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ABSTRACT. We explicitly calculate some Gromov–Witten correspondences de-
termined by maps of labeled curves of genus zero to the moduli spaces of labeled
curves of genus zero. We consider these calculations as the first step towards study-
ing the self–referential nature of motivic quantum cohomology.

0. Introduction: Motives and Quantum Cohomology

0.1. A summary. Let V ark be the category of smooth complete algebaric
varieties defined over a field k.

The category of classical motives MotKk , with coefficients in a Q–algebra K,
is the target of a functor h : V aropk → MotKk which, in the vision of Alexandre
Grothendieck, ought to be a universal cohomology theory, with values in a tensor
K–linear category.

Morphisms X → Y in MotKk are represented by classes of correspondences,
algebraic cycles on X × Y with coefficients in K. Depending on the equivalence
relation, imposed on these cycles, one could consider Chow motives, numerical
motives, etc.

Besides objects h(V ) for V ∈ V ark, the category MotKk contains their direct
summands, (“pieces”) and their twists by Tate’s motive. Formally adding these
objects one turns the category of motives into a Tannakian category. One can
then apply to it the philosophy of motivic fundamental group. Ideally, all inherent
structures of cohomology objects can be encoded/replaced by the representations
of the respective motivic fundamental group.

What is special about “total motives” h(V ), as opposed to pieces and twists?

For example, h(V )’s bring with them a natural structure of commutative algebras
in MotKk . It is not determined only by h(V ): isomorphic motives h(V )’s may well
have different multiplications; but of course, this classical multiplication is motivic
in the sense that it is induced by the diagonal map V → V ×V in V ark and by the
class of its graph in MotKk .

The advent of quantum cohomology from physics to algebraic geometry opened
our eyes to the fact that classical cohomology spaces of algebraic varieties, say, over
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C, possess an incomparably richer structure: they (or rather their tensor powers)
are acted upon by cohomology of moduli spaces of pointed curves H∗(Mg,n), much
as Steenrod operations act in topological situation. From the physical perspective,
these operations encode “quantum corrections to the classical multiplication”.

Grothendieck’s vision however turned out prophetic : this new structure is mo-
tivic as well in the same sense: it is induced by canonical Chow correspondences,
Gromov–Witten invariants IVg,n,β in A∗(Mg,n×V

n) indexed by effective classes β in

A1(V ). This was conjectured in [KoMa1], worked out in more detail in [BehMa], and
finally proved in [Beh1], where the virtual fundamental classes in the Chow groups
of spaces of stable maps were constructed by algebraic–geometric techniques.

This construction allowed K. Behrend to establish a list of universal identities
between the Gromov–Witten invariants that were conjectured earlier.

Taken together, these identities imply that for each total motive h(V ), the infinite
sum of its copies indexed by the numerical classes β of effective curves on V possesses
the canonical structure of an algebra over the cyclic modular operad HM:

HM(n) :=
∐

g

h(Mg,n)

This is the motivic core of quantum cohomology.

However, this discovery also stressed an inherent tension between the initial
Grothendieck vision and the highly non–Tannakian character of the quantum co-
homology expressed in the following observations.

First, these structures of HM–algebras are not functorial in any naive sense
wrt morphisms in V ark (except isomorphisms). Notice that the classical multi-
plication is functorial wrt morphisms in V ark; quantum corrections destroy this.
However, as was shown in [LeLW], quantum multiplication is functorial wrt at least
certain isomorphisms in MotKk (flops) that do not agree with classical multiplica-
tion: quantum corrections exactly compensate classical discrepancies. This is a
remarkable fact suggesting that motivic functorality might be an important hidden
phenomenon.

Second, being total motives, h(Mg,n) themselves have quantum cohomology, that
is, define algebras over HM.

One aim of this note is to draw attention to this self–referentiality and to start
studying the quantum cohomology of HM and its relation to the quantum coho-
mology action of this operad upon other total motives. Analogies with homotopy
theory, in particular, A1–homotopy formalism, might help to recognize a pattern
in algebraic geometry similar to that of iterated loop spaces.
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A warning is in order: many meaningful questions cannot be asked and answers
cannot be obtained until one extends both parts of the theory, motives and quantum
cohomology, from the category V ark to at least the category of smooth DM–stacks.
Some of the arising complications can be avoided if one restricts to the case of genus
zero quantum cohomology. We adopt this restriction in this article.

0.2. Results of this paper. This paper is our first installment to the project
whose goal is to understand the Gromov–Witten theory of moduli spaces of curves,
preferably on the motivic level, that is the level of J– and I–correspondences (cf.
[Beh3] for a nice and intutive introduction).

Specifically, the spaces M0,S (with variable S) and their products are interre-
lated by a host of natural morphisms expressing embeddings of boundary strata,
forgetting labeled points, relabeling etc: cf. a systematic description in [BehMa].

Gromov–Witten classes that we study in this paper are certain Chow correspon-
dences

I(S,Σ, β) ∈ A∗(M
Σ

0,S ×M0,Σ) (0.1)

where S, Σ are (disjoint) finite sets of labels and β runs over classes of effective
curves in A1(M0,S).

Our main motivation is the following vague

0.2.1. Guess. Classes (0.1) are “natural” in the sense that they can be func-
torially expressed through canonical morphisms in the category of moduli spaces of
labeled trees of various combinatorial types.

This guess is a natural first step to the understanding the self–referential nature
of Gromov–Witten theory in motivic algebraic geometry: the fact that components
of the basic modular operad ”are” algebras over the same operad (if one takes into
account twisting and grading by the cones of effective curves).

The main result of this paper is an explicit description, in the spirit of our guess,
of those I–correspondences of M0,S that correspond to the classes β of boundary
curves: see Theorem 4.5 in section 4.

This answers a question which is quite natural, in particular, because there
is a conjecture that boundary curve classes are generators of the Mori cone: cf.
[KeMcK], [FG], [HaT], [CT] for this and related problems.

0.3. From curves to surfaces and further on? One can imaginatively say
that quantum cohomology of V reveals hidden geometry that can be seen only when
one starts probing V by mapping curves C (“strings”) to V . A natural question
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arises, how to use, say, surfaces (“membranes”) in place of curves, and do it in
algebraic geometry rather than in symplectic or differential one.

If we expect to discover new universal motivic actions in this way, we must first
contemplate the case V= a point and pose the question:

What are analogs of moduli spaces Mg,n (or at least Mg,0) for surfaces in this
context?

The experience of stringy case indicates that these analogs must be rigid objects,
as Mg,n themselves: see [Hac].

In fact, moduli spaces are only rarely rigid, but according to a brave guess of
M. Kapranov, if one starts with an object X = X(0) of dimension n, produces
its moduli space of deformations X(1), then moduli space X(2) of deformations of
X(1) etc., then X(n) must be rigid. Quoting [Hac], who summarizes philosophy
expressed in an unpublished manuscript by M. Kapranov, “one thinks of X(1) as
H1 of a sheaf of non–abelian groups on X(0). Indeed, at least the tangent space to
X(1) at [X ] is identied with H1(TX), where TX is the tangent sheaf, the sheaf of
first order innitesimal automorphisms of X . Then one regards X(m) as a kind of
non–AbelianHm, and the analogy with the usual definition of AbelianHm suggests
the statement above.”

Extending this idea, one might guess that an imaginary “membrane quantum
cohomology” should define motivic actions of rigid (iterated) moduli spaces of sur-
faces (endowed with cycles to keep track of incidence conditions) upon certain total
(ind–)motives. One motivation of this note is to make some propaganda for this
idea.

1. Gromov–Witten correspondences

We start with background terminology and notation.

1.1. Moduli stacks. We will consider schemes over a fixed field k of charac-
teristic zero.

Any schemeW “is the same as” the contravariant functor of its T–pointsW (T ) =
Hom(T,W ) with values in Sets.

More generally, a stack (of groupoids) F “is the same as” the class of its T–points
FT , where T runs over schemes. The main new element of the situation is that
each FT itself and their union F over “all” T ’s are not simply sets or classes, but
categories. Moreover, they form a sheaf on the étale (or fppf) site of schemes.

