On the operator space $O U M D$ property for the column Hilbert space C

Yanqi QIU

August 4, 2011

Abstract

The operator space $O U M D$ property was introduced by Pisier in the context of vector-valued noncommutative L_{p}-spaces. It is still unknown whether the property is independent of p in this setting. In this paper, we prove that the column Hilbert space C is $O U M D_{p}$ for all $1<p<\infty$, this answers positively a question asked by Ruan.

1 Introduction

In Banach space valued martingale theory, the $U M D$ property plays an important role. Let us recall briefly the definition of the $U M D$ property. Let $1<p<\infty$, a Banach space B is $U M D_{p}$, if there exists a positive constant which depends on p and the Banach space B (the best one is usually denoted by $C_{p}(B)$), such that for all positive integers n, all sequences $\varepsilon=\left(\varepsilon_{k}\right)_{k=1}^{n}$ of numbers in $\{-1,1\}$ and all B-valued martingale difference sequences $d x=\left(d x_{k}\right)_{k=1}^{n}$, we have

$$
\left\|\sum_{k=1}^{n} \varepsilon_{k} d x_{k}\right\|_{L_{p}([0,1] ; B)} \leq C_{p}(B)\left\|\sum_{k=1}^{n} d x_{k}\right\|_{L_{p}([0,1] ; B)} .
$$

The $U M D$ property has very deep connections with the boundedness of certain singular integral operators such as the Hilbert transform. Burkholder and McConnell Bur83] proved that if a Banach space B is $U M D_{p}$, then the

Hilbert transform is bounded on the Bochner space $L_{p}(\mathbb{T}, m ; B)$. Bourgain [Bou83] showed that if the Hilbert transform is bounded on $L_{p}(\mathbb{T}, m ; B)$, then B is $U M D_{p}$. Pisier proved that the finiteness of $C_{p}(B)$ for some $1<p<\infty$ implies its finiteness for all $1<p<\infty$. Thus we can say the $U M D$ property without mentioning p. Examples of $U M D$ spaces include all the finite dimensional Banach spaces, the Schatten p-classes S_{p} and more generally the noncommutative L_{p}-spaces associated to a von Neumann algebra M, for all $1<p<\infty$. The readers are referred to Burkholder [Bur86, Bur01] for information on $U M D$ spaces.

In his monograph [Pis98], Pisier developed a theory of vector-valued noncommutative L_{p} spaces $L_{p}(\tau ; E)$ associated with a hyperfinite von Neumann algebra M equipped with an normal, semifinite, faithful trace τ, and E is equipped with an operator space structure, see Pis03 for the details on operator space theory. Noncommutative conditional expectations and martingales arise naturally in this setting. Following Pisier, we say that an operator space E is $O U M D_{p}$ for some $1<p<\infty$, if there exists a constant (as before, the best one is usually denoted by $C_{p}^{o s}(E)$, which depends on p and the operator space structure on E) such that any martingale $\left(f_{n}\right)$ in $L_{p}(\tau ; E)$ satisfies
$\forall n \geq 1 \quad \varepsilon_{k}= \pm 1 \quad\left\|f_{0}+\sum_{k=1}^{n} \varepsilon_{k}\left(f_{k}-f_{k-1}\right)\right\|_{L_{p}(\tau ; E)} \leq C_{p}^{o s}(E)\left\|f_{n}\right\|_{L_{p}(\tau ; E)}$.
By a main result of Pisier and Xu in their papers [PX96] and [PX97], the one dimensional operator space \mathbb{C} and all the non-commutative L_{p}-spaces are $O U M D_{p}$. In particular, the Schatten p-class S_{p} is $O U M D_{p}$. Later, in her thesis, Musat Mus06] studied the properties $O U M D_{p}$ and proved that for all $1<p, q<\infty$, the Schatten p-class S_{p} is $O U M D_{q}$. More generally, she proved that for all $1<u, v<\infty$, the spaces $S_{u}\left[S_{v}\right]$ are $O U M D_{p}$ for all $1<p<\infty$. In the end of her paper, she stated explicitly Ruan's question and left it open.

