞∑
j=0

(
r + j

j

)
(ct)2j

(2r + 2j + 1)!

=

[n2 ]∑
r=0

1

2n
n!

(n− 2r)!

∞∑
j=0

(
r + j

j

)
(ct)2j

(2r + 2j)!

+

[n−1
2 ]∑

r=0

1

2n
n!

(n− 2r − 1)!

∞∑
j=0

(
r + j

j

)
(ct)2j

(2r + 2j + 1)!
,

and this represents the explicit form of the conditional mean values. �

Remark 3.3. We check formula (3.19) by evaluating the mean value En(t) for
n = 0, 1, 2, 3.

It can be noted that for n = 0 only the term r = 0 of the first sum in (3.19)
must be considered, so that

E{cosh η(t)|N(t) = 0} =

∞∑
j=0

(ct)2j

(2j)!
= cosh ct. (3.25)
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For n = 1 both sums of (3.19) contribute to the mean value with the r = 0
term

E{cosh η(t)|N(t) = 1} =
1

2

∞∑
j=0

(ct)2j

(2j)!
+

1

2

∞∑
j=0

(ct)2j

(2j + 1)!

=
1

2
cosh ct+

1

2ct
sinh ct. (3.26)

For n = 2 we have two terms in the first sum (corresponding to r = 0, 1)
and the term r = 0 in the second sum, so that

E{cosh η(t)|N(t) = 2} =
1

22

∞∑
j=0

(ct)2j

(2j)!
+

1

2

∞∑
j=0

(
j + 1

j

)
(ct)2j

(2j + 2)!

+
1

2

∞∑
j=0

(ct)2j

(2j + 1)!

=
1

22
cosh ct+

(
1

22ct
+

1

2ct

)
sinh ct. (3.27)

For n = 3 we need to consider two terms in both sums

E{cosh η(t)|N(t) = 3} (3.28)

=
1

23

∞∑
j=0

(ct)2j

(2j)!
+

3!

23

∞∑
j=0

(
j + 1

j

)
(ct)2j

(2j + 2)!

+
3

23

∞∑
j=0

(ct)2j

(2j + 1)!
+

3

22

∞∑
j=0

(
j + 1

j

)
(ct)2j

(2j + 3)!

=

(
1

23
+

3

23(ct)2

)
cosh ct+

(
6

23ct
− 3

(2ct)3

)
sinh ct.

The same results can be obtained directly from (3.1) by successive integra-
tions.

For each step the ensemble of points with hyperbolic distance equal to c(tk−
tk−1) forms a Euclidean circumference Ck with radius sinh c(tk−tk−1) and center
located at (0, cosh c(tk − tk−1)). At time t, if n steps have occurred, the set of
points Ct with hyperbolic distance equal to η(t) is a circumference with center
at (0, cosh η(t)) and radius sinh η(t). Clearly

cosh η(t) =

n+1∏
k=1

cosh c(tk − tk−1) (3.29)

so that the ordinate of the center of Ct is equal to the product of the ordinates
of Ck. However

sinh η(t) =

√
1 + cosh2 η(t) (3.30)

=

√√√√1 +

n+1∏
k=1

cosh2 c(tk − tk−1)

≥
n+1∏
k=1

sinh c(tk − tk−1)
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and this shows that the quantity
∏n+1
k=1 sinh c(tk−tk−1) represents a lower bound

of the radius of the circle Ct.

Theorem 3.4. The functions

Jn(t) =

∫ t

0

dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtn

n+1∏
k=1

sinh c(tk − tk−1), (3.31)

where t0 = 0, tn+1 = t > 0, and n ≥ 1, take the form

Jn(t) =
t2n+1cn+1

n!

∞∑
r=0

(n+ r)!

r!

(ct)2r

(2r + 2n+ 1)!
, (3.32)

where J0(t) = sinh ct.

Proof
We first note that the functions Jn(t), n ≥ 1, t > 0 satisfy the difference-
differential equations

d2

dt2
Jn = cJn−1 + c2Jn, n ≥ 1, t > 0. (3.33)

Since

d

dt
Jn = c

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

sinh c(tk − tk−1) cosh c(t− tn), (3.34)

we have that

d2

dt2
Jn = c

∫ t

0

dt1 · · ·
∫ t

tn−2

dtn−1

n∏
k=1

sinh c(tk − tk−1)

+ c2
∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n+1∏
k=1

sinh c(tk − tk−1)

= cJn−1 + c2Jn. (3.35)