So we will think about individual objects of FT as schematic T–points of F ,
whereas nontrivial morphisms between them are functors subject to a list of re-
strictions specific for stacks. Below we recall this list informally.
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As in [Ma], V.3, we will imagine objects of FT as “families (of something) over
T”. In practical terms, one family is usually given by a diagram of schemes and
morphisms, in which a part of the data remain fixed, including its “ base” T , and
the rest is subject to a list of explicit restrictions.

For example, if F is represented by a scheme W , then “one family over T (of
points of W )” is a very simple diagram T →W .

The following requirements must be satisfied.

(i) Each object of F belongs to an FT for a unique scheme T , and the map
b : F → Sch, sending a family to its base, is a functor. Groupoid property requires
that if b(f) = idT , then f is an isomorphism between two respective T–points.

(ii) With respect to morphisms ϕ : T1 → T2, FT must be contravariant: we
must be given “base change” functors ϕ∗ : FT2

→ FT1
, together with functor

isomorphisms (ϕ ◦ ψ)∗ → ψ∗ ◦ ϕ∗ and associativity diagrams for them.

Moreover, if F ∈ ObFT2
, then the lifted family ϕ∗(F ) ∈ ObFT1

must be endowed
with a canonical morphism F → ϕ∗(F ) lifting ϕ and satisfying a set of conditions.

For example, the base change for T2 →W is simply the composition T1 → T2 →
W .

(iii) F is a stack, if each T–family is uniquely defined by its restrictions to an
étale (or fppf) covering of T and the standard descent data. The same must be
true about morphisms of T–families etc.

(iv) Morphisms of stacks are functors between the respective categories of fami-
lies, identical on bases of families.

Thus, an object F ∈ ObFT can also be treated as a stack, and as such, it is
endowed with a morphism of stacks F ⇒ F .

1.2. Families of stable maps: preliminaries. We will now describe main
classes of families and stacks with which we deal here.

First of all, fix a finite set Σ, a genus g ≥ 0, a smooth projective manifold W
over k , and an effective class β ∈ A1(W )

Then one can define a (smooth proper DM)–stack Mg,Σ(W,β).

For a k–scheme T , one object of the groupoidMg,Σ(W,β)(T ) of T–points of this
stack consists of a diagram of schemes of the following structure:
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CT
fT

//

hT

��

W

T

(1.1)

and a family of sections xj,T : T → C, j ∈ Σ, hT ◦ xj,T = idT .

They must satisfy the following conditions:

(a) CT → T and (xj,T ) constitute a flat prestable T–family of curves of genus g.

(b) fT : (CT ; (xj,T )) →W , is a stable map of class β.

For precise definitions of (pre)stability and class of the map that we use here,
see [BehMa] or [Ma].

Given such a diagram with sections, we call (W,β) its target, T its base, and the
whole setup a T–family of stable maps. Isomorphisms of families, lifting idT , must
be identical also on W . Base changes are defined in a rather evident way.

The stack Mg,Σ(W,β) is defined as the base of the universal family of this type
with given target (W,β):

Cg,Σ(W,β)
f

//

h

��

W

Mg,Σ(W,β)

(1.2)

It is endowed with sections xj : M0,Σ(W,β) → C0,Σ(W,β), j ∈ Σ.

Naturally, Cg,Σ(W,β) is a stack as well.

If W is a point, β = 0, we routinely omit the target and write simply Mg,Σ,

Cg,Σ etc.

Moreover, (1.2) produces the evaluation/stabilization diagram

Mg,Σ(W,β)
st

//

ev

��

Mg,Σ

WΣ

(1.3)

Here
ev = (evj = f ◦ xj | j ∈ Σ) : Mg,Σ(W,β) →WΣ (1.4)
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and, in case 2g + |Σ| ≥ 3, the absolute stabilization morphism st discards the map
f and stabilizes the remaining prestable family of curves

st : Mg,Σ(W,β) →Mg,Σ. (1.5)

The virtual fundamental class, or the J–class [Mg,Σ(W,β)]
virt, is a canonical

element in the Chow ring A∗(M0,Σ(W,β)):

Jg,Σ(W,β) ∈ AD(M0,Σ(W,β)) , (1.6)

where D is the virtual dimension (Chow grading degree)

(−KW , β) + |Σ|+ (dimW − 3)(1− g). (1.7)

The respective Gromov–Witten correspondence, defined for 2g + |Σ| ≥ 3, is the
proper pushforward

Ig,Σ(W,β) := (ev, st)∗(Jg,Σ(W,β)) ∈ AD(W
Σ ×Mg,Σ) (1.8)

Understanding these correspondences is the content of motivic quantum coho-
mology.

1.3. Example: g = 0, β = 0. In this case the universal family (1.2) is

W × C0,Σ

pr1
//

idW×h

��

W

W ×M0,Σ

(1.9)

with structure sections idW × xj .

The stabilization morphism is simply the projection

st = pr2 : W ×M0,Σ →M0,Σ. (1.10)

The evaluation morphism is the projection followed by the diagonal embedding
∆Σ:

ev : W ×M0,Σ →W →WΣ. (1.11)
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We have ([Beh1], p. 606):

J0,Σ(W, 0) = [M0,Σ(W, 0)] = [W ]⊗ [M0,Σ]. (1.12)

The virtual dimension (1.7) is

|Σ|+ dimW − 3 = dim (W ×M0,Σ).

Thus, finally, the Gromov–Witten correspondence is the class

I0,Σ(W, 0) = [∆Σ(W )]⊗ [M0,Σ] ∈ A∗(W
Σ ×M0,Σ). (1.13)

1.4. Strategy. In the remaining sections of this paper, we study the Gromov–
Witten correspondences of genus zero forW =M0,S, β = class of a boundary curve

in M0,S (cf. below). This is the first step of a much more ambitious program in
which all components of the stable family diagrams are allowed to be stacks, and
and in which we take for targets the stacks Mg,S and arbitrary β.

Our modest goal here allows us to basically restrict ourselves to the case of
schemes, whose geometry is already well known. However, some intermediate con-
structions require the use of stacks.

In particular , we need to understand the relevant J–classes and the diagrams

ev : M0,Σ(M0,S, β) →M
Σ

0,S, st : M0,Σ(M0,S, β) →M0,Σ. (1.14)

We also want to be able to trace various functorialities, in particular, in both S
and Σ. However, this may result in a rather clumsy notation.

In order to postpone its introduction, in the remaining parts of this section we
describe a somewhat more general situation. Afterwards we will show that our
main problem is contained in it.

1.5. Setup, part I. Consider a morphism of smooth irreducible projective
manifolds b : E → W . Let βE be an effective curve class on E, and β := b∗(βE)
its pushforward to W . Any stable map CT /T → E, (xj : T → CT | j ∈ Σ), of class
βE , induces, after composition with b and stabilization, a stable map with target
(W,β). Thus, we get a map

b̃ : M0,Σ(E, βE) →M0,Σ(W,β)



9

that clearly fits into the commutative diagram

M0,Σ(E, βE)
b̃

//

(evE,stE)

��

M0,Σ(W,β)

(evW ,stW )

��

EΣ ×M0,Σ
bΣ×id

// WΣ ×M0,Σ

(1.15)

If |Σ| ≤ 2, the space M0,Σ is not a DM–stack; discarding it and stabilization

morphisms in (1.15), we still get a commutative diagram. Whenever M0,Σ appears,
we assume that |Σ| ≥ 3.

1.5.1. Proposition. (i) Assume that

J0,Σ(W,β) = b̃∗(J0,Σ(E, βE)). (1.16)

Then
I0,Σ(W,β) = (bΣ × id)∗(I0,Σ(E, βE)). (1.17)

(ii) Let γj ∈ H∗(W ), j ∈ Σ, be a family of cohomology classes marked by Σ.
Then from (1.16) it follows that

pr∗W (⊗j∈Σγj) ∩ I0,Σ(W,β) =

= (bΣ × id)∗[pr
∗
E(⊗j∈Σb

∗(γj)) ∩ I0,Σ(E, βE)]. (1.18)

Here we denote by prW : WΣ ×M0,Σ → WΣ and prE : EΣ ×M0,Σ → EΣ the
respective projection morphisms, and H∗ can be any standard cohomology theory.

Proof. (i) This follows directly from (1.16) and commutativity of (1.15).

