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Abstract

The operator space OUMD property was introduced by Pisier in the context
of vector-valued noncommutative Lp-spaces. It is still unknown whether the
property is independent of p in this setting. In this paper, we prove that
the column Hilbert space C is OUMDp for all 1 < p < ∞, this answers
positively a question asked by Ruan.

1 Introduction

In Banach space valued martingale theory, the UMD property plays an im-
portant role. Let us recall briefly the definition of the UMD property. Let
1 < p < ∞, a Banach space B is UMDp, if there exists a positive con-
stant which depends on p and the Banach space B (the best one is usu-
ally denoted by Cp(B)), such that for all positive integers n, all sequences
ε = (εk)

n
k=1 of numbers in {−1, 1} and all B-valued martingale difference

sequences dx = (dxk)
n
k=1, we have

‖
n

∑

k=1

εkdxk‖Lp([0,1];B) ≤ Cp(B)‖
n

∑

k=1

dxk‖Lp([0,1];B).

The UMD property has very deep connections with the boundedness of cer-
tain singular integral operators such as the Hilbert transform. Burkholder
and McConnell [Bur83] proved that if a Banach space B is UMDp, then the
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Hilbert transform is bounded on the Bochner space Lp(T, m;B). Bourgain
[Bou83] showed that if the Hilbert transform is bounded on Lp(T, m;B), then
B is UMDp. Pisier proved that the finiteness of Cp(B) for some 1 < p < ∞
implies its finiteness for all 1 < p < ∞. Thus we can say the UMD prop-
erty without mentioning p. Examples of UMD spaces include all the finite
dimensional Banach spaces, the Schatten p-classes Sp and more generally
the noncommutative Lp-spaces associated to a von Neumann algebra M , for
all 1 < p < ∞. The readers are referred to Burkholder [Bur86, Bur01] for
information on UMD spaces.

In his monograph [Pis98], Pisier developed a theory of vector-valued non-
commutative Lp spaces Lp(τ ;E) associated with a hyperfinite von Neumann
algebra M equipped with an normal, semifinite, faithful trace τ , and E is
equipped with an operator space structure, see [Pis03] for the details on op-
erator space theory. Noncommutative conditional expectations and martin-
gales arise naturally in this setting. Following Pisier, we say that an operator
space E is OUMDp for some 1 < p < ∞, if there exists a constant (as be-
fore, the best one is usually denoted by Cos

p (E), which depends on p and the
operator space structure on E) such that any martingale (fn) in Lp(τ ;E)
satisfies

∀n ≥ 1 εk = ±1 ‖f0 +
n

∑

k=1

εk(fk − fk−1)‖Lp(τ ;E) ≤ Cos
p (E)‖fn‖Lp(τ ;E).

By a main result of Pisier and Xu in their papers [PX96] and [PX97], the
one dimensional operator space C and all the non-commutative Lp-spaces
are OUMDp. In particular, the Schatten p-class Sp is OUMDp. Later, in
her thesis, Musat [Mus06] studied the properties OUMDp and proved that
for all 1 < p, q < ∞, the Schatten p-class Sp is OUMDq. More generally,
she proved that for all 1 < u, v < ∞, the spaces Su[Sv] are OUMDp for all
1 < p < ∞. In the end of her paper, she stated explicitly Ruan’s question
and left it open.

The main theorem of this paper is:

Theorem 1 Let 1 < p < ∞, then Sp[C] is UMD as a Banach space.

Using an unpublished result of Musat, we solve completely the problem
proposed by Ruan, we state it as follows

Theorem 2 The column Hilbert space C is OUMDp for all 1 < p < ∞.
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Our proof relies on properties of the Haagerup tensor product and complex
interpolation. In section 2, we briefly recall some necessary definitions and
collect some well known results we will use later. In section 3, we prove a
slightly more general result and theorem 1 follows as a corollary. In the last
section, we investigate some equivalent conditions for an operator space E

to be OUMDp.
In the Banach space setting, the UMD property is independent of p, and

it will be very interesting to know whether OUMDp is independent of p or
not.