From (3.33), we have that the generating function

G(s, t) =

∞∑
n=0

snJn (3.36)

satisfies the differential equation

d2

dt2
G = c(s+ c)G. (3.37)

In fact, by (3.33), we have

∞∑
n=0

sn
d2

dt2
Jn = cs

∞∑
n=0

sn−1Jn−1 + c2
∞∑
n=0

snJn (3.38)

and this easily yields (3.37). Considering that the general solution to (3.37) is

G(s, t) = Aet
√
c(s+c) + Be−t

√
c(s+c) (3.39)

13



and that G(s, t) satisfies the initial conditions{
G(s, 0) = 0,
d
dtG(s, t)

∣∣
t=0

= c,
(3.40)

it follows that

G(s, t) =

√
c√

s+ c
sinh t

√
c(s+ c). (3.41)

By expanding the sinh function in (3.41) we obtain that

G(s, t) =

√
c

s+ c

∞∑
k=0

(t
√
c(s+ c))2k+1

(2k + 1)!
=

∞∑
k=0

t2k+1ck+1(s+ c)k

(2k + 1)!

=

∞∑
k=0

k∑
j=0

(
k

j

)
sjck−j

t2k+1ck+1

(2k + 1)!
=

∞∑
j=0

sj


∞∑
k=j

(
k

j

)
ck−j

t2k+1ck+1

(2k + 1)!


=

∞∑
j=0

sj

{
t2j+1cj+1

j!

∞∑
r=0

(j + r)!

r!

(ct)2r

(2r + 2j + 1)!

}
(3.42)

and, in view of (3.36), formula (3.32) appears. �

Remark 3.4. We consider the quantity

∞∑
n=0

n!

tn
Jn(t)Pr{N(t) = n} = e−λt

∞∑
n=0

λnJn(t) = e−λtG(λ, t) (3.43)

= e−λt
√
c√

λ+ c
sinh t

√
c(λ+ c)

which represents a lower bound for mean values of the radius of the circle C of
points with equal hyperbolic distance from the origin at time t. We note that
the bound (3.43) increases if

c2 + cλ− λ2 > 0. (3.44)

For large values of λ the radius of the circle C tends to decrease because the
particle often changes direction and hardly leaves the starting point O.

4 About the Higher Moments of the Hyperbolic
Distance

In this section we study the conditional and unconditional higher moments of
the hyperbolic distance η(t). Our first results concern the derivation of the
equations satisfied by the second-order moments

Mn(t) = E{cosh2 η(t)|N(t) = n} (4.1)

=
n!

tn

∫ t

0

dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtn

n+1∏
k=1

cosh2 c(tk − tk−1)

=
n!

tn
Un(t),
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where

Un(t) =

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n+1∏
k=1

cosh2 c(tk − tk−1), (4.2)

and by

M(t) = E{cosh2 η(t)} (4.3)

=

∞∑
n=0

E{cosh2 η(t)|N(t) = n}Pr{N(t) = n}

= e−λt
∞∑
n=0

λnUn(t).

At first, we state the following results concerning the evaluation of the integrals
Un(t), n ≥ 1.

Lemma 4.1. The functions

Un(t) =

∫ t

0

dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtn

n+1∏
k=1

cosh2 c(tk − tk−1), (4.4)

with t0 = 0 and tn+1 = t, satisfy the following third-order difference-differential
equations

d3

dt3
Un =

d2

dt2
Un−1 + 4c2

d

dt
Un − 2c2Un−1, (4.5)

where t > 0, n ≥ 1, and U0(t) = cosh2 ct.

Proof
We first note that

d

dt
Un (4.6)

=

∫ t

0

dt1 · · ·
∫ t

tn−2

dtn−1

n∏
k=1

cosh2 c(tk − tk−1)

+2c

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

cosh2 c(tk − tk−1) cosh c(t− tn) sinh c(t− tn)

= Un−1

+2c

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

cosh2 c(tk − tk−1) cosh c(t− tn) sinh c(t− tn).

15



A further derivation yields

d2

dt2
Un (4.7)

=
d

dt
Un−1 + 2c2

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n+1∏
k=1

cosh2 c(tk − tk−1)

+2c2
∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

cosh2 c(tk − tk−1) sinh2 c(t− tn)

=
d

dt
Un−1 + 2c2Un

+2c2
∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

cosh2 c(tk − tk−1) sinh2 c(t− tn).