(ii) We have, using the projection formula

(bΣ × id)∗[pr
∗
E(⊗j∈Σb

∗(γj)) ∩ I0,Σ(E, βE)] =

= (bΣ × id)∗[(b
Σ × id)∗ ◦ pr∗W (⊗j∈Σγj) ∩ I0,Σ(E, βE)] =

= pr∗W (⊗j∈Σγj) ∩ (bΣ × id)∗(I0,Σ(E, βE))

The last expression coincides with l.h.s. of (1.18) in view of (1.17). This completes
the proof.



10

1.5.2. Remark. In our applications to the case W = M0,S (cf. section 4), E
will be a boundary stratum containing the boundary curve representing β, and the
virtual fundamental classes J0,Σ will coincide with the usual fundamental classes
since the relevant deformation problem will be unobstructed. Moreover, E will have
a very special additional structure. We will axiomatize the relevant geometry in
the next subsections.

1.6. Setup, part II. Keeping notation of 1.5, we make the following additional
assumptions:

(a) E is explicitly represented as E = B×C where C is isomorphic to P1. This
identification, including the projections p = prB : E → B and prC : E → C,
constitutes a part of structure.

(b) βE is the (numerical) class of any fiber of p.

(c) The deformation problem for any fiber C0 of p embedded via b0 in W is
trivially unobstructed in the sense of [Beh3]:

H1(C0, b
∗
0(TW )) = 0 . (1.19)

(d) The map b̃ in (1.15) is an isomorphism.

These assumptions are quite strong. In particular, from (b) – (d) it follows that
(1.16) holds since the relevant virtual fundamental classes coincide with the ordinary
ones. Thus, we can complete the explicit computation of I0,Σ(W,β) starting with
the right hand side of (1.17). We will do it in the remaining part of the section.

First of all, we have

prB∗(βE) = 0, prC∗(βE) = 1

where 1 is the fundamental class [C] in the Chow ring of C.

Thus, the two projections induce the map

(p̃rB , p̃rC) :M0,Σ(E, βE) →M0,Σ(B, 0)×M0,Σ(C, 1) .

Stabilization maps embed this morphism into the commutative diagram

M0,Σ(E, βE) //

stE

��

M0,Σ(B, 0)×M0,Σ(C, 1)

stB×stC

��

M0,Σ

∆
M0,Σ

// M0,Σ ×M0,Σ

(1.20)
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where the lower line is the diagonal embedding (cf. [Beh2], Proposition 5).

Similarly, evaluation maps embed this morphism into the commutative diagram

M0,Σ(E, βE) //

evE

��

M0,Σ(B, 0)×M0,Σ(C, 1)

evB×evC

��

EΣ
s

// BΣ × CΣ

(1.21)

where the lower line is now the evident permutation isomorphism induced by E =
B × C.

Combining these two diagrams, we get

M0,Σ(E, βE) //

(evE,stE)

��

M0,Σ(B, 0)×M0,Σ(C, 1)

(evB,stB)×(evC ,stC)

��

EΣ ×M0,Σ
∆̃

// BΣ ×M0,Σ × CΣ ×M0,Σ

(1.22)

Here the lower line is an obvious composition of permutations and the diagonal
embedding of M0,Σ.

From (1.22) and [Beh2] it follows that

I0,Σ(E, βE) = ∆̃!(I0,Σ(B, 0)⊗ I0,Σ(C, 1)) . (1.23)

(Notice that for x ∈ A∗(X), y ∈ A∗(Y ) we often denote simply by x⊗y ∈ A∗(X×Y )
the image of x ⊗ y ∈ A∗(X) ⊗ A∗(Y ) wrt the canonical map A∗(X) ⊗ A∗(Y ) →
A∗(X × Y )).

Furthermore, according to (1.13),

I0,Σ(B, 0) = [∆Σ(B)×M0,Σ] ∈ A∗(B
Σ ×M0,Σ). (1.24)

Finally, the spaceM0,Σ(C, 1) and the class I0,Σ(C, 1) can be described as follows.

Recall a construction from [FuMPh]. Let V be a smooth complete algebraic
manifold. For a finite set Σ, let V Σ be the direct product of a family of V ’s labeled

by elements of Σ. Denote by Ṽ Σ the blow up of the (small) diagonal in V Σ. Finally,
define V Σ,0 as the complement to all partial diagonals in V Σ.
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The Fulton–MacPherson’s configuration space V 〈Σ〉 (for curves it was earlier
introduced by Beilinson and Ginzburg) is the closure of V Σ,0 naturally embedded
in the product

V Σ ×
∏

Σ′⊂Σ,|Σ′|≥2

Ṽ Σ′

.

In [FuPa], it was shown that M0,Σ(C, 1) can be identified with C〈Σ〉 in such a way
that the birational morphism evC becomes the tautological open embedding when
restricted to CΣ,0.

Therefore, denoting by DΣ ⊂ CΣ×M 0,Σ the closure of the graph of the canonical
surjective map CΣ,0 →M0,Σ, we get

I0,Σ(C, 1)) = [DΣ] . (1.25)

Now we can state the main result of this section:

1.6.1. Proposition. Assuming 1.6 (a)–(d), we have

I0,Σ(E, βE) = ∆̃!([∆Σ(B)×M0,Σ ×DΣ]) . (1.26)

and
I0,Σ(W,β) = (bΣ × id)∗ ◦ ∆̃

!([∆Σ(B)×M0,Σ ×DΣ]) . (1.27)

This is a straightforward combination of (1.23) – (1.25) and (1.17).

2. Target space M0,4

2.1. Notation. Stressing functoriality wrt labeling sets, and having in mind
further developments, we denote in this section by S a set of cardinality 4, with
a marked point •. We put S = P ⊔ {•}. Thus, we are considering the moduli
space M0,P⊔{•}. It is a projective line endowed with three pairwise distinct points
Dσ labeled by unordered partitions σ : P ⊔ {•} = S1 ⊔ S2, |Si| = 2. They are
exactly those points over which the universal stable curve C0,P⊔{•} splits into two
components, and labeled points are redistributed among them according to σ. Now,
the set of such partitions is naturally bijective to P : j ∈ P corresponds to the
partition {•, j}⊔(P\{•, j}). Hence finallyM0,P⊔{•} is a projective lineP

1 stabilized
by three points labeled by P . This identification is functorial wrt pointed bijections
of S.

The only boundary class of curves in A1(M0,P⊔{•}) is the fundamental class

β = 1 := [M0,P⊔{•}]. We have already invoked the description of the universal
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family of stable maps with this target and the relevant I–class at the end of 1.6,
see (1.25). But now, for the sake of a future generalization, we will use a slightly
different family and an alternative description of I0,Σ ∈ A∗((P

1)Σ×M0,Σ) that will

better fit the passage to target spaces M0,S with |S| > 4.

2.2. An alternative family. Consider the moduli space M0,Σ⊔P⊔{•}.

Recall that for any finite set R and its subset Q ⊂ R with complement of
cardinality ≥ 3, the space M0,R is the source of the standard forgetful morphism

ψQ : M0,R →M0,R\Q: “forget the subset of sections labeled by Q and stabilize”.

Thus we get the diagram

M0,Σ⊔P⊔{•}
ψΣ

//

ψ{•}

��

M0,P⊔{•}

M0,Σ⊔P

(2.1)

Another standard morphism identifies the vertical arrow in (2.1) with the pro-
jection of the universal (Σ⊔P )–labeled curve C0,Σ⊔P to its base: cf. e.g. [Ma], Ch.
V, Theorem 4.5.

From the explicit form of this identification, one easily sees that the image in
M0,Σ⊔P⊔{•} of the section xj : M0,Σ⊔P → C0,Σ⊔P for j ∈ Σ ⊔ P is precisely the

boundary divisor of M0,Σ⊔P⊔{•} corresponding to the stable 2–partition

Σ ⊔ P ⊔ {•} = {•, j} ⊔ ((Σ ⊔ P ) \ {j}) (2.2)

Here we will denote this divisor by Dj .