The main theorem of this paper is:
Theorem 1 Let $1<p<\infty$, then $S_{p}[C]$ is $U M D$ as a Banach space.
Using an unpublished result of Musat, we solve completely the problem proposed by Ruan, we state it as follows

Theorem 2 The column Hilbert space C is $O U M D_{p}$ for all $1<p<\infty$.

Our proof relies on properties of the Haagerup tensor product and complex interpolation. In section 2, we briefly recall some necessary definitions and collect some well known results we will use later. In section 3, we prove a slightly more general result and theorem 1 follows as a corollary. In the last section, we investigate some equivalent conditions for an operator space E to be $O U M D_{p}$.

In the Banach space setting, the $U M D$ property is independent of p, and it will be very interesting to know whether $O U M D_{p}$ is independent of p or not.

2 Preliminaries

We refer to Pisier Pis03] for details on operator spaces. By an operator space we mean a closed subspace of $B(H)$ for some complex Hilbert space H. When $E \subset B(H)$ is an operator space, we denote by $M_{n}(E)$ the space of all $n \times n$ matrices with entries in E, equipped with the norm induced by the space $B\left(\ell_{2}^{n} \otimes_{2} H\right)$. Let $e_{i j}$ be the element of $B\left(\ell_{2}\right)$ corresponding to the matrix coefficients equal to one at the (i, j) entry and zero elsewhere. The column Hilbert space C is defined as

$$
C=\overline{\operatorname{span}}\left\{e_{i 1} \mid i \geq 1\right\}
$$

and the row Hilbert space R is defined as

$$
R=\overline{\operatorname{span}}\left\{e_{1 j} \mid j \geq 1\right\}
$$

Ruan Rua88 gave an abstract characterization of operator spaces in terms of matrix norms. An abstract operator space is a vector space E equipped with matrix norms $\|\cdot\|_{m}$ on $M_{m}(E)$ for each positive integer m, satisfying the axioms: for all $x \in M_{m}(E), y \in M_{n}(E)$ and $\alpha, \beta \in M_{m}(\mathbb{C})$, we have

$$
\left\|\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right)\right\|_{m+n}=\max \left\{\|x\|_{m},\|y\|_{n}\right\}, \quad\|\alpha x \beta\|_{m} \leq\|\alpha\|\|x\|_{m}\|\beta\|
$$

This abstract characterization allows us to define many important constructions of new operator spaces from the given ones. Among these are the projective tensor product, the quotient, the dual for operator spaces. The other two operations we will use later in our proof are the Haagerup tensor
product and complex interpolation for operator spaces. Let us recall them briefly.

Let E, F be two operator spaces, the Haagerup tensor product $E \otimes_{h} F$ of E and F is defined as the completion of $E \otimes F$ with respect to the matrix norms

$$
\|u\|_{h, m}=\inf \left\{\|v\|\|w\|: u=v \odot w, v \in M_{m, r}(E), w \in M_{r, m}(F), r \in \mathbb{N}\right\}
$$

where the element $v \odot w \in M_{m}(E \otimes F)$ is defined by $(v \odot w)_{i j}=\sum_{k=1}^{m} v_{i k} \otimes w_{k j}$, for all $1 \leq i, j \leq m$.

We refer to BL76 for details about interpolation spaces of Banach spaces. Now let E_{0}, E_{1} be two operator space, such that $\left(E_{0}, E_{1}\right)$ is a compatible couple in the sense of [BL76], following Pisier, we endow the interpolation space $E_{\theta}=\left(E_{0}, E_{1}\right)_{\theta}$ with a canonical operator space structure by defining for all positive integers m,

$$
M_{m}\left(E_{\theta}\right)=\left(M_{m}\left(E_{0}\right), M_{m}\left(E_{1}\right)\right)_{\theta}
$$

The Haagerup tensor product is injective, projective, self-dual in the finite dimensional case, however, it is not commutative, that is we do not have $E \otimes_{h} F=F \otimes_{h} E$ in general. Moreover the Haagerup tensor product behaves nicely with respect to the complex interpolation, see e.g. Pis96].