2 Preliminaries

We refer to Pisier [Pis03] for details on operator spaces. By an operator
space we mean a closed subspace of B(H) for some complex Hilbert space
H . When E ⊂ B(H) is an operator space, we denote by Mn(E) the space
of all n× n matrices with entries in E, equipped with the norm induced by
the space B(ℓn2 ⊗2 H). Let eij be the element of B(ℓ2) corresponding to the
matrix coefficients equal to one at the (i, j) entry and zero elsewhere. The
column Hilbert space C is defined as

C = span{ei1|i ≥ 1}

and the row Hilbert space R is defined as

R = span{e1j |j ≥ 1}.

Ruan [Rua88] gave an abstract characterization of operator spaces in terms
of matrix norms. An abstract operator space is a vector space E equipped
with matrix norms ‖ · ‖m on Mm(E) for each positive integer m, satisfying
the axioms: for all x ∈ Mm(E), y ∈ Mn(E) and α, β ∈ Mm(C), we have

∥

∥

∥

∥

(

x 0
0 y

)
∥

∥

∥

∥

m+n

= max{‖x‖m, ‖y‖n}, ‖αxβ‖m ≤ ‖α‖‖x‖m‖β‖.

This abstract characterization allows us to define many important construc-
tions of new operator spaces from the given ones. Among these are the
projective tensor product, the quotient, the dual for operator spaces. The
other two operations we will use later in our proof are the Haagerup tensor

3



product and complex interpolation for operator spaces. Let us recall them
briefly.

Let E, F be two operator spaces, the Haagerup tensor product E⊗h F of
E and F is defined as the completion of E ⊗ F with respect to the matrix
norms

‖u‖h,m = inf{‖v‖‖w‖ : u = v ⊙ w, v ∈ Mm,r(E), w ∈ Mr,m(F ), r ∈ N},

where the element v⊙w ∈ Mm(E⊗F ) is defined by (v⊙w)ij =
∑m

k=1 vik⊗wkj ,
for all 1 ≤ i, j ≤ m.

We refer to [BL76] for details about interpolation spaces of Banach spaces.
Now let E0, E1 be two operator space, such that (E0, E1) is a compatible
couple in the sense of [BL76], following Pisier, we endow the interpolation
space Eθ = (E0, E1)θ with a canonical operator space structure by defining
for all positive integers m,

Mm(Eθ) = (Mm(E0),Mm(E1))θ.

The Haagerup tensor product is injective, projective, self-dual in the finite
dimensional case, however, it is not commutative, that is we do not have
E⊗hF = F ⊗hE in general. Moreover the Haagerup tensor product behaves
nicely with respect to the complex interpolation, see e.g. [Pis96].

Theorem 3 (Kouba) Let (E0, E1) and (F0, F1) be two compatible couples of
operator spaces. Then (E0 ⊗h F0, E1 ⊗h F1) is a compatible couple, and for
all 0 < θ < 1 we have a complete isometry

(E0 ⊗h F0, E1 ⊗h F1)θ = (E0, E1)θ ⊗h (F0, F1)θ.

Let S∞ be the space of compact operators on ℓ2, then the embedding
S∞ ⊂ B(ℓ2) gives S∞ a natural operator space structure. We know the
trace class S1 is the dual space of S∗

∞, thus we can equip S1 with the dual
operator space structure. Let E be an operator space, following Pisier, the
noncommutative vector-valued Lp-spaces in the discrete case are defined by

Sm
∞[E] = Sm

∞ ⊗min E, S∞[E] = S∞ ⊗min E,

Sm
1 [E] = Sm

1 ⊗∧ E, S1[E] = S1 ⊗∧ E.
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It turns out that (S∞[E], S1[E]) is a compatible couple, and for 1 < p < ∞,
we define

Sm
p [E] = (Sm

∞[E], Sm
1 [E]) 1

p
, Sp[E] = (S∞[E], S1[E]) 1

p
.