Since it is not possible to express the integral in (4.7) in terms of Un and its first
two derivatives, a further derivation is necessary, that, in view of (4.6), leads to
the following third-order difference-differential equation

d3

dt3
Un =

d2

dt2
Un−1 + 2c2

d

dt
Un (4.8)

+ 22c3
∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

cosh2 c(tk − tk−1)

· sinh c(t− tn) cosh c(t− tn)

=
d2

dt2
Un−1 + 2c2

d

dt
Un + 2c2

d

dt
Un − 2c2Un−1.

�

In view of Lemma 4.1 we can prove also the following:

Theorem 4.2. The function M(t) = E{cosh2 η(t)} satisfies the third-order
linear differential equation

d3

dt3
M(t) = −2λ

d2

dt2
M(t) + (4c2 − λ2)

d

dt
M(t) + 2c2λM(t), (4.9)

with initial conditions 
M(0) = 1,
d
dtM(t)

∣∣
t=0

= 0,
d2

dt2M(t)
∣∣∣
t=0

= 2c2.
(4.10)

Proof
By multiplying both members of (4.5) by λn and summing up we have that

d3

dt3

∞∑
n=0

λnUn = λ
d2

dt2

∞∑
n=1

λn−1Un−1 + 4c2
d

dt

∞∑
n=0

λnUn

− 2c2λ

∞∑
n=1

λn−1Un−1, (4.11)
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and also

d3

dt3
(
eλtM(t)

)
= λ

d2

dt2
(
eλtM(t)

)
+ 4c2

d

dt

(
eλtM(t)

)
− 2c2λeλtM(t), (4.12)

so that, after some manipulations, equation (4.9) appears.
While the first condition in (4.10) is obvious, the second one can be inferred

from (4.6) as follows

d

dt

(
eλtM(t)

)
=

d

dt

∞∑
n=0

λnUn =

∞∑
n=0

λnUn−1 (4.13)

+ 2c

∞∑
n=0

λn
∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

cosh2 c(tk − tk−1)

· cosh c(t− tn) sinh c(t− tn)

and also

λeλtM(t) + eλt
d

dt
M(t) = λeλtM(t)

+ 2c

∞∑
n=0

λn
∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

cosh2 c(tk − tk−1)

· cosh c(t− tn) sinh c(t− tn),

i.e.,
d

dt
M(t)

∣∣∣∣
t=0

= 0 (4.14)

since 2c cosh ct sinh ct|t=0=0. By differentiating twice (4.3) and by taking into
account (4.7), we have that

λ2eλtM + 2λeλt
d

dt
M + eλt

d2

dt2
M = eλt

(
λ2M + λ

d

dt
M

)
+ 2c2eλtM (4.15)

+ 2c2
∞∑
n=0

λn
∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

cosh2 c(tk − tk−1) sinh2 c(t− tn),

and therefore, by considering (4.14), we obtain the second condition of (4.10).
�

In order to solve the differential equation (4.9) we need to first solve the
related third-order algebraic equation

r3 + 2λr2 − (4c2 − λ2)r − 2c2λ = 0 (4.16)

which can be reduced to the standard form by means of the change of variable

s = r +
2λ

3
. (4.17)

This leads to

s3 − s
{
λ2

3
+ 4c2

}
+

2λ

3

{
c2 − λ2

32

}
= 0 (4.18)
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to which the well-known Cardano formula can be applied. In fact, for the third-
order equation

s3 + ps+ q = 0, (4.19)

the solution can be expressed as

s =
3

√
−q

2
+

√
p3

33
+
q2

22
+

3

√
−q

2
−
√
p3

33
+
q2

22
. (4.20)

By comparing (4.18) and (4.19) it results

p3

33
+
q2

22
= − c

2

33

[
(23c2 + λ2)2 + λ2(λ2 − 3c2)

]
, (4.21)

− q

2
= −λ

3

(
c2 − λ2

32

)
. (4.22)

The simplest case is that of c = λ
3 for which the solutions of (4.18) are s1 = 0,

s2 =
√

7c and s3 = −
√

7c. After some calculations we get that

E{cosh2 η(t)} =
e−2ct

7

{
1 + 6 cosh

√
7ct+ 2

√
7 sinh

√
7ct
}
. (4.23)

Following Lemma (4.1) we can prove a more general result:

Theorem 4.3. The functions

Km
n (t) =

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n+1∏
k=1

coshm c(tk − tk−1), (4.24)

with t0 = 0 and tn+1 = t, are solutions of difference-differential equations of
order m+ 1.