Theorem 3 (Kouba) Let $\left(E_{0}, E_{1}\right)$ and $\left(F_{0}, F_{1}\right)$ be two compatible couples of operator spaces. Then $\left(E_{0} \otimes_{h} F_{0}, E_{1} \otimes_{h} F_{1}\right)$ is a compatible couple, and for all $0<\theta<1$ we have a complete isometry

$$
\left(E_{0} \otimes_{h} F_{0}, E_{1} \otimes_{h} F_{1}\right)_{\theta}=\left(E_{0}, E_{1}\right)_{\theta} \otimes_{h}\left(F_{0}, F_{1}\right)_{\theta} .
$$

Let S_{∞} be the space of compact operators on ℓ_{2}, then the embedding $S_{\infty} \subset B\left(\ell_{2}\right)$ gives S_{∞} a natural operator space structure. We know the trace class S_{1} is the dual space of S_{∞}^{*}, thus we can equip S_{1} with the dual operator space structure. Let E be an operator space, following Pisier, the noncommutative vector-valued L_{p}-spaces in the discrete case are defined by

$$
\begin{aligned}
S_{\infty}^{m}[E]=S_{\infty}^{m} \otimes_{\min } E, & S_{\infty}[E]=S_{\infty} \otimes_{\min } E, \\
S_{1}^{m}[E]=S_{1}^{m} \otimes^{\wedge} E, & S_{1}[E]=S_{1} \otimes^{\wedge} E
\end{aligned}
$$

It turns out that $\left(S_{\infty}[E], S_{1}[E]\right)$ is a compatible couple, and for $1<p<\infty$, we define

$$
S_{p}^{m}[E]=\left(S_{\infty}^{m}[E], S_{1}^{m}[E]\right)_{\frac{1}{p}}, \quad S_{p}[E]=\left(S_{\infty}[E], S_{1}[E]\right)_{\frac{1}{p}}
$$

For $1 \leq p \leq \infty$, denote by C_{p} and R_{p} the column subspace and the row subspace of S_{p}, we endow S_{p} with the canonical operator space structure given by the complex interpolation $S_{p}=\left(S_{\infty}, S_{1}\right)_{\frac{1}{p}}$, and endow C_{p} and R_{p} with the induced operator space structure. It is easy to see that the natural identification between C_{p} and $R_{p^{\prime}}$ is a complete isometry, where p^{\prime} is the conjugate exponent of p, i.e. $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. We will need the following equality from [Pis98]:

$$
C_{p}=\left(C_{\infty}, C_{1}\right)_{\frac{1}{p}}
$$

and more generally, if $\frac{1}{p_{\theta}}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$, then $C_{p_{\theta}}=\left(C_{p_{0}}, C_{p_{1}}\right)_{\theta}$. With these notations, we have

$$
S_{p}[E]=C_{p} \otimes_{h} E \otimes_{h} R_{p}
$$

Let us end this section by stating some well known results, we refer to Musat [Mus06] for the details.

Proposition 4 Let $1<p<\infty$, and E be an operator space. If E is $O U M D_{p}$, then $S_{p}[E]$ is $U M D$ (as a Banach space).

Theorem 5 ([Mus06]) If $1<p, q, u<\infty$, then $S_{q}\left[S_{u}\right]$ is $O U M D_{p}$.
Combining these two statements, we have
Theorem 6 If $1<p, q, u<\infty$, then $S_{p}\left[S_{q}\left[S_{u}\right]\right]$ is $U M D$ as a Banach space.

3 Main results

Lemma 7 Let $1<p_{1}, p_{2}, p_{3}<\infty$, then $C_{p_{1}} \otimes_{h} C_{p_{2}} \otimes_{h} C_{p_{3}}$ is UMD as a Banach space.

