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POSITIVITY OF INTEGRATED RANDOM WALKS

VLADISLAV VYSOTSKY

Abstract. Take a centered random walk Sn and consider the sequence of its partial sums
An :=

∑n

i=1
Si. Suppose S1 is in the domain of normal attraction of an α-stable law with

1 < α ≤ 2. Assuming that S1 is either right-exponential (that is P{S > x|S > 0} = e−ax

for some a > 0 and all x > 0) or right-continuous (skip free), we prove that

pN := P

{
min

1≤k≤N

Ak > 0
}
∼ cαN

1

2α
− 1

2

as N → ∞, where cα > 0 depends on the distribution of the walk. We also condition on
SN = 0 and study positivity of integrated discrete bridges.

1. Introduction

1.1. The problem. Consider a non-degenerate sequence of centered random variables.
What is the probability that the sequence stays positive for a long time? Surprising lit-
tle is known on this quesion. Only one situation is well understood besides the trivial case
that the variables are independent: For a random walk Sn, the classical Sparre-Andersen
theorem expresses the generating function of

qn := P

{
min
1≤k≤n

Sk > 0
}

in terms of the probabilities P(Sn > 0). A Tauberian theorem then implies n1/2qn → c > 0
in the typical case that ES1 = 0, V ar(S1) < ∞, and moreover, if P(Sn > 0) → γ ∈ (0, 1),
then n1−γqn is slowly varying at infinity.

Consider the sequence An :=
∑n

i=1 Si, which we call an integrated random walk. We are
interested in the asymptotics of

pN := P

{
min

1≤k≤N
Ak > 0

}

as N → ∞. One may also refer to similar type of questions as to asymptotics of the tail of
one-sided exit times, unilateral small deviation probabilities, or persistence if adopting the
terminology from physics.

This problem was introduced in the seminal paper Sinai [21], which considered the
specific case that Sn is a simple random walk. Sinai studied the question in connection with
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2 V. VYSOTSKY

behavior of solutions of the Burgers equation with random initial data. The author’s initial
motivation comes from his study [24] of sticky particles systems with gravitational attraction.
The asymptotics of pN is directly related to behavior of such systems with random initial
data at the critical moment of the total gravitational collapse. The probabilities pN also
arise in the wetting model of random polymers with Laplacian interaction considered in
Caravenna and Deuschel [5].

Although continuous-time versions of our question drew more attention, there are not
many results in this direction, most of them listed in Aurzada and Dereich [1]. The recent
breakthrough here, [1] shows universality of the asymptotics in the one-sided exit problem for
general integrated Lévy processes. We also mention that in addition to a great theoretical
interest, persistence probabilities that a certain function does not change its sign over a large
time scale, appear in many physical models, see Majumbar [17].

1.2. The background. The first result on the subject is due to Sinai [21] which explained
that pN ≍ N−1/4 for a simple random walk. As the continuous-time analog with an integrated
Wiener process A(t) :=

∫ t

0
W (s)ds shows the same asymptotics, namely

P{ inf
0≤t≤N

A(t) ≥ −1} ≍ N−1/4

(Isozaki and Watanabe [14]), [5, 24] conjectured that pN ≍ N−1/4 for any walk Sn with
ES1 = 0 and V ar(S1) <∞. At the present there are three different approaches to this open
question which are briefly explained below.

Sinai’s method relies on the observation that if Sn is a simple random walk, then all the
local extrema of An occur at the times when Sn returns to zero, and such times form a renewal
sequence. This property is based on the very specific structure of increments of the walk and
does not hold for different distributions. However, the main message here is to partition the
trajectory of Sn with a suitable sequence of regeneration times. Vysotsky [25] explored this
idea and showed that pN . N−1/4 for integer-valued walks (we write an . bn for two non-
negative sequences an and bn if an/bn stays bounded while an ≍ bn means an . bn and bn .
an). Further development method required to make restrictive assumptions on the positive
increments of the walk. Due to technical difficulties, [25] also imposed analogous constraints
on the negative increments of S1 and proved pN ≍ N−1/4 for double-sided exponentials,
symmetric geometric, lazy simple, and two other “mixed” types of random walks.

The second approach is by Aurzada and Dereich [1] which used strong approximation
by a Wiener process assuming Eea|S1| < ∞ for some a > 0. This powerful method allowed
to prove universality of the asymptotics for general integrated Levy processes but strong
approximation does not work well for small values of time resulting in extra factors in the
estimates: N−1/4(logN)−4 . pN . N−1/4(logN)4.

The third method by Dembo and Gao [7] is based on decomposition of the sequence
An at its maximum. [7] proved the desired pN . N−1/4 for any walks with ES1 = 0 and
V ar(S1) < ∞ but still imposed assumptions on positive increments of the walk to prove
the sharp lower bound. [7] showed that N−1/4 . pN when the positive tail of S1 is either
sub-exponential or behaves exponentially at infinity. Thus the results of [7] cover those of
[25] and, essentially, of [1].
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Hence the conjecture pN ≍ N−1/4 under ES1 = 0 and V ar(S1) < ∞ is not yet proved
to the full extent.

1.3. Results and organization of the paper. The goal of this paper is to prove the sharp
asymptotics for pN . We follow our approach developed in [25] but only keep the assumptions
on positive increments of Sn. It seems there is no way to get the sharp asymptotics using
the other methods.

Let us state our assumptions. A random walk Sn is right-exponential if Law(S1|S1 > 0)
is an exponential distribution. An integer-valued walk Sn is right-continuous (skip free) if
P{S1 = 1|S1 > 0} = 1; the name comes from analogy with spectrally negative integrable
Lévy processes, which do not have positive jumps and take all values before reaching any
positive horizontal level. The introduced distributions are well know in the renewal theory
and have the characteristic property that all overshoots of Sn over any fixed level have the
same common distribution.

Suppose that S1 belongs to the domain of normal attraction (to be denoted as S1 ∈
DN (α)) of a strictly stable law with the index 1 < α ≤ 2. Clearly, such law is spectrally
negative, and by the stable central limit theorem and Eq. (2.2.30) in Zolotarev [26] for the
positivity parameter, it holds that P{Sn > 0} → 1/α. For 1 < α ≤ 2, define

Rα :=
{
S1 : Sn is either right-exponential or right-continuous,ES1 = 0,

S1 ∈ DN (α), and

∞∑

n=1

1

n

(
P{Sn > 0} − 1

α

)
converges

}
.

Recall that (Theorem 2.6.6 in Ibragimov and Linnik [13]) S1 ∈ DN (2) is equivalent to
V ar(S1) < ∞, which ensures convergence of the series (Feller [11, Ch. XVIII.5]. Due to
Egorov [10], for 1 < α < 2 a sufficient condition for the convergence is

∫∞
0
xα|d(F (−x) −

Gα(−x)| < ∞, where F (x) and Gα(x) are the distribution functions of S1 and the limit
stable law, respectively.