Proof
For m = 1 and m = 2 this statement has already been shown above since, in
Theorem 3.2 and Theorem 4.2, we have obtained that

d2

dt2
K1
n + λ

d

dt
K1
n−1 − c2K1

n = 0, (4.25)

and
d3

dt3
K2
n −

d2

dt2
K2
n−1 − 4c2

d

dt
K2
n + 2c2K2

n−1 = 0. (4.26)

We easily see that

d

dt
Km
n = Km

n−1 (4.27)

+ cm

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

coshm c(tk − tk−1)

· coshm−1 c(t− tn) sinh c(t− tn),
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and

d2

dt2
Km
n =

d

dt
Km
n−1 + c2mKm

n (4.28)

+ c2m(m− 1)

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

coshm c(tk − tk−1)

· coshm−2 c(t− tn) sinh2 c(t− tn).

In view of (4.27) it also results

d3

dt3
Km
n =

d2

dt2
Km
n−1 + c2m

d

dt
Km
n + 2c2(m− 1)

{
d

dt
Km
n −Km

n−1

}
+ c3m(m− 1)(m− 2)

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

coshm c(tk − tk−1)

· coshm−3 c(t− tn) sinh3 c(t− tn). (4.29)

After (m− 1) derivatives the following equation is obtained

dm−1

dtm−1
Km
n =

dm−2

dtm−2
Km
n−1 + c2m

dm−3

dtm−3
Km
n + · · ·+

+cm−1m(m− 1) · · · (m− (m− 1) + 1)

·
∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

coshm c(tk − tk−1)

· cosh c(t− tn) sinhm−1 c(t− tn), (4.30)

and the next derivative gives

dm

dtm
Km
n =

dm−1

dtm−1
Km
n−1 + c2m

dm−2

dtm−2
Km
n + · · ·+

+ cmm(m− 1) · · · 2

·
∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

coshm c(tk − tk−1) sinhm c(t− tn)

+ cmm(m− 1) · · · 2 · (m− 1)

·
∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

coshm c(tk − tk−1)

· cosh2 c(t− tn) sinhm−2 c(t− tn). (4.31)

The second integral of (4.31) can be expressed in terms of the derivatives of
order (m− 2) and lower.
By further differentiating equation (4.31) it turns out that, because of (4.30),
the derivative of the first integral in (4.31) can be expressed in terms of the
derivatives of order (m− 1) and lower. The theorem is thus proved. �

Likewise Theorem 3.4, the following theorem holds:
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Theorem 4.4. The function

Vn(t) =

∫ t

0

dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtn

n+1∏
k=1

sinh2 c(tk − tk−1) (4.32)

with t0 = 0 and tn+1 = t, satisfies the third-order difference-differential equation

d3

dt3
Vn = 4c2

d

dt
Vn + 2c2Vn−1 (4.33)

where t > 0, n ≥ 1, and V0(t) = sinh2 ct.

Proof
We first note that

d

dt
Vn = 2c

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

sinh2 c(tk − tk−1) sinh c(t− tn) cosh c(t− tn)

(4.34)
and therefore

d2

dt2
Vn = 2c2Vn + 2c2

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

sinh2 c(tk − tk−1) cosh2 c(t− tn),

(4.35)
and

d3

dt3
Vn = 2c2

d

dt
Vn + 2c2Vn−1

+ 4c3
∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
k=1

sinh2 c(tk − tk−1)

· sinh c(t− tn) cosh c(t− tn). (4.36)

Finally, by substituting (4.34) in (4.36), we obtain

d3

dt3
Vn = 4c2

d

dt
Vn + 2c2Vn−1. (4.37)

�

5 Motions with Jumps Backwards to the Start-
ing Point

We here examine the planar motion dealt with so far assuming now that, at
the instants of changes of direction, the particle can return to the starting point
and commence its motion from scratch.

The new motion and the original one are governed by the same Poisson
process so that changes of direction occur simultaneously in the original as well
as in the new motion starting afresh from the origin. This implies that the arcs
of the original sample path and those of the new trajectories have the same
hyperbolic length. However, the angles formed by successive segments differ in
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order to make the hyperbolic Pythagorean theorem applicable to the trajectories
of the new motion.