Proof. We have the following embeding
$C_{p_{1}} \otimes_{h} C_{p_{2}} \otimes_{h} C_{p_{3}} \subset C_{p_{1}} \otimes_{h} C_{p_{2}} \otimes_{h} C_{p_{3}} \otimes_{h} R_{p_{3}} \otimes_{h} R_{p_{2}} \otimes_{h} R_{p_{1}}=S_{p_{1}}\left[S_{p_{2}}\left[S_{p_{3}}\right]\right]$,
The space $S_{p_{1}}\left[S_{p_{2}}\left[S_{p_{3}}\right]\right]$ is $U M D$ as a Banach space, hence $C_{p_{1}} \otimes_{h} C_{p_{2}} \otimes_{h} C_{p_{3}}$ is also $U M D$.

Now we can state and prove our main result.
Theorem 8 Let either $1<p_{1}, p_{2}, p_{3} \leq \infty$ or $1 \leq p_{1}, p_{2}, p_{3}<\infty$, then $C_{p_{1}} \otimes_{h} C_{p_{2}} \otimes_{h} C_{p_{3}}$ is UMD as a Banach space.

Proof. Assume that $1<p_{1}, p_{2}, p_{3} \leq \infty$. Since $p_{i}>1$ for all $i=1,2,3$, we can choose $0<\theta<1$ small enough so that $\tilde{p}_{i}=(1-\theta) p_{i}>1$. In other words, we have

$$
\frac{1}{p_{i}}=\frac{1-\theta}{\tilde{p}_{i}}+\frac{\theta}{\infty},
$$

by complex interpolation, we have $C_{p_{i}}=\left(C_{\tilde{p}_{i}}, C_{\infty}\right)_{\theta}$. It follows from the multilinear version of theorem 3,

$$
C_{p_{1}} \otimes_{h} C_{p_{2}} \otimes_{h} C_{p_{3}}=\left(C_{\tilde{p}_{1}} \otimes_{h} C_{\tilde{p}_{2}} \otimes_{h} C_{\tilde{p}_{3}}, C_{\infty} \otimes_{h} C_{\infty} \otimes_{h} C_{\infty}\right)_{\theta}
$$

We know $C_{\infty} \otimes_{h} C_{\infty} \otimes_{h} C_{\infty}$ is a Hilbertian space, and the same for $C_{1} \otimes_{h}$ $C_{1} \otimes_{h} C_{1}$. Thus, we have an isometry equality for the underlying Banach spaces

$$
C_{p_{1}} \otimes_{h} C_{p_{2}} \otimes_{h} C_{p_{3}}=\left(C_{\tilde{p}_{1}} \otimes_{h} C_{\tilde{p}_{2}} \otimes_{h} C_{\tilde{p}_{3}}, C_{1} \otimes_{h} C_{1} \otimes_{h} C_{1}\right)_{\theta} .
$$

Applying once more the multilinear version of theorem 3, we have equality of operator spaces

$$
\left(C_{\tilde{p}_{1}} \otimes_{h} C_{\tilde{p}_{2}} \otimes_{h} C_{\tilde{p}_{3}}, C_{1} \otimes_{h} C_{1} \otimes_{h} C_{1}\right)_{\theta}=C_{q_{1}} \otimes_{h} C_{q_{2}} \otimes_{h} C_{q_{3}},
$$

where $\frac{1}{q_{i}}=\frac{1-\theta}{\tilde{p}_{i}}+\frac{\theta}{1}$, in particular $1<q_{i}<\infty$ for $i=1,2,3$. Now we are exactly in the situation of lemma 7, so the underlying Banach space of $C_{q_{1}} \otimes_{h} C_{q_{2}} \otimes_{h} C_{q_{3}}$ is $U M D$, and hence $C_{p_{1}} \otimes_{h} C_{p_{2}} \otimes_{h} C_{q_{3}}$ is $U M D$ as a Banach space. By a duality argument, $C_{p_{1}} \otimes_{h} C_{p_{2}} \otimes_{h} C_{q_{3}}$ is also $U M D$ if we assume $1 \leq p_{1}, p_{2}, p_{3}<\infty$.