For 1 ≤ p ≤ ∞, denote by Cp and Rp the column subspace and the row
subspace of Sp, we endow Sp with the canonical operator space structure
given by the complex interpolation Sp = (S∞, S1) 1

p
, and endow Cp and Rp

with the induced operator space structure. It is easy to see that the natural
identification between Cp and Rp′ is a complete isometry, where p′ is the
conjugate exponent of p, i.e. 1

p
+ 1

p′
= 1. We will need the following equality

from [Pis98]:
Cp = (C∞, C1) 1

p
,

and more generally, if 1
pθ

= 1−θ
p0

+ θ
p1
, then Cpθ = (Cp0, Cp1)θ. With these

notations, we have
Sp[E] = Cp ⊗h E ⊗h Rp.

Let us end this section by stating some well known results, we refer to
Musat [Mus06] for the details.

Proposition 4 Let 1 < p < ∞, and E be an operator space. If E is
OUMDp, then Sp[E] is UMD (as a Banach space).

Theorem 5 ([Mus06]) If 1 < p, q, u < ∞, then Sq[Su] is OUMDp.

Combining these two statements, we have

Theorem 6 If 1 < p, q, u < ∞, then Sp[Sq[Su]] is UMD as a Banach space.

3 Main results

Lemma 7 Let 1 < p1, p2, p3 < ∞, then Cp1 ⊗h Cp2 ⊗h Cp3 is UMD as a
Banach space.

Proof. We have the following embeding

Cp1 ⊗h Cp2 ⊗h Cp3 ⊂ Cp1 ⊗h Cp2 ⊗h Cp3 ⊗h Rp3 ⊗h Rp2 ⊗h Rp1 = Sp1 [Sp2[Sp3]],

The space Sp1[Sp2 [Sp3]] is UMD as a Banach space, hence Cp1 ⊗h Cp2 ⊗h Cp3

is also UMD. �
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Now we can state and prove our main result.

Theorem 8 Let either 1 < p1, p2, p3 ≤ ∞ or 1 ≤ p1, p2, p3 < ∞, then
Cp1 ⊗h Cp2 ⊗h Cp3 is UMD as a Banach space.

Proof. Assume that 1 < p1, p2, p3 ≤ ∞. Since pi > 1 for all i = 1, 2, 3, we
can choose 0 < θ < 1 small enough so that p̃i = (1 − θ)pi > 1. In other
words, we have

1

pi
=

1− θ

p̃i
+

θ

∞ ,

by complex interpolation, we have Cpi = (Cp̃i, C∞)θ. It follows from the
multilinear version of theorem 3,

Cp1 ⊗h Cp2 ⊗h Cp3 = (Cp̃1 ⊗h Cp̃2 ⊗h Cp̃3, C∞ ⊗h C∞ ⊗h C∞)θ.

We know C∞ ⊗h C∞ ⊗h C∞ is a Hilbertian space, and the same for C1 ⊗h

C1 ⊗h C1. Thus, we have an isometry equality for the underlying Banach
spaces

Cp1 ⊗h Cp2 ⊗h Cp3 = (Cp̃1 ⊗h Cp̃2 ⊗h Cp̃3, C1 ⊗h C1 ⊗h C1)θ.

Applying once more the multilinear version of theorem 3, we have equality
of operator spaces

(Cp̃1 ⊗h Cp̃2 ⊗h Cp̃3, C1 ⊗h C1 ⊗h C1)θ = Cq1 ⊗h Cq2 ⊗h Cq3,

where 1
qi

= 1−θ
p̃i

+ θ
1
, in particular 1 < qi < ∞ for i = 1, 2, 3. Now we

are exactly in the situation of lemma 7, so the underlying Banach space of
Cq1⊗hCq2⊗hCq3 is UMD, and hence Cp1⊗hCp2⊗hCq3 is UMD as a Banach
space. By a duality argument, Cp1 ⊗h Cp2 ⊗h Cq3 is also UMD if we assume
1 ≤ p1, p2, p3 < ∞. �

Now we can prove theorem 1

Proof. Let 1 < p < ∞, Sp[C] = Cp⊗hC⊗hRp = Cp⊗hC∞⊗hCp′, applying
theorem 3, we get that Sp[C] is UMD. �

Let us end this section by mentioning an unpublished result of Musat,
she proved that the converse of proposition 4 is also true,
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Theorem 9 (Musat) Let 1 < p < ∞, and E be an operator space. Then E

is OUMDp if and only if Sp[E] is UMD as a Banach space.