In order to make our description clearer, we consider the case where, in the
interval (0, t), N(t) = n Poisson events (n ≥ 1) occur and we assume that the
jump to the origin happens at the first change of direction, i.e., at the instant
t1. The instants of changes of direction for the new motion are

t′k = tk+1 − t1 (5.1)

where k = 0, · · · , n with t′0 = 0 and t′n = t − t1 and the hyperbolic lengths of
the corresponding arcs are

c(t′k − t′k−1) = c(tk+1 − tk). (5.2)

Therefore, at the instant t, the hyperbolic distance from the origin of the particle
performing the motion which has jumped back to O at time t1 is

n∏
k=1

cosh c(t′k − t′k−1) =

n∏
k=1

cosh c(tk+1 − tk)

=

n+1∏
k=2

cosh c(tk − tk−1) (5.3)

where 0 = t′0 < t′1 < · · · < t′n = t− t1 and tk+1 = t′k + t1. Formula (5.3) shows
that the new motion has an hyperbolic distance equal to that of the original
motion where the first step has been deleted. However, the distance between
the position Pt and the origin O of the moving particle which jumped back to
O after having reached the position P1, is different from the distance of Pt from
P1 since the angle between successive steps must be readjusted in order to apply
the hyperbolic Pythagorean theorem.

If we denote by T1 the random instant of the return to the starting point
(occurring at the first Poisson event), we have that

E{cosh η1(t)I{N(t)≥1}|N(t) = n} (5.4)

= E{cosh η(t− T1)I{T1≤t}|N(t) = n}

=

∫ t

0

E{cosh η(t− T1)I{T1∈dt1}|N(t) = n}dt1

=

∫ t

0

E{cosh η(t− T1)|T1 = t1, N(t) = n}Pr{T1 ∈ dt1|N(t) = n}dt1.

By observing that

E{cosh η(t− T1)|T1 = t1, N(t) = n} = E{cosh η(t− t1)|N(t) = n− 1}

=
(n− 1)!

(t− t1)n−1
In−1(t− t1), (5.5)

and that

Pr{T1 ∈ dt1|N(t) = n} =
n!

tn
(t− t1)n−1

(n− 1)!
dt1 (5.6)

with 0 < t1 < t, formula (5.4) becomes

E{cosh η1(t)I{N(t)≥1}|N(t) = n} =
n!

tn

∫ t

0

In−1(t− t1)dt1. (5.7)
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From (5.7) we have that the mean hyperbolic distance for the particle which
returns to O at time T1 has the form:

E{cosh η1(t)|N(t) ≥ 1} =
e−λt

Pr{N(t) ≥ 1}

∞∑
n=1

λn
∫ t

0

In−1(t− t1)dt1

=
λe−λt

Pr{N(t) ≥ 1}

∫ t

0

eλ(t−t1)E(t− t1)dt1 (5.8)

We give here a general expression for the mean value of the hyperbolic dis-
tance of a particle which returns to the origin for the last time at the k-th
Poisson event Tk. We shall denote the distance by the following equivalent no-
tation η(t − Tk) = ηk(t) where the first expression underlines that the particle
starts from scratch at time Tk and then moves away for the remaining interval of
length t−Tk. In the general case we have the result stated in the next theorem:

Theorem 5.1. If N(t) ≥ k, then the mean value of the hyperbolic distance ηk
is equal to

E{cosh ηk(t)|N(t) ≥ k} (5.9)

=
λke−λt

Pr{N(t) ≥ k}

∫ t

0

dt1 · · ·
∫ t

tk−1

eλ(t−tk)E(t− tk)dtk

=
λke−λt

Pr{N(t) ≥ k}(k − 1)!

∫ t

0

eλ(t−tk)tk−1
k E(t− tk)dtk,

where E(t) is given by (3.10).

Proof
We start by observing that

E{cosh ηk(t)|N(t) ≥ k} (5.10)

=

∞∑
n=k

E{cosh ηk(t)I{N(t)=n}|N(t) ≥ k}

=

∞∑
n=k

E{cosh ηk(t)I{N(t)≥k}|N(t) = n}Pr{N(t) = n}
Pr{N(t) ≥ k}

=

∞∑
n=k

E{cosh ηk(t)I{N(t)≥k}|N(t) = n}Pr{N(t) = n|N(t) ≥ k}.

Since Tk = inf{t : N(t) = k}, the conditional mean value inside the sum can be
developed as follows

E{cosh ηk(t)I{N(t)≥k}|N(t) = n} (5.11)

= E{cosh η(t− Tk)I{Tk≤t}|N(t) = n}

=

∫ t

0

E{cosh η(t− tk)I{Tk∈dtk}|N(t) = n}dtk

=

∫ t

0

E{cosh η(t− tk)|Tk = tk, N(t) = n}Pr{Tk ∈ dtk|N(t) = n}dtk.
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In view of (3.1) we have that

E{cosh η(t− Tk)|Tk = tk, N(t) = n} = E{cosh η(t− tk)|N(t− tk) = n− k}

=
(n− k)!