Now we can prove theorem 1
Proof. Let $1<p<\infty, S_{p}[C]=C_{p} \otimes_{h} C \otimes_{h} R_{p}=C_{p} \otimes_{h} C_{\infty} \otimes_{h} C_{p^{\prime}}$, applying theorem 3, we get that $S_{p}[C]$ is $U M D$.

Let us end this section by mentioning an unpublished result of Musat, she proved that the converse of proposition 4 is also true,

Theorem 9 (Musat) Let $1<p<\infty$, and E be an operator space. Then E is $O U M D_{p}$ if and only if $S_{p}[E]$ is $U M D$ as a Banach space.

Thus our theorem 2 follows directly from theorem 1 .
Remark 10 If one compares with Banach space theory, our main result is slightly surprising. Indeed, it is known that for any UMD Banach space X there is a function $n \mapsto F(n)$ that is $o(\sqrt{n})$ such that for any n and any n-dimensional subspace $E \subset X$, the Banach-Mazur distance $d\left(E, \ell_{2}^{n}\right)$ is $\leq F(n)$. This follows from a result due to Milman and Wolfson MmW78 (and the fact that UMD implies that X does not contain ℓ_{1}^{n} 's uniformly). In sharp contrast, it is known (see [Pis03] p. 219) that if we denote by R_{n} and C_{n} the n-dimensional versions of R and C, we have $d_{c b}\left(C_{n}, O H_{n}\right)=$ $d_{c b}\left(R_{n}, O H_{n}\right)=\sqrt{n}$.

4 Further results

In this section, we give some necessary and sufficient conditions for the space $S_{p}[E]$ to be $U M D$. We give the equivalence between the $U M D$ property and the boundedness of the triangular projection on $S_{p}[E]$. Then we apply this equivalence to prove that E is $O U M D_{p}$ if and only if E is $O U M D_{p}$ with respect to the so-called canonical filtration of matrix algebras.

We first give the following simple propostion.
Proposition 11 Let $1<p<\infty$, if we denote by \mathcal{R} the Riesz projection $\mathcal{R}: L_{p}(\mathbb{T}, m) \rightarrow L_{p}(\mathbb{T}, m)$ defined by

$$
\sum_{\text {finite }} x_{n} z^{n} \mapsto \sum_{n \geq 0} x_{n} z^{n}
$$

Then $S_{p}[E]$ is $U M D$ if and only if

$$
\mathcal{R}_{E}:=I d_{E} \otimes \mathcal{R}: L_{p}(\mathbb{T}, m ; E) \rightarrow L_{p}(\mathbb{T}, m ; E)
$$

is completely bounded.
Proof. As is well-known, $S_{p}[E]$ is $U M D$ if and only if the corresponding Riesz projection $I d_{S_{p}[E]} \otimes \mathcal{R}: L_{p}\left(\mathbb{T}, m ; S_{p}[E]\right) \rightarrow L_{p}\left(\mathbb{T}, m ; S_{p}[E]\right)$ is bounded. By the non-commutative Fubini theorem, the natural identification between
$L_{p}\left(\mathbb{T}, m ; S_{p}[E]\right)$ and $S_{p}\left[L_{p}(\mathbb{T}, m ; E)\right]$ is a complete isometric isomorphism. In this identification, $I d_{S_{p}[E]} \otimes \mathcal{R}$ becomes

$$
I d_{S_{p}} \otimes \mathcal{R}_{E}: S_{p}\left[L_{p}(\mathbb{T}, m ; E)\right] \rightarrow S_{p}\left[L_{p}(\mathbb{T}, m ; E)\right]
$$

A very useful result in Pis98 tell us that $\left\|\mathcal{R}_{E}\right\|_{c b}=\left\|I d_{S_{p}} \otimes \mathcal{R}_{E}\right\|$, this ends our proof.