Consider now (2.1) as the family of maps of class 1, in which only the sections
xj for j ∈ Σ are counted as structure sections, whereas those labeled by P are
discarded. Then the family will not be stable anymore: if an irreducible component
of fiber curve contains only three special points and one of them corresponds to the
section labeled by an element of P , then this component will be contracted by ψΣ.
We can stabilize this new family and get a diagram

C
ψ

Σ
//

��

M0,P⊔{•}

M0,Σ⊔P

(2.3)
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endowed additionally with sections labeled by Σ and the stabilizing morphism

χ : M0,Σ⊔P⊔{•} → C, ψΣ = ψΣ ◦ χ. (2.4)

For each j ∈ Σ, denote by ξj : M0,Σ⊔P → M0,Σ⊔P⊔{•} the section of ψ{•}

identifying M0,Σ⊔P with Dj ⊂M0,Σ⊔P⊔{•} from (2.2). Consider the map

ev := (ψΣ ◦ ξj | j ∈ Σ) : M0,Σ⊔P → (M0,P⊔{•})
Σ. (2.5)

The stable family (2.3) may be obtained by a base change from the universal
family of stable maps of class β. Let

µ : M0,Σ⊔P →M0,P⊔{•}〈Σ〉 (2.6)

be the respective morphism of bases.

Dimensions of the two smooth irreducible schemes in (2.6) coincide. It is not
difficult to see that morphism µ is birational and hence surjective. In fact, consider
a generic fiber of C0,Σ⊔P . It is simply P1 with pairwise distinct (Σ⊔P (Π))–labeled
points. When we discard Σ–labeled ones, we land in P1 endowed with three points
labeled by P (Π); inverse images of them are just missing section that we discarded
when constructing (2.3) from (2.1); so in fact at a generic point we neither loose,
nor gain any information passing from (2.1) to (2.3).

We can now prove the main result of this section.

2.3. Proposition. We have for |Σ| ≥ 3:

I0,Σ(M0,P⊔{•}, 1) = (ev, ψP )∗([M0,Σ⊔P ]) ∈ A|Σ|((M0,P⊔{•})
Σ ×M0,Σ). (2.7)

Proof. Since µ is birational and surjective, we can identify the relevant J–class
with

µ∗([M0,Σ⊔P ]) = [M0,P⊔{•}〈Σ〉].

In order to prove (2.7), it remains to check that

ev ◦ µ = ev, st ◦ µ = ψP . (2.8)

Both facts follow from the discussion in 2.2 above.
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3. Boundary curve classes in M0,S

In this section, after recalling some basic facts about boundary ofM0,S following
[Ma] and [BehMa], we summarize relevant parts of [KeMcK] and fix our notation.

3.1. Boundary strata of M0,S. The main combinatorial invariant of an S–
pointed stable curve C is its dual graph τ = τC . Its set of vertices Vτ is (bijective
to) the set of irreducible components of C. Each vertex v is a boundary point of the
set of flags f ∈ Fτ (v) which is (bijective to) the set consisting of singular points and
S–labeled points on this component. We put Fτ = ∪v∈Vτ

Fτ (v). If two components
of C intersect, the respective two vertices carry two flags that are grafted to form
an edge e connecting the respective vertices; the set of edges is denoted Eτ . The
flags that are not pairwise grafted are called tails. They form a set Tτ which is
naturally bijective to the set of S–labeled points and therefore itself is labeled by
S. Stable curves of genus zero correspond to trees τ whose each vertex carries at
least three flags.

The space M0,S is a disjoint union of locally closed strata Mτ indexed by stable
S–labeled trees. Each such stratumMτ represents the functor of families consisting
of curves of combinatorial type τ . In particular, the open stratum M0,S classifies
irreducible smooth curves with pairwise distinct S–labeled points. Its graph is a
star: tree with one vertex, to which all tails are attached, and having no edges.

Generally, a stratum Mτ lies in the closure Mσ of Mσ, iff σ can be obtained
from τ by contracting a subset of edges. Closed strata Mσ corresponding to trees
with nonempty set of edges, are called boundary ones. The number of edges is the
codimension of the stratum.

3.1.1. Boundary divisors and A1(M0,S). The classes of boundary divisors
generate the whole Chow ring, but are not linearly independent. The following
useful basis is constructed in [FG].

For s ∈ S, let Ls be the line bundle on M0,S whose fiber over a stable curve
(C, (xt | t ∈ S)) is T ∗

xs
C. Put ψs := c1(Ls)

3.1.2. Proposition. The classes of boundary divisors DS with |S1|, |S2| ≥ 3
and classes ψi := c1(Ls), s ∈ S, constitute a basis of the group A1(M0,S).

The rank of this group is 2n−1 −
n(n− 1)

2
− 1.

This is Lemma 2 in [FG]. An expression of ψs through boundary classes is given
in Lemma 1 of [FG].

Below we give some details on one–dimensional strata.
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3.2. Boundary curves and A1(M0,S): preparatory combinatorics. We
start with the following combinatorial construction.

We will use here the term an unordered partition of a set S as synonymous to an
equivalence relation on S. A component of a partition is the same as an equivalence
class of the respective relation; in particular, all components are non–empty.

Call an unordered partition Π of S distinguished, if it consists of precisely four
components. Denote by the S(Π) the set of the components, that is, the quotient
of S wrt the respective equivalence relation.

Distinguished partitions are in a natural bijection with isomorphism classes of
distinguished stable S–labeled trees π. By definition, such a tree is endowed with
one distinguished vertex v0, the set of flags at this vertex Fπ(v0) being (labeled by)
elements of S(Π). Clearly this vertex is of multiplicity four. The flags labeled by
one–element components {s} of Π are tails, carrying the respective labels s ∈ S.
The remaining flags are halves of edges; the second vertex of an edge, whose one
half is labeled by a component Si carries tails labeled by elements of Si.

We will routinely identify Fπ(v0) with S(Π).

3.2.1. Definition. (i) Given a distinguished partition Π, denote by P = P (Π)
the set of those stable 2–partitions σ of S, each component of which is a union of
two different components of Π. For |S| ≥ 4 we have |P (Π)| = 3.

(ii) N = N(Π) is the set of those stable 2–partitions of S whose one component
coincides with one component of Π. We have for |S| ≥ 5: 1 ≤ |N(Π)| ≤ 4.

3.2.2. Lemma. Π can be uniquely reconstructed from P (Π); hence P (Π)
uniquely determines N(Π) as well.

Proof. In fact, if Π = (S1, S2, S3, S4) (numeration arbitrary), then by definition
P (Π) must consist of partitions

σ1 = (S1 ∪ S2, S3 ∪ S4), σ2 = (S1 ∪ S3, S2 ∪ S4), σ3 = (S1 ∪ S4, S2 ∪ S3)

Hence conversely, knowing P (Π), we can unambiguously reconstruct Π: its com-
ponents are exactly non–empty pairwise intersections of components of different
σi ∈ P (Π).

3.3. Boundary curves and A1(M0,S): geometry. Each distinguished parti-

tion Π of S determines the following boundary stratum of M0,S:

bΠ : MΠ := ∩σ∈N(Π)Dσ →֒M0,S . (3.1)
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Equivalently, MΠ is the stratum, corresponding to the special tree π associated to
Π. In other words, now all components of Π are indexed by the flags f ∈ Fπ(v0)
at the special vertex v0, whereas components of cardinality ≥ 2 are also naturally
indexed by the remaining vertices of π:

MΠ =M0,Fπ(v0) ×
∏

v 6=v0

M0,Fπ(v). (3.2)

Here the equality sign refers to the canonical isomorphism that is defined for any
stable marked tree: it produces from such a tree the product of moduli spaces
corresponding to the stars of all vertices.

The information about edges determines the embedding morphism (3.1) of such
a product as a boundary stratum. On the level of universal curves, it is defined by
merging the pairs of sections labeled by halves of an edge.

Codimension of MΠ is |N(P )|, and 1 ≤ |N(Π)| ≤ 4. Since |Fπ(v0)| = 4, the
moduli space M0,Fπ(v0) is P1 with three points naturally labeled by the set of
stable partitions of Fπ(v0) which in turn is canonically bijective to P (Π), cf. 2.1.

Hence the representation (3.2) allows us to define the projection map

p = pΠ : MΠ → BΠ :=
∏

v 6=v0

M0,Fπ(v) (3.3)

having three canonical disjoint sections canonically labeled by P (Π).