(t− tk)n−k
In−k(t− tk), (5.12)

and on the base of well-known properties of the Poisson process we have that

Pr{Tk ∈ dtk|N(t) = n} =
n!

tn
(t− tk)n−k

(n− k)!

tk−1
k

(k − 1)!
dtk (5.13)

where 0 < tk < t. In conclusion we have that

E{cosh ηk(t)I{N(t)≥k}|N(t) = n} =
n!

tn
1

(k − 1)!

∫ t

0

tk−1
k In−k(t− tk)dtk (5.14)

and, from this and (5.10), it follows that

E{cosh ηk(t)|N(t) ≥ k} (5.15)

=

∞∑
n=k

n!

tn(k − 1)!

∫ t

0

tk−1
k In−k(t− tk)dtk

e−λt(λt)n

n!Pr{N(t) ≥ k}

=
λke−λt

Pr{N(t) ≥ k}(k − 1)!

∫ t

0

eλ(t−tk)tk−1
k E(t− tk)dtk.

Finally, in view of Cauchy formula of multiple integrals, we obtain that

λke−λt

Pr{N(t) ≥ k}(k − 1)!

∫ t

0

eλ(t−tk)tk−1
k E(t− tk)dtk (5.16)

=
λke−λt

Pr{N(t) ≥ k}

∫ t

0

dt1 · · ·
∫ t

tk−1

eλ(t−tk)E(t− tk)dtk.

�

Theorem 5.2. The mean of the hyperbolic distance of the moving particle re-
turning to the origin at the k-th change of direction is

E{cosh ηk(t)|N(t) ≥ k}

=
λke−λt√

λ2 + 4c2Pr{N(t) ≥ k}

{
eAt

Ak−1
− eBt

Bk−1
+

k−1∑
i=1

(
1

Bi
− 1

Ai

)
tk−i−1

(k − i− 1)!

}

where

A =
1

2
(λ+

√
λ2 + 4c2), B =

1

2
(λ−

√
λ2 + 4c2). (5.17)

For k = 1, the sum in (5.17) is intended to be zero.

Proof
We can prove (5.17) by applying both formulas in (5.9). We start our proof by
employing the first one:

E{cosh ηk(t)|N(t) ≥ k} (5.18)

=
λke−λt

Pr{N(t) ≥ k}

∫ t

0

dt1 · · ·
∫ t

tk−1

eλ(t−tk)E(t− tk)dtk.
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Therefore, in view of (3.17), formula (5.18) becomes

E{cosh ηk(t)|N(t) ≥ k}

=
λke−λt

Pr{N(t) ≥ k}

∫ t

0

dt1 · · ·
∫ t

tk−1

eλ(t−tk)

{
e−

λ
2 (t−tk)

2

[(
λ+
√
λ2 + 4c2√

λ2 + 4c2

)
·

e
(t−tk)

2

√
λ2+4c2 +

(
−λ+

√
λ2 + 4c2√

λ2 + 4c2

)
e−

(t−tk)

2

√
λ2+4c2

]}
dtk.

By introducing A and B as in (5.17), we can easily determine the k-fold integral

E{cosh ηk(t)|N(t) ≥ k} (5.19)

=
λke−λt√

λ2 + 4c2Pr{N(t) ≥ k}

∫ t

0

dt1 · · ·
∫ t

tk−1

{
AeA(t−tk) −BeB(t−tk)

}
dtk

=
λke−λt√

λ2 + 4c2Pr{N(t) ≥ k}

∫ t

0

dt1 · · ·
∫ t

tk−2

{
eA(t−tk−1) − eB(t−tk−1)

}
dtk−1

=
λke−λt√

λ2 + 4c2Pr{N(t) ≥ k}

∫ t

0

dt1 · · ·
∫ t

tk−3

{
eA(t−tk−2)

A
− eB(t−tk−2)

B
+

1

B
− 1

A

}
dtk−2.

At the j-th stage the integral becomes

E{cosh ηk(t)|N(t) ≥ k}

=
λke−λt√

λ2 + 4c2Pr{N(t) ≥ k}

∫ t

0

dt1 · · ·
∫ t

tk−j−1

{
eA(t−tk−j)

Aj−1
− eB(t−tk−j)

Bj−1

+

j−1∑
i=1

(
1

Bi
− 1

Ai

)
(t− tk−j)j−i−1

(j − i− 1)!

}
.