Thus our theorem 2 follows directly from theorem 1.

Remark 10 If one compares with Banach space theory, our main result is
slightly surprising. Indeed, it is known that for any UMD Banach space
X there is a function n 7→ F (n) that is o(

√
n) such that for any n and

any n-dimensional subspace E ⊂ X, the Banach-Mazur distance d(E, ℓn2) is
≤ F (n). This follows from a result due to Milman and Wolfson [MmW78]
(and the fact that UMD implies that X does not contain ℓn1 ’s uniformly). In
sharp contrast, it is known (see [Pis03] p. 219 ) that if we denote by Rn

and Cn the n-dimensional versions of R and C, we have dcb(Cn, OHn) =
dcb(Rn, OHn) =

√
n.

4 Further results

In this section, we give some necessary and sufficient conditions for the space
Sp[E] to be UMD. We give the equivalence between the UMD property and
the boundedness of the triangular projection on Sp[E]. Then we apply this
equivalence to prove that E is OUMDp if and only if E is OUMDp with
respect to the so-called canonical filtration of matrix algebras.

We first give the following simple propostion.

Proposition 11 Let 1 < p < ∞, if we denote by R the Riesz projection
R : Lp(T, m) → Lp(T, m) defined by

∑

finite

xnz
n 7→

∑

n≥0

xnz
n.

Then Sp[E] is UMD if and only if

RE := IdE ⊗ R : Lp(T, m;E) → Lp(T, m;E)

is completely bounded.

Proof. As is well-known, Sp[E] is UMD if and only if the corresponding
Riesz projection IdSp[E]⊗R : Lp(T, m;Sp[E]) → Lp(T, m;Sp[E]) is bounded.
By the non-commutative Fubini theorem, the natural identification between
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Lp(T, m;Sp[E]) and Sp[Lp(T, m;E)] is a complete isometric isomorphism. In
this identification, IdSp[E] ⊗ R becomes

IdSp
⊗ RE : Sp[Lp(T, m;E)] → Sp[Lp(T, m;E)].

A very useful result in [Pis98] tell us that ‖RE‖cb = ‖IdSp
⊗ RE‖, this ends

our proof. �

The next theorem can be viewed as a special case of one result in [NR]

Theorem 12 Let TE be the triangular projection on Sp[E] defined by

(xij) 7→ (xij1j≥i).

Then ‖TE‖cb = ‖TE‖ = ‖RE‖cb.

We refer to [JX05] and [JX08] for details of the canonical matrix filtra-
tion. As usual, we regard Mn as a non-unital subalgebra of M∞ = B(ℓ2)
by viewing an n × n matrix as an infinite one whose left upper corner of
size n × n is the given n × n matrix, and all other entries are zero. The
unit of Mn is the projection en ∈ M∞ which projects a sequence in ℓ2 into
its first n coordinates. The canonical matrix filtration is the increasing fil-
tration (Mn)n≥1 of subalgebras of M∞. We denote by En : M∞ → Mn the
corresponding conditional expectation, clearly, we have

En(a) = enaen =
∑

max(i,j)≤n

aij ⊗ eij, a = (aij) ∈ M∞.

Note that En is not faithful.
We can define the OUMDp property with this canonical matrix filtration.

Let x ∈ Sp[E]. We have d1x = E1(x) and dnx = En(x)− En−1(x) for n ≥ 2.
Then E is said to be OUMDp with respect to the canonical matrix filtration,
if there exists a constant Kp, such that for all positive integer N and all choice
of signs εn = ±1, we have

‖
N
∑

n=1

εndnx‖Sp[E] ≤ Kp‖x‖Sp[E].

Let us denote the best such constant by Kp(E).
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Every choice of signs ε generates a transformation Tε defined by Tε(x) =
∑

n εndnx. We will say an element x ∈ Sp[E] is of finite support if the support
of x defined as the subset supp(x) = {(i, j) ∈ N2 : xij 6= 0} is finite. Note
that Tε is always well-defined on the subspace of finite supported elements.