We now state the main result of the paper.

Theorem 1. Let S1 ∈ Rα for some 1 < α ≤ 2. Then there exists a constant c =
c(α, Law(S1)) > 0 such that

lim
N→∞

N
1
2
− 1

2αpN = c.

Remark. Computable bounds for c when α = 2 and S1 is upper-exponential are given below
in (7).

It seems that our proof works if we drop convergence of the series in the definition of Rα,
and then N

1
2
− 1

2α pN just becomes slowly varying at infinity. We also point that [7] showed

pN ≍ N
1
2α

− 1
2 for the class of distributions that includes Rα.

Our method could be also applied for a modified version of the problem with integrated
walks replaced by integrated discrete bridges. For an integer-valued walk Sn, put

p∗N := P

{
min

1≤k≤N
Ak > 0

∣∣SN = 0
}
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for N ∈ DS1 := {n : P(Sn = 0) > 0} where this expression is well-defined.

Proposition 1. Let Sn be an integer-valued random walk with ES1 = 0 and V ar(S1) <∞.
Then p∗N . N−1/4 and moreover, p∗N ≍ N−1/4 if S1 is right-continuous, as N → ∞ along
DS1.

Although this statement covers a narrow class of distributions, it is the first result of
such type. An open and very challenging problem that draw a recent attention is to find the
asymptotics of

P

{
min

1≤k≤N
Ak > 0

∣∣AN = 0
}

and P

{
min

1≤k≤N
Ak > 0

∣∣SN = 0, AN = 0
}
.

These probabilities are related to polymer models similar to the one of Caravenna and
Deuschel [5].

The paper is organized as follows. In Sec. 2 we explain in detail our approach of parti-
tioning the trajectory of Sn into independent parts (so-called cycles) by appropriate moments
of regeneration. The pivotal result of the section is Proposition 2 on bivariate random walks
staying in the right half-plane. This is, very roughly speaking, a bivariate version of the
famous Sparre-Andersen theorem that qn do not depend on the distribution of the walk if
S1 is symmetric and continuous. In addition to its independent interest, Proposition 2 is
the keystone for a simple and very intuitive way to prove pN ≍ N

1
2α

− 1
2 for S1 ∈ Rα; once

may regard it as a rigorous version of the heuristic arguments from [25, Sec. 2.1]. We give
the proof here as we believe this makes the paper more readable and shows the advantage
of the used technique. In Sec. 2.4 we apply Proposition 2 to get our results on positivity of
integrated bridges. Theorem 1 is proved in Sec. 4. The necessary ingredients are prepared
in Sec. 3, where we study joint tails of areas and lengths of Brownian and stable excursions,
cycles and meanders. There we also discuss conditional limit theorems for bivariate random
walks.

2. Partitioning into cycles and non-sharp asymptotics of pN

2.1. Partitioning by regenerating times. The main idea of our approach is to partition
trajectory of the random walk Sn into appropriate independent parts. Define the moments
of crossing the zero level from below as

Θ0 := min{n ≥ 0 : Sn+1 > 0}, Θk+1 := min{n > Θk : Sn ≤ 0, Sn+1 > 0}
for k ≥ 0. A non-degenerate centered random walk is recurrent hence the r.v.’s defined above
are proper. We stress that Θk are not stopping times as opposed to Θk + 1. The trajectory
of Sn is thus partitioned into cycles, and each cycle (possibly excluding the first one) starts
with a positive excursion followed by a negative excursion. For k ≥ 1, let θk := Θk − Θk−1

be durations of cycles and ψk := AΘk
− AΘk−1

be their areas; also, set Ψk := AΘk
for the

total area of the first k cycles so ψk = Ψk −Ψk−1.

Define P̃(·) := P(·|S1 > 0) as it is more convenient to think that Sn starts with a

positive excursion and so Θ0 = 0 P̃-a.s.; also put σ2 := V ar(S1). The next observation from
Vysotsky [25] (Lemmae 1, 2 and Proposition 1) plays the crucial role for our method.
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Lemma 1. Let Sn be a centered random walk that is either right-exponential or right-

continuous. Then (θn, ψn)n≥1 are i.i.d. and (θ1, ψ1)
D

= (θ1,−ψ1). If S1 ∈ R2, then θ1 ∈
DN (1/2), and, moreover, lim

n→∞
n1/2

P{θ1 ≥ n} =
√

8
π

σ
E|S1| if S1 is right-exponential.

[25] actually gives a proof only for right-exponential walks but the right-continuous case
should be considered in exactly the same way. Here is a brief explanation for the result. The
i.i.d. property follows as each cycle starts with the overshoot SΘk+1 which is independent of
the preceding part S1, . . . , SΘk

of the trajectory. The symmetry holds by
(
S1, . . . , Sθ̂1

, θ̂1
)
D

=
(
−Sθ̂1

, . . . ,−S1, θ̂1
)

under P̃, (1)

where θ̂1 := min{n > Θ0 : Sn < 0, Sn+1 ≥ 0}. This relation follows from the duality principle

for random walks with the use that under P̃, S1 either identically equals 1 or is distributed
exponentially.

For the tail of θ1, the Sparre-Andersen theorem implies that length of the first positive
excursion θ+ ∈ DN (1− 1/α) if S1 ∈ Rα with 1 < α ≤ 2, and by (1), the same holds for the
first negative excursion. Thus one also expects θ1 ∈ DN (1− 1/α) as stated in Lemma 1 for
α = 2. We prove this statement for 1 < α < 2 in the next section in Lemma 2 but we will
use this fact already in this section in the proof of Theorem 3. Note that there is a significant
difference in the shape of long cycles: for α = 2 the walk essentially does not change its sign
while for 1 < α < 2 it stays on both half-axes for a nonzero fraction of time.

2.2. Bivariate walks staying in the right half-plane. Thus under the conditions of
Lemma 1, (Θk,Ψk) is a bivariate random walk with the symmetric second component, and

the walk starts at (Θ0,Ψ0) = (0, 0) under P̃. It turns that such walks enjoy a useful property
stated below in Proposition 2, which is a slight improvement of the Sparre-Andersen theorem.
The later implies, in particular, that the probabilities qn that a symmetric continuous random
walk stays positive does not depend on the distribution of increments. Proposition 2 is
inspired by Lemma 3 of Sinai [21]; we also refer to Feller [11, Ch. XII] for appropriate
definitions and general ideas. It is worth mentioning that Sinai’s lemma is a special case
of the results from Greenwood and Shaked [12], which gives a half-plane Wiener-Hopf type
factorization for bivariate distributions. This reference was pointed to the author by Vitaliy
Wachtel.

Proposition 2. Let (S
(1)
n , S

(2)
n ) be a bivariate random walk such that (S

(1)
1 , S

(2)
1 )
D

= (−S(1)
1 , S

(2)
1 ).