The next theorem can be viewed as a special case of one result in NR
Theorem 12 Let T_{E} be the triangular projection on $S_{p}[E]$ defined by

$$
\left(x_{i j}\right) \mapsto\left(x_{i j} 1_{j \geq i}\right) .
$$

Then $\left\|T_{E}\right\|_{c b}=\left\|T_{E}\right\|=\left\|\mathcal{R}_{E}\right\|_{c b}$.
We refer to JX05 and JX08 for details of the canonical matrix filtration. As usual, we regard M_{n} as a non-unital subalgebra of $M_{\infty}=B\left(\ell_{2}\right)$ by viewing an $n \times n$ matrix as an infinite one whose left upper corner of size $n \times n$ is the given $n \times n$ matrix, and all other entries are zero. The unit of M_{n} is the projection $e_{n} \in M_{\infty}$ which projects a sequence in ℓ_{2} into its first n coordinates. The canonical matrix filtration is the increasing filtration $\left(M_{n}\right)_{n \geq 1}$ of subalgebras of M_{∞}. We denote by $E_{n}: M_{\infty} \rightarrow M_{n}$ the corresponding conditional expectation, clearly, we have

$$
E_{n}(a)=e_{n} a e_{n}=\sum_{\max (i, j) \leq n} a_{i j} \otimes e_{i j}, \quad a=\left(a_{i j}\right) \in M_{\infty} .
$$

Note that E_{n} is not faithful.
We can define the $O U M D_{p}$ property with this canonical matrix filtration. Let $x \in S_{p}[E]$. We have $d_{1} x=E_{1}(x)$ and $d_{n} x=E_{n}(x)-E_{n-1}(x)$ for $n \geq 2$. Then E is said to be $O U M D_{p}$ with respect to the canonical matrix filtration, if there exists a constant K_{p}, such that for all positive integer N and all choice of signs $\varepsilon_{n}= \pm 1$, we have

$$
\left\|\sum_{n=1}^{N} \varepsilon_{n} d_{n} x\right\|_{S_{p}[E]} \leq K_{p}\|x\|_{S_{p}[E]} .
$$

Let us denote the best such constant by $K_{p}(E)$.

Every choice of signs ε generates a transformation T_{ε} defined by $T_{\varepsilon}(x)=$ $\sum_{n} \varepsilon_{n} d_{n} x$. We will say an element $x \in S_{p}[E]$ is of finite support if the support of x defined as the subset $\operatorname{supp}(x)=\left\{(i, j) \in \mathbb{N}^{2}: x_{i j} \neq 0\right\}$ is finite. Note that T_{ε} is always well-defined on the subspace of finite supported elements.

An operator space E is $O U M D_{p}$ with respect to the canonical matrix filtration if for every choice of signs ε, we have

$$
\left\|T_{\varepsilon}(x)\right\|_{S_{p}[E]} \leq K_{p}(E)\|x\|_{S_{p}[E]}, \quad|\operatorname{supp}(x)|<\infty
$$

Remark 13 The transformation T_{ε} is a Schur multiplication associated with the function $f_{\varepsilon}(i, j)=\varepsilon_{\max (i, j)}$. Indeed, pick up an arbitrary element $x=$ $\left(x_{i j}\right) \in S_{p}^{N}[E]$, we have

$$
d_{n} x=\sum_{\max (i, j) \leq n} x_{i j} \otimes e_{i j}-\sum_{\max (i, j) \leq n-1} x_{i j} \otimes e_{i j}=\sum_{\max (i, j)=n} x_{i j} \otimes e_{i j},
$$

thus

$$
T_{\varepsilon}(x)=\sum_{n=1}^{N} \varepsilon_{n} d_{n} x=\sum_{n=1}^{N} \varepsilon_{n} \sum_{\max (i, j)=n} x_{i j} \otimes e_{i j}=\left(\varepsilon_{\max (i, j)} x_{i j}\right)
$$