An operator space E is OUMDp with respect to the canonical matrix
filtration if for every choice of signs ε, we have

‖Tε(x)‖Sp[E] ≤ Kp(E)‖x‖Sp[E], |supp(x)| < ∞.

Remark 13 The transformation Tε is a Schur multiplication associated with
the function fε(i, j) = εmax(i,j). Indeed, pick up an arbitrary element x =
(xij) ∈ SN

p [E], we have

dnx =
∑

max(i,j)≤n

xij ⊗ eij −
∑

max(i,j)≤n−1

xij ⊗ eij =
∑

max(i,j)=n

xij ⊗ eij ,

thus

Tε(x) =

N
∑

n=1

εndnx =

N
∑

n=1

εn
∑

max(i,j)=n

xij ⊗ eij = (εmax(i,j)xij).

.

Remark 14 Let Dε = diag{ε1, · · · , εn, · · · }. Then Tε(x) multiplied on the
left by the scalar matrix Dε, we get DεTε(x) = (εiεmax(i,j)xij). After taking
the average according to independent uniformly distributed choices of signs,
we get the lower triangular projection of x, i.e, we have

∫

DεTε(x)dε =

∫

(εiεmax(i,j)xij)dε = (xij1i≥j).

The following result is inspired by [JX05] and [JX08]

Theorem 15 Let 1 < p < ∞, then E is OUMDp if and only if it is OUMDp

with respect to the canonical matrix filtration. Moreover, we have:

1

2
(Kp(E)− 1) ≤ ‖TE‖ ≤ Kp(E) + 2.
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Proof. Assume that E is OUMDp, then Sp[E] is UMD and the triangular
projection TE is bounded. Let T−

E be the triangular projection defined by
(xij) 7→ (xij1j≤i), it is clear that ‖TE‖ = ‖T−

E ‖. We have

dnx = dnTEx+ dnT
−
E −Dnx,

where Dnx = ennxenn. Thus

‖
∑

εndnx‖Sp[E] ≤ ‖
∑

εndnTEx‖Sp[E] + ‖
∑

εndnT
−
E x‖Sp[E]

+‖
∑

εnDnx‖Sp[E].

Since dnTEx is the n-th column of TEx, it is easy to see

‖
∑

εndnTEx‖Sp[E] = ‖
∑

dnTEx‖Sp[E] = ‖TEx‖Sp[E] ≤ ‖TE‖‖x‖Sp[E].

The same reason shows that

‖
∑

εndnT
−
E x‖Sp[E] = ‖

∑

dnT
−
E x‖Sp[E] = ‖T−

E x‖Sp[E] ≤ ‖T−
E ‖‖x‖Sp[E].

For the third term, we have obviously that

‖
∑

εnDnx‖Sp[E] = ‖
∑

Dnx‖Sp[E] ≤ ‖x‖Sp[E].

Combining these inequalities, we have

‖
∑

εndnx‖Sp[E] ≤ (‖TE‖+ ‖T−
E ‖+ 1)‖x‖Sp[E] = (2‖TE‖+ 1)‖x‖Sp[E].

So E is OUMDp with respect to the canonical matrix filtration withKp(E) ≤
2‖TE‖+ 1.

Conversely, assume that E is OUMDp with respect to the canonical ma-
trix filtration. We shall show that E is OUMDp. It suffices to show that the
triangular projection TE is bounded. According to the remark 14, we have

‖(xij1i≥j)‖Sp[E] ≤
∫

‖DεTε(x)‖Sp[E]dε ≤ Kp(E)‖x‖Sp[E].

Then it is rather easy to deduce that ‖(xij1j≥i)‖Sp[E] ≤ (2 +Kp(E))‖x‖Sp[E],
so the upper triangular projection on Sp[E] is bounded and

‖TE‖ ≤ 2 +Kp(E).

�
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Remark 16 We have a sligtly better estimation for ‖TE‖ and Kp(E), i.e,
we can prove that

1

2
(Kp(E)− 1) ≤ ‖TE‖ ≤ 1

2
(Kp(E) + 1).

We omit the proof here.
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