Clearly, all fibers of pΠ are rationally equivalent so that they define a class
β = β(Π) ∈ A1(M0,S).

3.3.1. Lemma ([KeMcK]). (i) For n := |S| ≥ 4, each boundary curve (one–
dimensional boundary stratum) Cτ is a fiber of one of the projections (3.3).

(ii) [Cτ1 ] = [Cτ2 ] ∈ A1(M0,S) iff these curves are fibers of one and the same
projection (3.3).

We reproduce the proof for further use.

Proof. (i) Since Cτ is a curve, the S–labeled stable tree τ is a tree with |Eτ | =
n−4 and hence |Vτ | = n−3. Since the tree is stable, all except one of its vertices must
have multiplicity 3. The exceptional vertex denoted v0 = v0(τ) has multiplicity 4.

If we delete from the geometric tree τ the vertex v0, it will break into 4 connected
components. Thus, the set S of labels of tails will be broken into 4 non–empty
subsets. Among them there are |Tτ (v0)| one–element sets (labels of tails adjacent
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to v0), and |Eτ (v0)| sets of cardinality ≥ 2: each part consist of labels of those tails
that can be reached from the critical vertex by a path (without backtracks) starting
with the respective flag. We will denote this partition Π(τ). Hence if we contract
all edges of τ excepting those that are attached to v0, we will get the distinguished
tree associated with a distinguished partition Π = Π(τ). It determines the required
projection.

(ii) Now consider two sets of stable 2–partitions of S produced from Π = Π(τ)
as in the Definition 3.2.1, and denote them respectively P (τ) and N(τ).

First of all, we will check that

(Dσ, Cτ ) = 1, if σ ∈ P (τ),

(Dσ, Cτ ) = −1, if σ ∈ N(τ), (3.4)

(Dσ, Cτ ) = 0 otherwise.

Now we will use formulas and facts proved in [Ma1], III.3 and [KoMaKa], Appendix.
In particular, we use the notion of good monomials, elements of the commutative
polynomial ring freely generated by symbols m(σ) where σ runs over stable 2–
partitions of S. These monomials form a family indexed by stable S–labeled trees
τ : m(τ) :=

∏
e∈Eτ

m(σe) where σe is the 2–partition of S obtained by cutting e.

Assume first that m(σ)m(τ) is a good monomial so that (Dσ, Cτ ) = 1. Then it is
of the form m(ρ) where ρ is a stable S–labeled tree with all vertices of multiplicity 3
and an edge e such that m(σ) = m(ρe). This edge is unambiguously characterized
by the fact that after collapsing e in ρ to one vertex, we get the labeled tree
(canonically isomorphic to) τ . But the vertex to which e collapses must then have
multiplicity larger than 3. It follows that emust collapse precisely to the exceptional
vertex v0 of τ . Conversely, the set of ways of putting e back is clearly in a bijection
with P (τ): the 4 flags adjacent to v0 must be distributed in two groups, 2 flags in
each, that will be adjacent to two ends of e.

Assume now that m(σ) divides m(τ). Using Proposition 1.7.1 of [KoMaKa], one
sees that m(σ)m(τ) represents zero in the Chow ring (and so (Dσ, Cτ ) = 0) unless
σ = τe where e is an edge adjacent to v0. In this latter case Kaufmann’s formula
(1.9) from [KoMaKa] implies (Dσ, Cτ ) = −1. The set of such σ’s is in a bijection
with N(τ).

Finally, for any other stable 2–partition σ there exists an e ∈ Eτ such that we
have a(σ, τe) = 4 in the sense of [Ma1], III.3.4.1. In this case, (Dσ, Cτ ) = 0 in view
of [Ma], III.3.4.2.
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Now, we have [Cτ1 ] = [Cτ2 ] iff (Dσ, Cτ1) = (Dσ, Cτ2) for all stable 2–partitions
σ, because boundary divisors generate A1. In view of (3.4), this latter condition
means precisely that

P (τ1) = P (τ2), N(τ1) = N(τ2).

But lemma 3.2.2 shows that in this case Π(τ1) = Π(τ2). This completes the proof.

3.4. Proposition. Denote the canonical class of M0,S by KS. Using notation
of 3.3, we have

(−KS , β(Π)) = 2− |N(Π)|. (3.5)

Proof. For 2 ≤ j ≤ [n/2], denote by Bj the sum of all divisors Dσ such that
one part of the partition σ is of cardinality j, and by B the sum of all boundary
divisors. We have

−KS = 2B −

[n/2]∑

j=2

j(n− j)

n− 1
Bj (3.6)

(cf. [KeMcK], [FG], and references therein).

For a stable 2–partition σ = (S1, S2) of S, put c(σ) := |S1||S2|. Then, combining
(1.4) and (1.6), we get:

(−KS , β(Π)) = 2(|P (τ)| − |N(τ)|)−
∑

σ∈P (τ)

c(σ)

n− 1
+

∑

σ∈N(τ)

c(σ)

n− 1
. (3.7)

The most straightforward way to pass from (3.7) to (3.5) is to consider the four
cases |N(Π)| = 1, 2, 3, 4 separately. Here is the calculation for |N(Π)| = 3; it
demonstrates the typical cancellation pattern. We leave the remaining cases to the
reader.

We have 2(|P (Π)| − |N(Π)|) = 0. Let (1, a, b, c) be the cardinalities of the com-
ponents of Π, where a, b, c ≥ 2, a + b + c = n − 1. Then P (Π) consists of three
partitions, of the following cardinalities respectively

(a+ 1, b+ c), (b+ 1, a+ c), (c+ 1, a+ b).

Hence ∑

σ∈P (Π)

c(σ) = 2(ab+ ac+ bc) + 2(a+ b+ c).
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Similarly, partitions in N(Π) produce the list

(a, 1 + b+ c), (b, 1 + a+ c), (c, 1 + a+ b)

so that ∑

σ∈N(Π)

c(σ) = 2(ab+ ac+ bc) + (a+ b+ c).

Combining all together, we get (−KS, β(Π)) = −1 = 2− |N(Π)|.

3.5. Proposition. Each class of a boundary curve β is indecomposable in the
cone of effective curves.

Proof. This follows from (3.5) and [KeMcK], Lemma 3.6: (KS +B, β(Π)) = 1,
and the divisor KS +B is ample.

3.6. Examples: M0,4 andM0,5. If |S| = 4, there is one distinguished partition
Π, with all components of cardinality 1. The respective “boundary” curve is in fact
the total space M0,S.

If |S| = 5, the boundary curves are 10 exceptional curves on the del Pezzo surface
M0,S corresponding to 10 different distinguished partitions of S whose components
have cardinalities (1, 1, 1, 2). They define 10 different Chow classes.

3.7. Example: M0,6. There are two combinatorial types of unlabeled trees τ
corresponding to boundary curves. Below we draw their subgraphs consisting of all
vertices and edges, and mark them with the numbers of tails at each vertex.

3 • − • 1− •2 2 • − • 2− •2

If we take into account possible labellings by S, we will get 60 boundary curves of
the first type and 45 boundary curves of the second type. They form two different
S6–orbits.

If τ is of the first type, then c(σ) = 8 for all 3 partitions σ ∈ P (τ). The set N(τ)
contains unique partition σ, with c(σ) = 9. Applying Proposition 3.4, we get

(−K6, Cτ ) = 1.

If τ is of the second type, we have respectively c(σ) = 8, 9, 9 for σ ∈ P (τ). The
set N(τ) consists of 2 partitions σ, with c(σ) = 8. Applying Proposition 3.4, we
get

(−K6, Cτ ) = 0.
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Chow classes of the boundary curves for n = 6 are extremal rays of the Mori
cone. There are 20 classes of the first type and 45 classes of the second type.

3.8. Example: M0,7. Similarly, there are four combinatorial types of unlabeled
trees τ corresponding to boundary curves.

A : 3 • − • 1− •1− •2 B : 2 • − • 2− •1− •2

and

C : 3 • − •
/•2

\•2
D : 2 • −1•

/•2

\•2

Here the numerology looks as follows.

Type A. We have c(σ) = 10 for all σ ∈ P (τ); |N(τ)| = 1, c(σ) = 12 for σ ∈ N(τ).
Hence

(−K7, Cτ ) = 1.