Then for any n ≥ 1 and y ∈ R,

P

{
min
1≤i≤n

S
(1)
i ≥ 0, S(2)

n ∈ dy
}
≥ P

{
min
1≤i≤n

S
(1)
i > 0

}
P

{
S(2)
n ∈ dy

}
. (2)

and

P

{
min
1≤i≤n

S
(1)
i > 0, S(2)

n ∈ dy
}
≤ P

{
min
1≤i≤n

S
(1)
i ≥ 0

}
P

{
S(2)
n ∈ dy

}
(3)

Corollary. If in addition the distribution of S
(1)
1 is continuous, then the events

{
min
1≤i≤n

S
(1)
i >

0
}
and

{
S
(2)
n ∈ dy

}
are independent.
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Proof. We start noting that the characteristic function χ(s, t) of the left-hand side of (2)
satisfies

1 + χ(s, t) =
1

1− χT1,U1(s, t)
,

where T1 is the first weak ascending ladder epoch of the walk S(1) and U1 := S
(2)
T1

. This can
be verified by standard arguments once we consider the dual random walk to obtain

P

{
min
1≤i≤n

S
(1)
i ≥ 0, S(2)

n ∈ dy
}
= P

{
max

1≤i≤n−1
S
(1)
i ≤ S(1)

n , S(2)
n ∈ dy

}
,

which means that n is a ladder index of S(1).
Next, Lemma 3 of Sinai [21], which is a little improvement of the Sparre-Andersen

theorem, states

log
1

1− χT1,U1(s, t)
=

∞∑

n=1

∫ ∞

−∞

sn

n
eityP

{
S(1)
n ≥ 0, S(2)

n ∈ dy
}
,

hence with the symmetry of S
(1)
n ,

log
1

1− χT1,U1(s, t)
=

∞∑

n=1

sn

2n
χn

S
(2)
1

(t) +
∞∑

n=1

∫ ∞

−∞

sn

2n
eityP

{
S(1)
n = 0, S(2)

n ∈ dy
}
.

The second term in the left-hand side could be transformed as above and we get

log
1

1− χT1,U1(s, t)
=

1

2
log

1

1− sχ
S
(2)
1
(t)

+
1

2
log

1

1− χT ∗

1 ,U
∗

1
(s, t)

,

where χT ∗

1 ,U
∗

1
(s, t) is the characteristic function of the non-probability measure

Q∗(k, dy) := P
{
S
(1)
1 < 0, . . . , S

(1)
k−1 < 0, S

(1)
k = 0, S

(2)
k ∈ dy

}
.

In a certain sense T ∗
1 is the first moment when S

(1)
n hits to zero from below and U∗

1 = S
(2)
T ∗

1
.

Then

1 + χ(s, t) =

√
1(

1− sχ
S
(2)
1
(t)

)(
1− χT ∗

1 ,U
∗

1
(s, t)

) , (4)

and similarly, for the characteristic function χ+(s, t) of the left-hand side of (3),

1 + χ+(s, t) =

√
1− χT ∗

1 ,U
∗

1
(s, t)

1− sχ
S
(2)
1
(t)

. (5)

Finally, the characteristic function of the right-hand side of (2) is

χ̃(s, t) =
∞∑

n=1

snχn

S
(2)
1

(t)P
{
min
1≤i≤n

S
(1)
i > 0

}
= χT+

1

(
sχ

S
(2)
1
(t)

)
,
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where T+
1 is the first strong ascending ladder epoch of S(1), and by (4), (5), and χT+

1
(s) =

χ+(s, 0) we get

1 + χ(s, t) =
(
1 + χ̃(s, t)

)√ 1(
1− χT ∗

1
(sχ

S
(2)
1
(t))

)(
1− χT ∗

1 ,U
∗

1
(s, t)

) . (6)

Since all the coefficients of the Maclaurin series of (1 − x)−1/2 are positive, the square root
factor in the right-hand side of (6) is the characteristic function of a certain measure Q(k, dy)
satisfying Q(0, dy) = δ0(y). Then (2) follows as product of characteristic functions corre-
sponds to convolution of measures. The same argument of course applies for (3). �

Note that (4) and (5) actually follow from Eq. (4) in Greenwood and Shaked [12] with τ
and ν from their Example (a) on p. 568, but we have chosen to start from the Sinai lemma
to go along the original lines of our proof.

2.3. Weak asymptotics of pN . The following result is not new and of course is weaker than
Theorem 1. As we explained in the introduction, we give the proof here to show a simple
and very intuitive way to understand the asymptotics of pN and demonstrate advantage of
the technique.

Proposition 3. If S1 ∈ Rα for some 1 < α ≤ 2, then pN ≍ N
1
2α

− 1
2 .

Remark. If S1 is right-exponential and S1 ∈ R2, then

[
lim

N→∞
pNN

1
2
− 1

2α , lim
N→∞

pNN
1
2
− 1

2α

]
⊂ 21/4

π
Γ
(1
4

)√ σ

E|S1|
P{S1 > 0} ×

[1
2
, 1
]
. (7)

Proof. The key observation is that

P

{
min

1≤k≤N
Ak > 0

}
= P

{
min

1≤k≤η(N)
AΘk

> 0, A1 > 0, AN > 0
}
, (8)

where

η(N) := max{n ≥ 0 : Θn ≤ N};

under P̃, this is just the number of up-crossing of the zero level by the walk Sn by the time
N . Then

P̃

{
min

1≤k≤η(N)+1
Ψk > 0

}
≤ pN

P{S1 > 0} ≤ P̃

{
min

1≤k≤η(N)
Ψk > 0

}
.
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By the conditional symmetry of ψi (Lemma 2), we estimate the lower bound flipping the
last cycle to make sure it has a positive area: condition on η(N) and Θη(N) and get

P̃

{
min

1≤k≤η(N)
Ψk > 0, ψη(N)+1 ≥ 0

}

=
∑

n

∑

i≤N

P̃

{
Θn = i, θn+1 > N − i, min

1≤k≤n
Ψk > 0, ψn+1 ≥ 0

}
(9)

=
∑

n

∑

i≤N

P̃

{
Θn = i, min

1≤k≤n
Ψk > 0

}
P̃

{
θn+1 > N − i, ψn+1 ≥ 0

}

≥ 1

2
P̃

{
min

1≤k≤η(N)
Ψk > 0

}
.

Hence
1

2
P̃

{
min

1≤k≤η(N)
Ψk > 0

}
≤ pN

P{S1 > 0} ≤ P̃

{
min

1≤k≤η(N)
Ψk > 0

}
.