At the k − 1-th stage the integral becomes

E{cosh ηk(t)|N(t) ≥ k} (5.20)

=
λke−λt√

λ2 + 4c2Pr{N(t) ≥ k}

∫ t

0

dt1

{
eA(t−t1)

Ak−2
− eB(t−t1)

Bk−2

+

k−2∑
i=1

(
1

Bi
− 1

Ai

)
(t− t1)k−i−2

(k − i− 2)!

}
.

At the k-th integration we obtain formula (5.17).
By means of the second formula in (5.9) and by repeated integrations by

parts we can obtain again result (5.17). �

Remark 5.1. For k = 1 we have that

E{cosh η1(t)|N(t) ≥ 1} =
λ√

λ2 + 4c2
sinh t

2

√
λ2 + 4c2

sinh λt
2

. (5.21)

It is clear that the mean value (5.21) tends to infinity as t→∞. Furthermore,

if λ, c → ∞ (so that c2

λ → 1) then E{cosh η1(t)I{N(t)≥1}} → et. It can also be

24



checked that if c = 0 then E{cosh η1(t)I{N(t)≥1}} = 1, since the particle never
leaves the starting point.

For k = 2 formula (5.17) yields

E{cosh η2(t)|N(t) ≥ 2} =
λ2e−

λt
2

c2Pr{N(t) ≥ 2}

(
cosh

t

2

√
λ2 + 4c2

− λ√
λ2 + 4c2

sinh
t

2

√
λ2 + 4c2 − e−λt2

)
=

λ2

c2Pr{N(t) ≥ 2}
[E{cosh η(t)} (5.22)

− Pr{N(t) ≥ 1}E{cosh η1(t)|N(t) ≥ 1} − e−λt
]

Since

lim
c→0

1

c2

{
cosh

t

2

√
λ2 + 4c2 − λ√

λ2 + 4c2
sinh

t

2

√
λ2 + 4c2 − e−λt2

}
=
e
λt
2

λ2
Pr{N(t) ≥ 2}, (5.23)

we have, as expected, that

lim
c→0

E{cosh η2(t)|N(t) ≥ 2} = 1. (5.24)

Also, when λ→∞, we obtain the same limit as in (5.24). The expression (5.22)
suggests the following decomposition

E{cosh η(t)} =
c2

λ2
Pr{N(t) ≥ 2}E{cosh η2(t)|N(t) ≥ 2} (5.25)

+ Pr{N(t) ≥ 1}E{cosh η1(t)|N(t) ≥ 1}+ e−λt

=
c2

λ2
E{cosh η2(t)I{N(t)≥2}}+ E{cosh η1(t)I{N(t)≥1}}+ e−λt

Remark 5.2. The result in (5.9) appears as the mean hyperbolic distance
of a motion starting from the origin and running, without returns, until time
t−Tk, where Tk has a truncated Gamma distribution (Erlang distribution) with
density

Pr{Tk ∈ dtk} =
λke−λtktk−1

k

(k − 1)!Pr{Tk ≤ t}
dtk 0 < tk < t. (5.26)

In other words we can write (5.9) as

E{cosh ηk(t)|N(t) ≥ k} = E{E{cosh η(t− Tk)}} (5.27)

=

∫ t

0

E{cosh η(t− Tk)}Pr{Tk ∈ dtk}.

Furthermore the expression (5.9) contains a fractional integral of order k for the
function g(s) = eλsE(s)

E{cosh ηk(t)|N(t) ≥ k} (5.28)

=
λk∑∞

j=k
(λt)j

j!

{
1

Γ(k)

∫ t

0

(t− s)k−1eλsE(s)ds

}
.
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If the mean value (5.27) is taken with respect to

Pr{Tν ∈ ds} =
λνe−λssν−1

Γ(ν)Pr{Tν ≤ t}
ds 0 < s < t, (5.29)

then we have that

E{E{cosh η(t− Tν)}} (5.30)

=
λνe−λt

Pr{Tν ≤ t}

{
1

Γ(ν)

∫ t

0

(t− s)ν−1eλsE(s)ds

}
that also contains a fractional integral of order ν in the sense of Riemann-
Liouville. The expression (5.30) can be interpreted as the mean hyperbolic
distance at time t where the particle can jump back to the origin at an arbitrary
instant (different from the instants of change of direction).

6 Motion at Finite Velocity on the Surface of a
Three-dimensional Sphere

Let P0 be a point on the equator of a three-dimensional sphere. Let us assume
that the particle starts moving from P0 along the equator in one of the two
possible directions (clockwise or counter-clockwise) with velocity c.