Finally, there are 420 labeled trees/boundary curves of this type.

Type B. We have c(σ) = 10, 12, 12 for σ ∈ P (τ); |N(τ)| = 2, c(σ) = 10, 12 for
σ ∈ N(τ). Hence

(−K7, Cτ ) = 0.

There are 630 boundary curves of this type.

Type C. We have c(σ) = 10 for all σ ∈ P (τ); |N(τ)| = 1, c(σ) = 12 for σ ∈ N(τ).
Hence

(−K7, Cτ ) = 1.

There are 105 boundary curves of this type.

Type D. Finally, here c(σ) = 12 for all σ ∈ P (τ); |N(τ)| = 3, c(σ)=10 for
σ ∈ N(τ), and

(−K7, Cτ ) = −1.

There are 105 boundary curves of this type.

In the Chow group, there are 35 classes of types A and C altogether, 210 classes
of type B, and 105 classes of type D.
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4. Gromov–Witten correspondences

for boundary curves in M0,S.

In this section we will state and prove the main theorem of this paper. We start
with some preparation.

4.1. Preparation: combinatorics. In this section, we choose and fix two
disjoint finite sets S and Σ. Assume that |S| ≥ 4, |Σ| ≥ 3.

Fix one element s0 ∈ S. Choose and fix a distinguished partition Π of S into
four disjoint nonempty subsets (cf. 3.2 above). Denote by S(Π) the set, elements of
which are components of Π. Thus, |S(Π)| = 4. Denote by • ∈ S(Π) the component
of Π that contains the marked element s0 ∈ S.

The sets P (Π) and N(Π) are defined as in 3.2.1. In our setup, the three–element
set P (Π) is canonically bijective to two more sets:

a) The set of stable unordered partitions of S(Π) into two parts (each consisting
of two elements).

b) The set S(Π) \ {•}: any j ∈ S(Π) \ {•} corresponds to the partition S(Π) =
({•, j} ⊔ S(Π) \ {•, j}). We have already used this trick in sec. 2.1, and here we
will use it again transporting the results of sec. 2 to a new context.

Slightly abusing notation, we will sometimes consider these last identifications
as identical maps.

Being more fussy, we can say that our constructions are functorial on the cate-
gory of pointed finite sets S with bijections. Eventually, they must be extended to
the category of marked trees (and more general modular graphs) encoding boundary
combinatorial types of curves and maps. Dependence of our geometric construc-
tion on the target boundary curve class β is reflected in the dependence of its
combinatorial side on Π.

4.2. Preparation: geometry. We intend to show that results of sec. 1.5–1.6
are applicable in the present situation.

More precisely, specialize the objects, introduced in 1.5 in the following way:

W :=M0,S, E :=MΠ, b := bΠ, β := β(Π) (4.1)

(cf. (3.1)).

Furthermore, specialize the objects described in 1.6:

B := BΠ, C :=M0,Fπ(v0), p := pΠ (4.2)
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(cf. (3.2), (3.3)).

4.3. Proposition. The assumptions 1.6 (a)–(d) hold for (4.1)–(4.2).

Proof. The assumptions 1.6 (a) and (b) hold by definition. We start with
checking the critical assumption 1.6 (d).

In our context it says that the structure embedding bΠ : MΠ →M0,S induces a
canonical isomorphism

b̃Π : M0,Σ(MΠ, βΠ) →M0,Σ(M0,S, β(Π)). (4.3)

where βΠ is the Chow class of a fiber of pΠ : MΠ → BΠ.

One T–point of M0,Σ(M0,S, β(Π)) is a family of prestable curves CT /T together
with a stable map fT of the class β(Π) and labeled sections

fT : CT →M0,S, xj,T : T → CT , j ∈ Σ. (4.4)

The crucial fact is that any such map fT can be factored through bΠ. More precisely,
we will show that fT determines and is determined by a unique pair of maps

ϕ : T → BΠ =
∏

v 6=v0

M0,Fπ(v), CT → ϕ∗(MΠ) (4.5)

In particular, all effective curves in the class β(Π) are represented by the fibers
of the family pΠ : MΠ → BΠ.

In order to produce (4.5) from fT , notice that the morphism fT : CT → M0,S

is essentially the same thing as a flat family of S–labeled stable curves over CT
together with its explicit identification with f∗

T (C0,S), where C0,S → M0,S is the
universal family of S–labeled stable curves of genus zero.

Consider first a boundary divisor Dσ ⊂M0,S such that (Dσ, β(Π)) = −1. Over

Dσ, fibers of the universal family C0,S are exactly those S–labeled curves whose
dual graphs contain an edge producing the partition σ.

Since β(Π) is indecomposable (Proposition 3.5), for any fiber of CT /T , fT must
contract to a point each its component excepting one.

If there is a point x on such un–contracted component over which the fiber of
the induced family f∗

T (C0,S) has a dual graph containing no edge producing σ, then
the fiber of CT → T containing x must have intersection index ≥ 0 with Dσ (cf.
[Ma], III.3.6).



24

This is impossible, so that fT must factor through the closed embedding

CT → Dσ →֒M0,S,

and hence through the embedding

CT → ∩σ∈N(Π)Dσ =M0,Fπ(v0) ×
∏

v 6=v0

M0,Fπ(v) →֒M0,S, (4.6)

cf. (3.1), (3.2).

We will now establish that the first arrow in (4.6), which we will denote fT , can
be embedded into a commutative diagram:

CT
fT

//

��

MΠ

pΠ

��

T
ϕ

// BΠ

(4.7)

In fact, assume that pΠ ◦ fT does not factor through CT → T . We will show that
this leads to a contradiction.

Choose a geometric fiber X of CT → T . Denote by σ the dual graph of the curve
from the universal family C0,S over a generic point of X . We know that σ admits a

contraction onto π. If pΠ ◦ fT (X) is not a point, then X must contain a point over
which the dual graph σ′ of the universal family is not isomorphic to σ. In this case
it must admit a non–trivial contraction σ′ → σ. Compose it with the canonical
contraction σ → π.

One of the following two alternatives must hold:

(A) There is an edge of σ′ that contracts onto one of the vertices v 6= v0 of π.

(B) No edge of σ′ contracts onto one of the vertices v 6= v0, but there is an edge
contracting to v0.

Consider the stable 2–partition ρ of S corresponding to the contracting edge,
and the respective boundary divisor Dρ in M0,S. Geometrically, our assumption
(A) implies that f(X) is a curve that does not lie in Dρ but intersects Dρ, hence
we must have

(Dρ, β) = (Dρ, f∗([X ])) > 0.
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But from (3.4) it follows that if ρ contracts onto a vertex v 6= v0, then (Dρ, β) = 0.
Hence this possibility is excluded.

Consider now the alternative (B). Then we must have ρ ∈ P (Π). This implies
the following degeneration pattern of the induced family of curves parametrized by
X . At a generic point, the tree of the curve consists of one irreducible component
C to which trees are attached at |N(τ)| different points of this component. When
the degeneration at a point of Dρ occurs, C breaks down into two components,
say, C1 and C2, and the attached trees are distributed among them: some become
attached to C1, and remaining ones to C2. What is important here, is that the
labeled combinatorial type of each of the attached trees does not change – otherwise
we could have used the option (A) which was already excluded.

But in this case the image pΠ ◦ fT (X) must land in the product of the open
strata

∏
v 6=v0

MFπ(v). This is possible only if this image is a point because such a
product is an affine scheme.

It order to complete the proof that (4.3) is an isomorphism, it remains to perform
several simple checks:

(a) The described map on T–points naturally extends to morphisms of T–points,
and we get a functor.

(b) Following our construction in reverse direction, we can construct a functor
from the rhs of (4.3) to the lhs.

(c) The constructed two functors are (quasi)inverse to each other.

We leave them as an exercise to the reader.

It remains to check the unobstructedness condition (1.19) implying, in particular,
that

[M0,Σ(M0,S, β(Π))]virt = [M0,Σ(M0,S, β(Π))].

Let C be a geometric fiber of p : MΠ → BΠ. We have already used the fact that
it is isomorphic to P1. Let j : C → M0,S be the natural closed embedding. We
assert that

j∗(TM0,S
) ∼= O(2)⊕On−4−|N(Π)| ⊕O(−1)|N(Π)| (4.8)

where TM0,S
is the tangent sheaf and O := OC .