Now assume that S1 is right-exponential. By conditioning on η(N) and using Proposi-
tion 2, we proceed as above in (9) and get the most important relation

P̃

{
min

1≤k≤η(N)
Ψk > 0

}
=

∞∑

n=0

P̃
{
η(N) = n

}
P̃

{
min
1≤k≤n

Ψk > 0
}
. (10)

As the distribution of Φk is symmetric, Sparre-Andersen’s theorem implies existence of a
positive limit

c1 := lim
n→∞

n1/2
P̃

{
min
1≤k≤n

Ψk > 0
}
,

hence

P̃

{
min

1≤k≤η(N)
Ψk > 0

}
=

∞∑

k=0

P̃

{
η(N) = n

}c1 + o(1)√
n+ 1

= (c1 + o(1))Ẽ
1√

η(N) + 1
+O

(
P̃
{
η(N) < lnN

})

=
c1 + o(1)

N
1
2
− 1

2α

Ẽ

√
N1−1/α

η(N) + 1
+O

(
P̃
{
η(N) < lnN

})
. (11)

We estimate the remainder as

P̃
{
η(N) < lnN

}
= P̃

{
ΘlnN > N

}
≤ lnN P̃

{
θ1 > N/ lnN

}

= O(N−α(lnN)1+α) = o(N−1). (12)

Further, it follows from Feller [11, Ch. XI.5] that the number of renewal epochs η(N) satisfies

η(N)

N1−1/α

D−→ c−1
2 τ

1/α−1
1−1/α under P̃, (13)

where τγ is a spectrally positive γ-stable r.v. such that

lim
n→∞

nγ
P{τγ > n} = 1, and c2 := lim

n→∞
n1−1/α

P{θ1 > n}.
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Since Eτ
(1−1/α)/2
1−1/α < ∞, the theorem will be proved once we check uniform integrability of√

N1−1/α

η(N)+1
in order to get convergence of the expectations. Estimate the tail as follows: for

any 0 < x ≤ N
1
2
− 1

2α ,

P̃

{√
N1−1/α

η(N) + 1
≥ x

}
= P̃

{
η(N) ≤ [x−2N1−1/α]− 1

}

= P̃

{
Θ[x−2N1−1/α] > N

}
≤ P̃

{
Θk > (x2k)

1
1−1/α

}
,

where k := [x−2N1−1/α] ≥ 1. The last probability could be estimated by the following analog
of the Chebyshev inequality attributed by Nagaev [18] to Tkachuk (1977): if Xn are i.i.d.
r.v.’s and X1 ∈ DN (γ) for 0 < γ < 1, then there exist c,K > 0 such that

P{X1 + . . .Xn > Rn1/γ} ≤ cR−γ

for all n and R ≥ K. Thus uniform integrability follows as x−2 is integrable at infinity.
Let us compute the constant for α = 2. It is well known that τ1/2 could be represented

as the first moment when a standard Brownian motionW hits a certain level, and we use the
reflection principle to get P{τ1/2 > x} = Φ̂

(√
π
2x

)
, where Φ̂(x) is the distribution function of

|W (1)|. Then

lim
N→∞

Ẽ

√
N1− 1

α

η(N) + 1
= c

1/2
2 Ẽτ

1/4
1/2 = c

1/2
2

∫ ∞

0

2−1x−5/4e−
π
4x dx =

√
c2

2
√
π
Γ
(1
4

)
,

and it remains to recall that c2 =
√

8
π

σ
E|S1| and c1 =

√
1
π
(as Ψn is continuous and symmetric).

Now assume S1 is right-continuous. Denote

rN := P̃

{
min

1≤k≤η(N)
Ψk > 0

}
, r̄N := P̃

{
min

1≤k≤η(N)
Ψk ≥ 0

}

and replace (10) by the appropriate inequality; then get an analog of (11) with “=” and
c1 replaced by “≤” and c̄1, respectively, and by the uniform integrability conclude with
rN . N

1
2
− 1

2α . The same argument implies N
1
2
− 1

2α . r̄N , and since

r̄N ≥ rN ≥ P{ψ1 > 0}r̄N ,
we obtain r̄N ≍ rN ≍ N

1
2
− 1

2α . �

2.4. Positivity of integrated bridges. Let us show how Proposition 2 could be used to
obtain asymptotics of

p∗N = P

{
min

1≤k≤N
Ak > 0

∣∣SN = 0
}

as N → ∞ along DS1. Recall we assumed that Sn is centered integer-valued. Let d be
the maximal positive integer such that P{S1 ∈ dN} = 1, and let h be the maximal step of
S1/d, that is the maximal positive integer such that there exists an 0 ≤ a ≤ h− 1 satisfying
P{S1 ∈ d(a+ hN)} = 1. Then DS1 ⊂ hN and hN \ DS1 is finite.
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We need to modify the definition of the regeneration moments considered in Sec. 2.1.
Define the moments of leaving zero as Θ∗

0 := min{n ≥ 0 : Sn+1 6= 0} and Θ∗
k+1 := min{n >

Θk : Sn = 0, Sn+1 6= 0} for k ≥ 0, and introduce θ∗k, ψ
∗
k,Ψ

∗
k, η

∗(N) accordingly. Put P∗(·) :=
P(·|S1 6= 0). The following result is completely analogous to Lemma 1 and is essentially
proved in [25] while the local asymptotics is by Kesten [16].

Lemma 1′. Let Sn be a centered random walk. Then (θ∗n, ψ
∗
n)n≥1 are i.i.d. and (θ∗1, ψ

∗
1)
D

=

(θ∗1,−ψ∗
1). If V ar(S1) =: σ2 <∞, then P

∗{θ∗1 = hn} ∼
√

h
2π

σ
d
n−3/2 as n→ ∞.

Recall the result we introduced in Sec. 1.

Proposition 1. Let Sn be an integer-valued random walk with ES1 = 0 and V ar(S1) <∞.
Then p∗hN . N−1/4 and moreover, p∗hN ≍ N−1/4 if S1 is right-continuous.

Proof. Similarly to (8), write

P

{
min

1≤k≤hN
Ak > 0, ShN = 0

}
≤ P

{
min

1≤k≤η∗(hN)
AΘ∗

k
> 0, ShN = 0

}
,

which becomes an equality when S1 is right-continuous, and then condition on the number
of returns to zero η∗(hN) as in (9) to get

P

{
min

1≤k≤hN
Ak > 0, ShN = 0

}
≤

∞∑

n=1

P
∗
{
min
1≤k≤n

Ψ∗
k > 0,Θ∗

n = hN
}
=: rN .

By Proposition 2 and (12) we get the following analog of (11):

rN ≤ (c̄1 + o(1))

∞∑

n=1

n−1/2
P
∗{Θ∗

n = hN
}
+ o(N−1).

With Lemma 1′, we use a result by Doney [9] on local large deviation probabilities that

P
∗{Θ∗

n = hN
}
∼ nP∗{θ∗1 = hN

}
as N → ∞ uniformly in n = o(

√
N). Then by Lemma 1′,

the contribution of the terms with n = o(
√
N) is o(N−3/4), implying

rN ≤ (c̄1 + o(1)) lim
ε→0+

∞∑

n=ε
√
N

n−1/2
P
∗{Θ∗

n = hN
}
+ o(N−3/4).