Remark 14 Let $D_{\varepsilon}=\operatorname{diag}\left\{\varepsilon_{1}, \cdots, \varepsilon_{n}, \cdots\right\}$. Then $T_{\varepsilon}(x)$ multiplied on the left by the scalar matrix D_{ε}, we get $D_{\varepsilon} T_{\varepsilon}(x)=\left(\varepsilon_{i} \varepsilon_{\max (i, j)} x_{i j}\right)$. After taking the average according to independent uniformly distributed choices of signs, we get the lower triangular projection of x, i.e, we have

$$
\int D_{\varepsilon} T_{\varepsilon}(x) d \varepsilon=\int\left(\varepsilon_{i} \varepsilon_{\max (i, j)} x_{i j}\right) d \varepsilon=\left(x_{i j} 1_{i \geq j}\right)
$$

The following result is inspired by JX05 and JX08]
Theorem 15 Let $1<p<\infty$, then E is $O U M D_{p}$ if and only if it is $O U M D_{p}$ with respect to the canonical matrix filtration. Moreover, we have:

$$
\frac{1}{2}\left(K_{p}(E)-1\right) \leq\left\|T_{E}\right\| \leq K_{p}(E)+2
$$

Proof. Assume that E is $O U M D_{p}$, then $S_{p}[E]$ is $U M D$ and the triangular projection T_{E} is bounded. Let T_{E}^{-}be the triangular projection defined by $\left(x_{i j}\right) \mapsto\left(x_{i j} 1_{j \leq i}\right)$, it is clear that $\left\|T_{E}\right\|=\left\|T_{E}^{-}\right\|$. We have

$$
d_{n} x=d_{n} T_{E} x+d_{n} T_{E}^{-}-D_{n} x,
$$

where $D_{n} x=e_{n n} x e_{n n}$. Thus

$$
\begin{aligned}
\left\|\sum \varepsilon_{n} d_{n} x\right\|_{S_{p}[E]} \leq & \left\|\sum \varepsilon_{n} d_{n} T_{E} x\right\|_{S_{p}[E]}+\left\|\sum \varepsilon_{n} d_{n} T_{E}^{-} x\right\|_{S_{p}[E]} \\
& +\left\|\sum \varepsilon_{n} D_{n} x\right\|_{S_{p}[E]} .
\end{aligned}
$$

Since $d_{n} T_{E} x$ is the n-th column of $T_{E} x$, it is easy to see

$$
\left\|\sum \varepsilon_{n} d_{n} T_{E} x\right\|_{S_{p}[E]}=\left\|\sum d_{n} T_{E} x\right\|_{S_{p}[E]}=\left\|T_{E} x\right\|_{S_{p}[E]} \leq\left\|T_{E}\right\|\|x\|_{S_{p}[E]}
$$

The same reason shows that

$$
\left\|\sum \varepsilon_{n} d_{n} T_{E}^{-} x\right\|_{S_{p}[E]}=\left\|\sum d_{n} T_{E}^{-} x\right\|_{S_{p}[E]}=\left\|T_{E}^{-} x\right\|_{S_{p}[E]} \leq\left\|T_{E}^{-}\right\|\|x\|_{S_{p}[E]}
$$

For the third term, we have obviously that

$$
\left\|\sum \varepsilon_{n} D_{n} x\right\|_{S_{p}[E]}=\left\|\sum D_{n} x\right\|_{S_{p}[E]} \leq\|x\|_{S_{p}[E]}
$$

Combining these inequalities, we have

$$
\left\|\sum \varepsilon_{n} d_{n} x\right\|_{S_{p}[E]} \leq\left(\left\|T_{E}\right\|+\left\|T_{E}^{-}\right\|+1\right)\|x\|_{S_{p}[E]}=\left(2\left\|T_{E}\right\|+1\right)\|x\|_{S_{p}[E]} .
$$

So E is $O U M D_{p}$ with respect to the canonical matrix filtration with $K_{p}(E) \leq$ $2\left\|T_{E}\right\|+1$.