In fact, consider the embedding i : C →MΠ and the natural filtration

{0} ⊂ TC ⊂ i∗(TMΠ
) ⊂ j∗(TM0,S

). (4.9)
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The consecutive summands in (4.8) correspond to the consecutive quotients of (4.9).
Namely, TC ∼= O(2); i∗(TMΠ

)/TC is trivial of the rank

dimBΠ =
∑

v∈Vπ

(|Fπ(v)| − 2) = |S| − 4− |N(Π)|, (4.10)

finally, the last isomorphism follows from (3.1) and (3.4).

From (4.8) we see that H1(C, j∗(TM0,S
)) = 0. It follows that BΠ is the base of

universal deformation of any fiber C.

The virtual fundamental class is simply the fundamental class in this “locally
convex” case. The virtual dimension (1.7) of our moduli stack, in view of (3.5), is

2− |N(Π)|+ |Σ|+ |S| − 6.

It coincides with actual dimension (cf. (4.10)):

dimBΠ + dimM0,Fπ(v0)〈Σ〉 = |S| − 4− |N(Π)|+ |Σ|. (4.11)

4.4. The final summary. We will now briefly restate the results of stepwise
calculations of sec. 1 and 2 in our current situation (4.1) – (4.2).

4.4.1. Step I: Gromov–Witten correspondences for the target space

M0,S(Π). We reproduce here the main result of sec. 2 applied to the target space

M0,S(Π) and its fundamental class 1. Notice that the sets denoted S (resp. P ) in
sec. 2 are now S(Π) (resp. P (Π)), and S(Π) = P (Π) ⊔ {•}.

According to Proposition 2.3, we have:

I0,Σ(M0,P (Π)⊔{•}, 1) = (ev, ψP (Π))∗([M0,Σ⊔P (Π)]) ∈

∈ A|Σ|((M0,P (Π)⊔{•})
Σ ×M0,Σ). (4.12)

4.4.2. Step II: Gromov–Witten correspondences for the target space

BΠ and zero beta–class. Acccording to the Example 1.3, we have:

I0,Σ(BΠ, 0) = [∆Σ(BΠ)×M0,Σ] ∈ A∗(B
Σ
Π ×M0,Σ). (4.13)

Here ∆Σ(BΠ) is the diagonal in the cartesian product BΣ
Π of Σ copies of BΠ.
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4.4.3. Step III: Gromov–Witten correspondences for the target space

MΠ and fiber beta–class. In this subsection, βΠ is the Chow class of a fiber of
the projection MΠ → BΠ. We now have a canonical splitting

MΠ = BΠ ×M0,P (Π)⊔{•} (4.14)

since Fπ(v0) is identified with S(Π) = P (π) ⊔ {•} (cf. 3.3).

Thus using (4.12) and (4.13), we have

I0,Σ(MΠ, βΠ) = ∆̃!([∆Σ(BΠ)×M0,Σ]⊗ (ev, ψP (Π))∗([M0,Σ⊔P (Π)])) . (4.15)

To summarize, we have proved our final theorem, a specialization of Proposition
1.6.1:

4.5. Theorem. The structure embedding bΠ : MΠ →M0,S induces a canonical
isomorphism

b̃Π : M0,Σ(MΠ, βΠ) →M0,Σ(M0,S, β(Π)). (4.16)

where βΠ is the Chow class of a fiber of pΠ : MΠ → BΠ.

This isomorphism b̃Π is compatible with evaluation/stabilization morphisms for
both moduli spaces and induces the identity

I0,Σ(M0,S, β(Π)) = (bΣΠ × id)∗(I0,Σ(MΠ, βΠ)) (4.17)

where

bΣΠ × id : M
Σ

Π ×M0,Σ → (M0,S)
Σ ×M0,Σ.

The rhs of (4.17) is given by (4.15).

4.6. Gromov–Witten numbers. In this subsection, we will specialize formula
(1.18) to our situation in order to calculate numerical invariants of Chow classes of
boundary curves.

Let γj ∈ H2dj (M0,S) be a family of cohomology classes indexed by j ∈ Σ. If∑
j∈Σ dj = dimBΠ, then the correspondence

I0,Σ(M0,S, β(Π)) ∈ A∗((M0,S)
Σ ×M0,Σ)
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maps ⊗j∈Σγj ∈ (H∗(M0,S))
⊗Σ to a class of maximal dimension in H∗(M0,Σ). The

degree of this class is denoted

〈I
M0,S

0,Σ,β(Π)〉(⊗j∈Σγj).

Generally, this degree is the virtual number of stable maps of pointed curves of
class β(Π) satisfying the incidence conditions f(xj) ∈ Γj , where (Γj) are cycles in
general position whose dual classes are γj :

f : (C; (xj | j ∈ Σ)) →M0,S,

whenever such incidence conditions are strong enough to enforce existence only
of finite (virtual) number of such maps. In our unobstructed case, this virtual
number is the actual number of such maps whenever the incidence cycles are in
general position.

Recall also that this number is polylinear in (γj).

4.6.1. Proposition. We have

〈I
M0,S

0,Σ,β(Π)〉(⊗j∈Σγj) = deg (∩j∈ΣprBΠ∗ ◦ b
∗
Π(γj)) . (4.18)

Sketch of proof. Skipping a clumsy but straightforward formal derivation of
(4.18) from (1.18), we describe the geometric content of this counting formula in
the general situation axiomatized in 1.6.

First of all, (1.18) reduces the count to the case of an incidence condition repre-
sented by some cycles in E = MΠ: in fact, b∗Π(γj) are represented by Γj ∩MΠ in
the case of transversal intersections.

Now, in MΠ the incidence cycles can be replaced by ones of the form ∆j × cj +
∆′
j × C where cj are points on a projective line C as in (4.2) corresponding to the

decomposition MΠ = BΠ × C.

Assume first that ∆′
j 6= 0 for some j = j0. If for such an incidence condition

there is a fiber C0 of MΠ → BΠ satisfying it at all, then the number of relevant
pointed stable maps must be infinite, because xj0 can be chosen arbitrarily along
this fiber. Hence decomposable cycles containing at least one factor of the form
∆′
j × C give zero contributions to (4.18).

Now consider the case of incidence conditions of the form ∆j × cj for all j ∈ Σ.
Let ∆j = prBΠ

(∆j × cj) be in a general position in BΠ so that the intersection
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cycle ∩j∈Σ∆j is a sum of points ya ∈ BΠ, of multiplicity one each. We can also
lift ∆j arbitrarily to MΠ, that is choose all cj ∈ C pairwise distinct, and consider
∆j × cj as a geometric incidence condition representing the initial cohomological
incidence condition (γj).

After that the geometric count becomes straightforward: each point ya produces
one fiber of the class β(Π) intersecting each ∆j × cj at one point corresponding to
cj .

The number of (ya) is the right hand side of (4.18), and the curve count interprets
the left hand side of (4.18).

5. Examples and remarks

5.1. “Naturality” of Gromov–Witten correspondences. In this subsec-
tion we try to make somewhat more precise our guess 0.2.1. To this end we recall
first, that natural objects in the relevant category are moduli spaces Mτ , and nat-
ural morphisms/correspondences are those ones that are produced from morphisms
in the category of modular graphs. The latter include contractions, forgetful mor-
phisms, relabeling morphisms etc., cf. [BehMa].

The least controllable characteritic of GW–correspondences is their dependence
on the argument β in the relevant Mori cone. So far we have considered only
boundary β’s, and they are, of course, “natural” by definition.

In this subsection we will show that, keeping notation of section 4, we may
naturally encode most of the relevant combinatorial and geometric information in
one moduli space M0,Σ×(S\{s0}) and a configuration of certain of its boundary
strata. This is only a tentative suggestion, we do not develop it fully, because we
still lack even a conjectural description of the situation for more general β’s.

5.1.1. The tree T. The tree T has one special vertex that will be called central
one and denoted vc. Its flags are bijectively labeled by Σ: we will use the notation

FT(vc) := {〈j〉 | j ∈ Σ} . (5.1)

The remaining vertices constitute a set bijective to Σ× {s0}. Together with (5.1),
this bijection is a part of structure, and we may refer to a non–central vertex v ∈ VT
as vj := 〈j, s0〉, j ∈ Σ.