Once we bounded
√
N/n away from zero, the local limit theorem gives

lim
ε→0+

lim
N→∞

N3/4
∞∑

n=ε
√
N

n−1/2
P
∗{Θ∗

n = hN
}

= lim
ε→0+

1√
N

∞∑

n=ε
√
N

( n√
N

)−5/2

n2
P
∗{Θ∗

n = hN
}

= lim
ε→0+

1√
N

∞∑

n=ε
√
N

( n√
N

)−5/2

hg
(hN
n2

)

= h1/4Eτ−5/4,

where g is the density of a strictly 1/2-stable r.v. τ that appears as a weak limit of Θ∗
n/n

2.
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Thus rN . N−3/4 and by Gnedenko’s local limit theorem, p∗hN . N−1/4. For the estimate
in the other direction when S1 is right-continuous, condition on the (hN + 1)st step of the
walk to get p∗hN ≥ (P{S1 = 1})2p̄∗hN , where p̄∗n is defined as p∗n with “>” replaced by “≥”.
Arguing as above we get p̄∗hN & N−1/4 that implies p∗hN ≍ p̄∗hN ≍ N−1/4. �

3. Areas and lengths of excursions of asymptotically stable random walks

3.1. Conditional limit theorems for random walks. Let Sn be a random walk such
that the first descending ladder moment T = min{k ≥ 1 : S1 < 0} < ∞ a.s. Bolthausen [4]
showed that if ES1 = 0 and V ar(S1) = σ2 <∞, then

Law
(S[n·]
n1/2

∣∣∣T ≥ n
)
D−→ Law

(
σW+(·)

)
(14)

in the Skorokhod space D[0, 1] as n→ ∞, where W+ is a Brownian meander on [0, 1] defined
below in terms of a standard Brownian motion W .

The proof of [4] is based on the following insightfully simple observation. For any
f : [0,∞) → R define τf := inf{t ≥ 0 : f(s+ t) ≥ f(t) for 0 ≤ s ≤ 1}, where inf∅ := ∞, and
Γ(f)(·) := f(·+ τf )− f(τf ) if τf <∞ and Γ(f) :≡ 0 if otherwise. Then

Law
(
S[n·]

∣∣T ≥ n
)
= Law

(
Γ(S[n·])

)
. (15)

Bolthausen [4] essentially showed that P{τW < ∞} = 1 and Γ considered as a mapping
C[0,∞) → C[0, 1] is measurable and continuous P{W ∈ · }-a.s. (Wiener measure). With a
linear smoothing, convergence (14) withW+ = Γ(W ) immediately follows from the invariance
principle in C[0,∞) and the continuous mapping theorem, see [3, Sec. 2].

Shimura [20] used the same method to extended (14) to convergence of excursions. For
any f : [0,∞) → R define δf := inf{t ≥ 0 : f(t) < 0} and Λ(f)(·) :=

(
f(· ∧ δf ), δf

)
. [20]

proved that P{δW+ < ∞} = 1 and ΛΓ considered as a mapping D[0,∞) → D[0,∞) × R

is measurable and continuous P{W ∈ · }-a.s.; Shimura actually checked continuity along
step functions but they are dense in D[0,∞). Hence under assumptions ES1 = 0 and
V ar(S1) = σ2 <∞, the continuous mapping theorem implies Shimura’s main result

Law
((S[n·∧T ]

n1/2
,
T

n

)∣∣∣T ≥ n
)
D−→ Law

(
σW+(· ∧ δW+), δW+

)
(16)

in D[0,∞) × R. Now define rescalings Λ̂a(f)(·) := δ
−1/a
f f(· δf), then Λ̂aΓ : D[0,∞) →

D[0,∞) is continuous P{W ∈ · }-a.s. for any a > 0. As trajectories of W are continuous,

Λ̂aΓ is also a.s. continuous as a mapping D[0,∞) → D[0, 1], and we restate (16) as

Law
((S[T ·]

T 1/2
,
T

n

)∣∣∣T ≥ n
)
D−→ Law

(
σWex(·), δW+

)
, (17)

in D[0, 1]× R, where Wex = Λ̂2Γ(W ) is a standard Brownian excursion on [0, 1]. Note that
Wex is independent of the length δW+ of the excursion of W+ = Γ(W ) while P{δW+ ≥ x} =

x−1/2 for x ≥ 1, see Bertoin [2, Ch. VIII.4].
A further refinement is due Doney [8], which essentially proved that P{δS+ < ∞} = 1

and ΛΓ : D[0,∞) → D[0,∞)×R is continuous P{S ∈ · }-a.s. for any strictly stable centered
process S with the index 1 < α ≤ 2. The continuity was actually checked along step functions
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but they are dense in D[0,∞). Then Γ : D[0,∞) → D[0, 1] is continuous P{S ∈ · }-a.s. but
the same does not immediately follow for Λ̂αΓ since meanders S+ := Γ(S) are continuous at

t = 1 but normalized excursions Sex := Λ̂αΓ(S) are discontinuous at t = 1 if α < 2. One

should first use that Λ̂αΓ : D[0,∞) → D[0, 2] is a.s. continuous, which follows from the a.s.

continuity of Λ̂αΓ : D[0,∞) → D[0,∞) because Sex is a constant for t > 1, and only then
get the continuity from D[0,∞) to D[0, 1].

Now assuming n−1/αl(n)Sn
D→ S(1) for some slowly varying l(n), we restate the result

of Doney as we did above with (16) in the form

Law
(( S[T ·]

T 1/αl(T )
,
T

n

)∣∣∣T ≥ n
)
D−→ Law

(
Sex(·), δS+

)
(18)

in D[0, 1]× R. As before, Sex is independent with δS+ and P{δS+ ≥ x} = x1/α−1 for x ≥ 1,
see Bertoin [2, Ch. VIII.4].

We stress that all the mentioned results follow from the functional central or stable limit
theorem with the use of the continuous mapping theorem. Let us give a little straightening
to (14). First extend the definitions of τf and Γ to higher dimensions: for f = (f (1), f (2)),
put τf := τf(1) and Γ(f) := f(· + τf )− f(τf ).