Conversely, assume that E is $O U M D_{p}$ with respect to the canonical matrix filtration. We shall show that E is $O U M D_{p}$. It suffices to show that the triangular projection T_{E} is bounded. According to the remark [14, we have

$$
\left\|\left(x_{i j} 1_{i \geq j}\right)\right\|_{S_{p}[E]} \leq \int\left\|D_{\varepsilon} T_{\varepsilon}(x)\right\|_{S_{p}[E]} \mathrm{d} \varepsilon \leq K_{p}(E)\|x\|_{S_{p}[E]}
$$

Then it is rather easy to deduce that $\left\|\left(x_{i j} 1_{j \geq i}\right)\right\|_{S_{p}[E]} \leq\left(2+K_{p}(E)\right)\|x\|_{S_{p}[E]}$, so the upper triangular projection on $S_{p}[E]$ is bounded and

$$
\left\|T_{E}\right\| \leq 2+K_{p}(E)
$$

Remark 16 We have a sligtly better estimation for $\left\|T_{E}\right\|$ and $K_{p}(E)$, i.e, we can prove that

$$
\frac{1}{2}\left(K_{p}(E)-1\right) \leq\left\|T_{E}\right\| \leq \frac{1}{2}\left(K_{p}(E)+1\right)
$$

We omit the proof here.

Acknowledgements

I am extremely grateful to my advisor Gilles Pisier. This work could not have been completed without his constant help, encouragements and especially his deep sight into this mathematical area. Special thanks are to Quanhua Xu, for his helpful suggestion.

References

[BL76] Jöran Bergh and Jörgen Löfström. Interpolation spaces. An introduction. Springer-Verlag, Berlin, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.
[Bou83] J. Bourgain. Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat., 21(2):163-168, 1983.
[Bur83] D. L. Burkholder. A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. In Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser., pages 270-286. Wadsworth, Belmont, CA, 1983.
[Bur86] Donald L. Burkholder. Martingales and Fourier analysis in Banach spaces. In Probability and analysis (Varenna, 1985), volume 1206 of Lecture Notes in Math., pages 61-108. Springer, Berlin, 1986.
[Bur01] Donald L. Burkholder. Martingales and singular integrals in Banach spaces. In Handbook of the geometry of Banach spaces, Vol. I, pages 233-269. North-Holland, Amsterdam, 2001.
[JX05] Marius Junge and Quanhua Xu. On the best constants in some non-commutative martingale inequalities. Bull. London Math. Soc., 37(2):243-253, 2005.
[JX08] Marius Junge and Quanhua Xu. Noncommutative Burkholder/Rosenthal inequalities. II. Applications. Israel J. Math., 167:227-282, 2008.
[MmW78] V. D. Mil' man and H. Wolfson. Minkowski spaces with extremal distance from the Euclidean space. Israel J. Math., 29(2-3):113131, 1978.
[Mus06] Magdalena Musat. On the operator space UMD property for noncommutative L_{p}-spaces. Indiana Univ. Math. J., 55(6):1857-1891, 2006.
[NR] S. Neuwirth and É. Ricard. Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group. To appear in Canadian J. Math.
[Pis96] Gilles Pisier. The operator Hilbert space OH, complex interpolation and tensor norms. Mem. Amer. Math. Soc., 122(585):viii $+103,1996$.
[Pis98] Gilles Pisier. Non-commutative vector valued L_{p}-spaces and completely p-summing maps. Astérisque, 247:vi+131, 1998.
[Pis03] Gilles Pisier. Introduction to operator space theory, volume 294 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2003.
[PX96] Gilles Pisier and Quanhua Xu. Inégalités de martingales non commutatives. C. R. Acad. Sci. Paris Sér. I Math., 323(7):817-822, 1996.
[PX97] Gilles Pisier and Quanhua Xu. Non-commutative martingale inequalities. Comm.Math.Phy, 189:667, 1997.
[Rua88] Zhong-Jin Ruan. Subspaces of C^{*}-algebras. J. Funct. Anal., 76(1):217-230, 1988.