Furthermore, we put

FT(vj) := {j} × S = {(j, s) | s ∈ S} . (5.2)
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Thus, the standard identification of MT with the product of moduli spaces∏
v∈VT

M0,FT(v) corresponding to stars of all vertices, can be rewritten as

MT = (M0,S)
Σ ×M0,Σ (5.3)

where the last factor corresponds to the central vertex.

(ii) Edges. The flag 〈j〉 attached to the central vertex (see (5.1)) is grafted to
the flag (j, s0) incident to the vertex vj (see (5.2)). There are no more edges.

Thus, the central vertex carries no tails, and the set of edges ET is naturally
bijective to Σ. The set of tails is

TT =
∐

j∈Σ

(FT(〈j, s0〉) \ (j, s0)) =
∐

j∈Σ

({j} × (S \ {s0})) ∼= Σ× (S \ {s0}). (5.4)

If we interpret the last set in (5.4) as the set of labels of tails , then the described
above set of edges of T determines the canonical embedding of MT as a boundary
stratum:

MT →֒M0,Σ×(S\{s0}) (5.5)

This embedding corresponds to full contraction of all edges of T to the star with
flags Tτ .

We will now encode information about Π into another tree T(Π), together with
its contraction onto T.

5.1.2. The tree T(Π). Briefly, to get T(Π), we replace each non–central vertex
vj , j ∈ Σ, by a copy πj of the tree π described in 3.2.

More precisely, the special vertex of πj denoted v0,j now carries tails (5.2) dis-
tributed among other vertices of πj according to Π, and its tail (j, s0) is grafted in
T(Π) to the same flag 〈j〉 of its central vertex as it was in T.

The contraction T(Π) → T contracts each πj to the star of vj , and is identical
on the stars of the central vertices. Combining the relevant boundary morphism
with (5.5), we get the diagram of strata embedding

MT(Π) →֒MT →֒M0,Σ×(S\{s0}) (5.5)

The intermediate and final correspondences considered in sec. 4, can be expressed
using the geometry of (5.5).

5.2. Using the Reconstruction Theorems. For a general target W , if the
Chow ring A∗(W ) (with coeficients in Q) coincides with the whole H∗(W ) and is
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generated by A1(W ), then the total motivic quantum cohomology of W of genus
zero understood as the family of I–correspondences is completely determined by
triple correlators (3–point GW–invariants) of codimension zero. This follows from
the First and the Second Reconstruction Theorems of [KoMa1].

In any case, these triple correlators are precisely coefficients of small quantum
cohomology as a formal series in qβ . Hence in the same assumptions the total
quantum cohomology is completely determined by the small quantum multiplication
in H∗(V )[[qβ]]:

∆a ·∆b = ∆a ∪∆b +
∑

β 6=0

∑

c 6=0

〈∆a∆b∆c〉β∆
cqβ .

Here (∆a) is a basis of H∗ such that ∆0 is identity, gab = (∆a,∆b), (g
ab) the inverse

matrix to (gab), and and ∆a :=
∑
b g

ab∆b.

This is applicable to all M0n.

In turn, the associativity equations allow one to express all triple correlators
through a part of them. We will now make explicit this subset for M0n.

5.3. A generating subset of triple correlators. Put |∆| = i for ∆ ∈
H2i(M0n). (No confusion with cardinality |S| of a set S should arise). Then all
invariants can be recursively calculated through 3–point invariants 〈∆a∆b∆c〉β with
∆c divisorial, |∆a|, |∆b| ≥ 1, β 6= 0, and

|∆a|+ |∆b| = (−Kn, β) + n− 4.

where Kn is the canonical class of M0n. Hence, β are restricted by

2− (n− 3) ≤ (−Kn, β)− 1 ≤ n− 3.

See [KoMa1], Theorem 3.1, with the following easy complements. If |∆a| or
|∆b| = 0, β 6= 0, then the respective GW–invariant is 0 because of [KoMa1], (2.7).
If β = 0, we can use [KoMa1], (2.8). It remains to consider the following list of
parameters:

6− n ≤ (−Kn, β) ≤ n− 2,

2 ≤ |∆a|+ |∆b| = (−Kn, β) + n− 4 ≤ 2n− 6

Finally, if ∆ is a divisorial class with (∆, β) = 0, then 〈∆′∆′′∆〉β = 0 for any ∆,′∆′′

due to the Divisor Axiom.
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5.3.1. Tables for the first values of n.

(−K5, β) | 1 2 3
——————————————

(|∆a|, |∆b|)| (1,1) (1,2) (2,2)

(−K6, β) | 0 1 2 3 4
——————————————————

(|∆a|, |∆b|)| (1,1) (1,2) (2,2) (2,3) (3,3)
(1,3)

(−K7, β) | -1 0 1 2 3 4 5
———————————————————————–

(|∆a|, |∆b|)| (1,1) (1,2) (2,2) (2,3) (3,3) (3,4) (4,4)
(1,3) (1,4) (2,4)

Notice thatM05 is the del Pezzo surface of degree 5, in particular, its anticanon-
ical class is ample and hence the generating subset of triple correlators is finite. In
fact, generating sets for del Pezzo surfaces are collected in [BaMa1]. It is known
also that all del Pezzo surfaces have generically semisimple quantum cohomology,
and more generally, this remains true for blow ups of any finite set of points on or
over P2 (A. Bayer).

Already forM06 the situation is more mysterious. For 45 out of 105 generators of
the cone of β’s we have (−K6, β) = 0. Hence our generating list above is in principle
infinite. Semisimplicity is an open question as well. For n ≥ 7 the difficulties grow.

5.4. Strategies of computation. A possible way to compute some Gromov–
Witten invariants of M0,n with non–boundary β’s consists in choosing a birational

morphism pn : M0,n → Xn such that

a) (Sufficiently many) GW–invariants of Xn are known/computable.

b) Morphism pn is such that there exist “naturality” formulas that allow one to
compute (some) GW–invariants of M0,n through (some) GW–invariants of Xn.

For ”naturality” results see, e. g., [LeLWa], [MauPa], [Hu1], [Hu2], [BrK] (this
paper contains corrections to [Hu1]), [Mano1], [Mano2], etc. We will discuss the
relevant classes of morphisms below.
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5.4.1. Blowing M0,n down. The following choices of morphisms seem promis-
ing for application of this strategy, at least for small values of n.

(i) Xn = Pn−3, pn = Kapranov’s morphism, representing M0,n as the result of
consecutive blowing up n − 1 points, preimages of lines connecting pairs of these
points, preimages of planes, passing through triples of them etc., cf. [HaT]. It
involves forgetting the n–th point, then fixing p1, . . . , pn−1 ∈ Pn−3.

(ii) Xn = (P1)n−3, pn is a similar morphism that was described explicitly by
Tavakol.

(iii) Xn = Ln−2, the Losev–Manin moduli space parametrizing stable chains
of P1’s with marked points and a specific stability condition; pn the respective
stabilization morphism.

It makes sense not just to use Ln−2 in order to help calculate GW–invariants of
M0,n, but to treat these moduli spaces as replacements of M0,n in their own right.

In fact, one can define GW–invariants based upon Ln−2, essentially, no information
is lost thereby: see [BaMa2].

The spaces Ln−2 are toric, and have the largest Chow ring of these three ex-
amples. These manifolds are not Fano for n ≥ 6, but according to [Ir2], any toric
manifold has generically semisimple quantum cohomology, therefore it can be more
accessible.

(iv) Finally, combining two or more forgetful morphisms, one can birationally
map M0,n and Ln−2 onto products of similar manifolds, thus opening a way to
an inductive calculation of GW–invariants. Here is the simplest example: for n ≥
5, forgetting at first xn, and then all points except for (x1, x2, x3, xn), we get a
birational morphism

M0,n →M0,n−1 ×M0,4, M0,4
∼= P1.

GW–invariants of a product can be calculated via the general quantum Künneth
formula whenever they are known for lesser values of n.

For our main preoccupation here, that of understanding motivic properties of
quantum cohomology correspondences, versions of this last suggestion are most
promising.
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