Let Sn = (S
(1)
n , S

(2)
n ) be a bivariate random walk that satisfies

( S
(1)
[n·]

n1/α1 l1(n)
,

S
(2)
[n·]

n1/α2 l2(n)

)
D−→ S(·) (19)

inD2[0,∞) for some bivariate Lévy process S, slowly varying l1(n), l2(n), and 0 < α1, α2 ≤ 2.
By Resnick and Greenwood [19], (19) is equivalent to existence of the finite positive

lim
n→∞

nP
{
ǫ1S

(1)
1 > xn1/α1 l1(n), ǫ2S

(2)
1 > yn1/α2l2(n)

}
(20)

for all ǫ1, ǫ2 ∈ {−1, 1} and x, y ≥ 0 such that x+y > 0. [19] also shows that (19) is equivalent
to the weak convergence of the one-dimensional distributions at t = 1. The limit random
vector S(1) is sometimes called bivariate stable with indices α1, α2 as its independent copies
S′(1),S′′(1) satisfy

a1S
′(1) + a2S

′′(1)
D

=
(
(aα1

1 + aα1
2 )1/α1S(1)(1), (aα2

1 + aα2
2 )1/α2S(2)(1)

)

for any a1, a2 > 0. [19] gave a complete characterization of such bivariate distributions.
By the P{S ∈ ·}-a.s. continuity of Γ : D2[0,∞) → D2[0, 1] we get

Law
(( S

(1)
[n·]

n1/α1 l1(n)
,

S
(2)
[n·]

n1/α2 l2(n)

)∣∣∣T (1) ≥ n
)
D−→ Law

(
S+(·)

)
(21)

in D2[0, 1], where T (1) is the first ladder moment of S(1) and S+ := Γ(S). A simple con-
sideration of (21) shows that it also holds true if T (1) is replaced by the first strict ladder
moment.
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3.2. Areas of cycles. The first statement of this section complements analogous Proposi-
tion 1 from [25] which covers S1 ∈ R2. We stress that long cycles of a random walk from
Rα behave very differently for α = 2 and 1 < α < 2, and the same could be said about
excursions. For α < 2, a typical positive excursion looks like a meander and then it takes
only one step to drop down to the negative half-axis, see (23).

Lemma 2. Let Sn be a random walk such that S1 ∈ Rα for some 1 < α < 2. Then
1) θ1 ∈ DN (1− 1/α);
2) For any ǫ ∈ {−1, 1} and s, t ≥ 0 such that s+ t > 0 there exists a finite positive

F ǫ(s, t) := lim
n→∞

n1− 1
α P̃{θ1 > sn, ǫψ1 > tn1+ 1

α}.

Proof. S1 ∈ Rα implies T ∈ DN (1− 1/α) and we denote

c3 := lim
n→∞

n1−1/α
P̃{T > n}, c4 := lim

n→∞
nα

P{S1 < −n}.

We first claim that

lim
ε→0+

lim
n→∞

n1− 1
α P̃

{
θ1 > n, T < εn

}
= 0 (22)

describing shape of long cycles.

Note that the weak limit of P̃
{

ST

T 1/α ∈ −dz
∣∣ T ≥ n

}
, which exists by (18), does not have

an atom at z = 0. It actually has density, as follows from

lim
n→∞

P̃

{ ST

T 1/α
≤ −z

∣∣∣ T ≥ n
}

= lim
n→∞

∞∑

k=n

∫ ∞

0

P̃

{Sk−1

k1/α
∈ dx

∣∣∣S1 ≥ 0, . . . , Sk−1 ≥ 0
}
(23)

× P̃{T ≥ k − 1}P{S1 ≤ −(x+ z)k1/α}
P̃{T ≥ n}

= lim
n→∞

1

n

∞∑

k=n

(k
n

) 1
α
−2

∫ ∞

0

p+(x)(x+ z)−αdx

=
αc4
α− 1

E(z + S+)
−α,

where we use the conditional local limit theorems from Vatutin and Wachtel [23] on conver-
gence to the meander S+ whose density p+(x) satisfies p+(x) ∼ c′x as x→ 0+.

Let θ+ := T − 1 and θ− := θ1 − θ+ be durations of the first positive and first negative
excursions of Sn, respectively. From (1) it follows that

θ−
D

= ξ + θ+ under P̃,

where ξ := θ1− θ̂1 is independent of θ+ and distributed geometrically with parameter P{S1 6=
0} if S1 is right-continuous and ξ ≡ 0 if S1 is right-exponential. Therefore θ+ and θ− have
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the same tails, and applying (1) again,

lim
ε→0+

lim
n→∞

n1− 1
α P̃

{
θ1 > n, T < εn

}
≤ lim

ε→0+
lim
n→∞

n1− 1
α P̃

{
θ− > (1− ε)n, θ+ < εn

}

= lim
ε→0+

lim
n→∞

n1− 1
α P̃

{
T > (1− ε)n, ST ≤ −(ε1/2n)1/α, θ− < εn

}

= c3 lim
ε→0+

lim
n→∞

P
{
T ′((ε1/2n)1/α) < εn

}

= c3 lim
ε→0+

P
{
T ′′(ε1/(2α)) < ε

}
= 0,

where we denoted T ′(u) := min{k ≥ 0 : Sk > u} and T ′′(u) := inf{r ≥ 0 : S(r) > u} and

used that T ′′(u)
D

= uαT ′′(1) by self-similarity of S. Thus (22) is proved.
We are now ready to prove the statements of Lemma 2. The Part 1 of course follows

from Part 2. By the symmetry given in (1), we may consider only ǫ = 1. We start with s 6= 0
and by the obvious change of variables it suffices to consider s = 1. Fix an ε ∈ (0, 1/2), then
condition on the parameters of the first positive excursion and write

lim
n→∞

P̃
{
θ1 > n, ψ1 > tn1+ 1

α

∣∣T ≥ εn
}

= lim
n→∞

∫ ∞

1

∫ ∞

0

∫ ∞

0

f+
n

(
(εx)1/αz, 1− εx, t− (εx)1+1/αy

)
P (ε)
n (dx, dy, dz), (24)

where

P (ε)
n (dx, dy, dz) := P̃

{ T

εn
∈ dx,

AT

T 1+ 1
α

∈ dy,
ST

T
1
α

∈ −dz
∣∣∣ T ≥ εn

}

and

f+
n (u, v, w) := P

{
T ′(un1/α)− 1 > nv,

T ′(un1/α)−1∑

i=1

(Si − un1/α) > wn1+1/α
}
.

It clear that for any u > 0 and v, w it holds that

lim
n→∞

f+
n (u, v, w) = f+(u, v, w) := P

{
T ′′(u) ≥ v,

∫ T ′′(u)

0

(S(r)− u)dr ≥ w
}
,

and our claim is that this convergence is uniform in (u, v, w) ∈ [δ,∞)×R
2 for any δ > 0. As

f+
n (u, v, w) = f+

nuα(1, u−αv, u−α−1w) and f+(u, v, w) = f+(1, u−αv, u−α−1w) by self-similarity
of S, we should check that the convergence is uniform in (v, w) ∈ R

2 for u = 1. This
statement just a little improvement of the standard idea that the distribution functions of
weakly convergent r.v.’s converge uniformly if the limit distribution is continuous. We prove

the later if show that the r.v.’s T ′′(1) and
∫ T ′′(1)

0
(S(r)−u)dr are continuous. The first clearly

is, say, since T ′′(u) is a stable subordinator with index 1/α as S does not have positive jumps.
For the second, use that

∫ x

0
(S(r)− u)dr and S(x) are jointly stable and, consequently, have

a joint density for any x > 0.
Hence the integrands in (24) converge uniformly in (x, y, z) ∈ [1,∞)× [0,∞)× [δ,∞).