At the first Poisson event (occurring at time T1) it starts moving on the
meridian joining the north pole PN with the position reached at time T1 (de-
noted by P1) along one of the two possible directions (see Figure 4).

At the second Poisson event the particle is located at P2 and its distance
from the starting point P0 is the length of the hypothenuse of a right spherical
triangle with cathetus P0P1 and P1P2; the hypothenuse belongs to the equatorial
circumference through P0 and P2.

Now the particle continues its motion (in one of the two possible directions)
along the equatorial circumference orthogonal to the hypothenuse through P0

and P2 until the third Poisson event occurs.
In general, the distance d(P0Pt) of the point Pt from the origin P0 is the

length of the shortest arc of the equatorial circumference through P0 and Pt and
therefore it takes values in the interval [0, π]. Counter-clockwise motions cover
the arcs in [−π, 0] so that the distance is also defined in [0, π] or in [−π/2, π/2]
with a shift that avoids negative values for the cosine.

By means of the spherical Pythagorean relationship we have that the Eu-
clidean distance d(P0P2) satisfies

cos d(P0P2) = cos d(P0P1) cos d(P1P2) (6.1)

and, after three displacements,

cos d(P0P3) = cos d(P0P2) cos d(P2P3)

= cos d(P0P1) cos d(P1P2) cos d(P2P3). (6.2)

After n displacements the position Pt on the sphere at time t is given by

cos d(P0Pt) =

n∏
k=1

cos d(PkPk−1) cos d(PnPt). (6.3)
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P0 P1

P2

Pt

PN

Figure 4: Motion on the surface of a three-dimensional sphere.

Since d(PkPk−1) is represented by the amplitude of the arc run in the interval
(tk, tk−1), it results

d(PkPk−1) = c(tk − tk−1).

The mean value E{cos d(P0Pt)|N(t) = n} is given by

En(t) = E{cos d(P0Pt)|N(t) = n} (6.4)

=
n!

tn

∫ t

0

dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtn

n+1∏
k=1

cos c(tk − tk−1)

=
n!

tn
Hn(t),

where t0 = 0, tn+1 = t, and

Hn(t) =

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n+1∏
k=1

cos c(tk − tk−1). (6.5)

The mean value E{cos d(P0Pt)} is given by

E(t) = E{cos d(P0Pt)} (6.6)

=

∞∑
n=0

E{cos d(P0Pt)|N(t) = n}Pr{N(t) = n}

= e−λt
∞∑
n=0

λnHn(t).

By steps similar to those of the hyperbolic case we have that Hn(t), t ≥ 0,
satisfies the difference-differential equation

d2

dt2
Hn =

d

dt
Hn−1 − c2Hn, (6.7)

where H0(t) = cos ct, and therefore we can prove the following:

Theorem 6.1. The mean value E(t) = E{cos d(P0Pt)} satisfies

d2

dt2
E = −λ d

dt
E − c2E (6.8)
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with initial conditions {
E(0) = 1,
d
dtE(t)

∣∣
t=0

= 0,
(6.9)

and has the form

E(t) =


e−

λt
2

[
cosh t

2

√
λ2 − 4c2 + λ√

λ2−4c2
sinh t

2

√
λ2 − 4c2

]
0 < 2c < λ,

e−
λt
2

[
1 + λt

2

]
λ = 2c > 0,

e−
λt
2

[
cos t2

√
4c2 − λ2 + λ√

4c2−λ2
sin t

2

√
4c2 − λ2

]
2c > λ > 0.

(6.10)

Proof
The solution to the problem (6.8)-(6.9) is given by

E(t) =
e−

λt
2

2

[(
e
t
2

√
λ2−4c2 + e−

t
2

√
λ2−4c2

)
+

λ√
λ2 − 4c2

(
e
t
2

√
λ2−4c2 − e− t2

√
λ2−4c2

)]
, (6.11)

so that (6.10) emerges. �

For large values of λ the first expression furnishes E(t) ∼ 1 and therefore
the particle hardly leaves the starting point.
If λ

2 < c, the mean value exhibits an oscillating behavior; in particular, the
oscillations decrease as time goes on, and this means that the particle moves
further and further reaching in the limit the poles of the sphere.

Remark 6.1. By assuming that c is replaced by ic in (6.10) we formally extract
from the first and the third expression in (6.10) the hyperbolic mean distance
(3.10). This is because the space H+

2 can be regarded as a sphere with imaginary
radius. Clearly the intermediate case λ = 2c has no correspondence for the
motion on H+

2 because the Poisson rate must be a real positive number.
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