Further, (18) ensures P
(ε)
n
D→ P in [1,∞)× R

2
+ for any fixed ε, where

P (dx, dy, dz) := d(−x 1
α
−1)P

{∫ 1

0

Sex(s)ds ∈ dy, Sex(1) ∈ −dz
}
.
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As we seen above, P(Sex(1) = 0) = 0 so (22) and (24) imply

F+(1, t) = lim
n→∞

n1− 1
α P̃

{
θ1 > n, ψ1 > tn1+ 1

α

}

= c3 lim
ε→0+

ε
1
α
−1

∫ ∞

1

∫ ∞

0

∫ ∞

0

f+
(
(εx)1/αz, 1− εx, t− (εx)1+1/αy

)
P (dx, dy, dz)(25)

= c3

∫∫∫

R3
+

f+
(
x1/αz, 1− x, t− x1+1/αy

)
P (dx, dy, dz).

The last expression is finite as by (1) it does not exceed

lim
n→∞

n1− 1
α P̃

{
θ+ + θ+ > n

}
≤ 2 lim

n→∞
n1− 1

α P̃
{
θ+ > n/2

}
= 22−

1
α c3.

It remains to consider s = 0 and t > 0, and it suffices to take t = 1. Since

lim
ε→0+

lim
n→∞

n1− 1
α P̃{T < εn, ψ1 > n1+ 1

α } ≤ lim
ε→0+

lim
n→∞

n1− 1
α P̃{T < εn,AT > n1+ 1

α} = 0,

we argue as above in (24) and (25) to get

F+(0, 1) = c3

∫∫∫

R3
+

f+
(
x1/αz, 0, 1− x1+1/αy

)
P (dx, dy, dz).

With ψ1 ≤ AT in mind, the last expression is finite as AT ∈ DN (α−1
α+1

) by Corollary 2 and
Example 6 in Doney [8].

�

3.3. Areas of incomplete cycles. The same technique allows to get the following result.

Lemma 3. Let Sn be a random walk such that S1 ∈ Rα for some 1 < α < 2. Then for any
s, t > 0 there exists a finite positive

F (s, t) := lim
n→∞

n1− 1
α P̃

{
θ1 ≥ sn, Asn > −tn1+ 1

α

}
,

and this convergence is uniform in (s, t) ∈ [ε,∞)× [0,∞) for any ε > 0. Moreover, F (s, t)
is continuous on R

2
+.

Proof. By the obvious change of variable, is suffices to consider s = 1. Then literally repeat
the proof of Lemma 2 to get

F (1, t) = c3

∫∫∫

R3
+

f
(
x1/αz, 1 − x,−t− x1+1/αy

)
P (dx, dy, dz)

with

f(u, v, w) := P

{
T ′′(u) ≥ v+,

∫ v+

0

(S(r)− u)dr ≥ w
}
.

The continuity of F (1, t) follows from the same of f(u, v, w) and the theorem of majorated
convergence. As F (1, t) is bounded, continuous and monotone and the converging functions
are uniformly bounded and monotone, the convergence is uniform in t.

�
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Let us prove analogous result for α = 2. The main difference is that (22) is no longer
true.

Lemma 4. Let Sn be a random walk such that S1 ∈ R2. Then

lim
n→∞

n1/2
P̃

{
θ1 ≥ sn, Asn > −tn3/2

}
= F (s, t) = c3s

−1/2
(
1 +G(σ−1ts−3/2)

)

uniformly in (s, t) ∈ [ε,∞) × [0,∞) for any ε > 0, where G(x) is a continuous function

defined as G(x) := P
{∫ 1

0
W+(u)du < x

}
and W+ is a standard Brownian meander on [0, 1].

Proof. As is Lemma 3, it suffices to consider s = 1 and prove pointwise convergence for
each t ≥ 0. We start with

F (s, t) = lim
n→∞

n1/2
P̃
{
θ+ ≥ n

}
+ lim

n→∞
n1/2

P̃

{
θ+ < n, θ1 ≥ n,An > −tn3/2

}
,

and our goal that to show that only the negative excursion contributes to the second term:

lim
n→∞

n1/2
P̃

{
θ+ < n, θ1 ≥ n,An > −tn3/2

}
= lim

n→∞
n1/2

P̃

{
θ− ≥ n,An+θ+ − Aθ+ > −tn3/2

}
.

(26)
Let us first find the value of the right-hand side. By (1),

P̃

{
θ− ≥ n,An+θ+ −Aθ+ > −tn3/2

}
= P̃

{
ξ + θ+ ≥ n,Aξ+θ+ − Aξ+θ+−n < tn3/2

}

∼ P̃

{
θ+ ≥ n,Aθ+ −Aθ+−n < tn3/2

}
(27)

as n→ ∞, reducing the problem to consideration of the first positive excursion of Sn. Then
we apply (17) to get

lim
n→∞

n1/2
P̃

{
θ+ ≥ n,Aθ+ − Aθ+−n < tn3/2

}
= c3P

{
σδ

3/2
W+

∫ 1

1−δ−1
W+

Wex(s)ds < t

}

= c3P

{∫ 1

0

δ
1/2
W+
Wex(sδ

−1
W+

)ds < σ−1t

}

= c3G(σ
−1t), (28)

where we used δ
1/2
W+
Wex(·δ−1

W+
)
D

= W+(·), which follows from (14) and (17). Due to Janson [15],
the area of Brownian meander has density so G is continuous.

It remains to prove (26). Fix a δ ∈ (0, 1/2) and write
{
θ+ < n, θ1 ≥ n

}
= D ∪ E1, (29)

where E1 :=
{
(1 − δ)n ≤ θ+ < n

}
∪
{
(1 − δ)n ≤ θ− < n

}
∪
{
θ+ ≥ δn, θ− ≥ δn

}
and

D :=
{
θ+ < δn, θ− ≥ n

}
. Note that

lim
δ→0+

lim
n→∞

n1/2
(
P̃
{
θ− ≥ n

}
− P̃(D)

)
= 0, lim

δ→0+
lim
n→∞

n1/2
P̃(E1) = 0

by continuity in s of limn→∞ n1/2
P̃
{
θ+/− ≥ sn

}
and the relation

lim
n→∞

n1/2
P̃
{
θ+ ≥ n, θ− ≥ n

}
= 0,
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see (17) in [25]. Thus D gives the main contribution in (29).
Further, from (29) we have
{
θ+ < n, θ1 ≥ n,An > −tn3/2

}
⊂ D ∩

{
An −Aθ+ > −tn3/2

}
∪ E1 ∪ E2 ∪ E3, (30)

where

E2 :=
{
θ+ < δn, θ− ≥ n,−(t+δ)n3/2 ≤ An−Aθ+ ≤ −tn3/2

}
, E3 :=

{
θ+ < δn,Aθ+ > δn3/2

}
.

Here lim
δ→0+

lim
n→∞

n1/2
P̃(E3) = 0 by Proposition 1 in [25] while for the same relation for E2,

write

E2 ⊂
{
θ− ≥ n,An+θ+ − A(1−δ)n+θ+ − (t+ δ)n3/2 ≤ An+θ+ − Aθ+ ≤ −tn3/2

}
,

use the symmetry as in (27) and then argue as in (28) to get

lim
δ→0+

lim
n→∞

n1/2
P̃(E2) ≤ c3P

{
σ−1t <

∫ 1

0

W+(s)ds <

∫ 1

1−δ

W+(s)ds+ σ−1(t+ δ)

}
= 0.

Finally, combine
{
θ+ < δn, θ− ≥ n,An+θ+ − Aθ+ > −tn3/2

}

⊂ D ∩
{
An − Aθ+ > −tn3/2

}

⊂
{
θ− ≥ (1− δ)n,A(1−δ)n+θ+ − Aθ+ > −tn3/2

}

with (28) and the continuity of G to get

lim
δ→0+

lim
n→∞

n1/2
(
P̃
{
θ− ≥ n,An+θ+ −Aθ+ > −tn3/2

}
− P̃

(
D ∩

{
An −Aθ+ > −tn3/2

}))
= 0.

Together with (30) and the estimates above this concludes (26). �

4. Sharp asymptotics of pN

We are ready to prove the main result. Condition on η(N) in (8) to obtain

pN
P{S1 > 0} =

∞∑

k=0

P̃

{
η(N) = k, min

1≤i≤k
Ψi > 0, AN > 0

}

=
ε−1N1−1/α∑

k=εN1−1/α

P̃

{
Θk ≤ N, θk+1 > N −Θk, min

1≤i≤k
Ψi > 0, AN − AΘk

> −Ψk

}

+R1(ε,N) +R2(ε,N),

where ε ∈ (0, 1/2) is fixed while R1 and R2 corresponds to η(N) < εN1−1/α and η(N) >
ε−1N1−1/α, respectively. Let S ′

n be an independent copy of Sn. A classical result of the
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renewal theory (Feller [11, Ch. XIV.3]) states that θη(N)+1 has the order N , motivating us
to write

pN
P{S1 > 0} =

ε−1N1−1/α∑

k=εN1−1/α

P̃

{
Θk ≤ (1−ε2)N, θk+1 > N−Θk, min

1≤i≤k
Ψi > 0, A′

N−Θk
> −Ψk

}
+R(ε,N)

with R(ε,N) := R1 +R2 +R3 and R3 = R3(ε,N) corresponding to (1− ε2)N < Θk < N .
For each k, condition on (Θk,Ψk) and rewrite the last formula as

pN
P{S1 > 0}

=
ε−1N1−1/α∑

k=εN1−1/α

P̃

{
min
1≤i≤k

Ψi > 0
}∫ (1−ε2)N

0

∫ ∞

0

P̃

{
θk+1 > N − x,A′

N−x > −y
}

×P̃

{
Θk ∈ dx,Ψk ∈ dy

∣∣∣ min
1≤i≤k

Ψi > 0
}
+R(ε,N),

=
1

N1−1/α

ε−1N1−1/α∑

k=εN1−1/α

P̃

{
min
1≤i≤k

Ψi > 0
}∫ (1−ε2)N

kα/(α−1)

0

∫ ∞

0

FN

(
1− x

( k

N1−1/α

) α
α−1

, y
( k

N1−1/α

)α+1
α−1

)

×P̃

{ Θk

kα/(α−1)
∈ dx,

Ψk

k(α+1)/(α−1)
∈ dy

∣∣∣ min
1≤i≤k

Ψi > 0
}
+R(ε,N)

with

Fn(u, v) := n1−1/α
P̃

{
θ1 > un,Aun > −vn1+1/α

}

corresponding to the last incomplete cycle. Let Qk(dy, dx) denote the conditional probability
measure in the last integral (where we intentionally switched the coordinates). Thinking
of the summation as of integration over the discretization of the Lebesgue measure λ, we
introduce

Un(dz) := n−1δ0({zn}), Pn(dz, dy, dx) := Qzn1−1/α(dy, dx)Un1−1/α(dz)

and get

pN
P{S1 > 0} =

∫ 1
ε

ε

∫ ∞

0

∫ 1−ε2

zα/(α−1)

0

P̃

{
min

1≤i≤zN1−1/α
Ψi > 0

}
FN

(
1− xz

α
α−1 , yz

α+1
α−1

)
PN(dz, dy, dx)

+R(ε,N).

By Lemmae 3 and 4,

pNN
1
2
− 1

2α

c1P{S1 > 0} =

∫ 1
ε

ε

∫ ∞

0

∫ 1−ε2

zα/(α−1)

0

z−1/2F
(
1− xz

α
α−1 , yz

α+1
α−1

)
PN(dz, dy, dx) (31)

+oε(1) +R(ε,N)N
1
2
− 1

2α

as N → ∞. Further, Lemma 2 for 1 < α < 2 and Proposition 1 from [25] for α = 2 combined
with (20) ensure ( Ψn

n(α+1)/(α−1)
,

Θn

nα/(α−1)

)
D−→ S(1) under P̃,
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where S(1) is a bivariate stable r.v. (in the sense of Resnick and Greenwood [19]) with

indices α−1
α+1

, α−1
α

. Thus (19) holds and by (21), we have Qn
D→ Law(S+(1)) implying PN

D→
λ|[ε,ε−1]⊗Law(S+(1)) as we are concerned with z ≥ ε. The integrand in (31) continuous a.s.
with respect to the limit measure so

lim
N→∞

pNN
1
2
− 1

2α

c1P{S1 > 0} =

∫ ∞

0

∫ ∞

0

∫ z
−

α
α−1

0

z−1/2F
(
1− xz

α
α−1 , yz

α+1
α−1

)
dzP{S+(1) ∈ (dy, dx)}

if we check that
lim
ε→0+

lim
N→∞

R(ε,N)N
1
2
− 1

2α = 0. (32)

We simply the formula for the constant using F
(
1 − xz

α
α−1 , yz

α+1
α−1

)
= z−1F

(
z−

α
α−1 − x, y

)

and making the change in the integral:

lim
N→∞

pNN
1
2
− 1

2α

2c1P{S1 > 0} =

∫ ∞

0

∫ ∞

0

∫ u

0

F (u− x, y)d(u
α−1
2α )P{S+(1) ∈ (dy, dx)}. (33)

The right-hand side is finite by Theorem 3. Of course this can be checked directly using

F (u − x, y) ≤ c3(u − x)
1
α
−1 and the observation that S

(2)
+ (1)

D

= S(2)(1), which follows from
Proposition 2.

It remains to check (32) to show that the contribution of R = R1 + R2 + R3 is negligi-
ble. Combine (12) with (11) in the “continuous” case and the analogous inequality in the
“discrete” case to get

R1(ε,N) +R2(ε,N) ≤ P̃

{
min

1≤k≤η(N)
Ψk > 0,

η(N)

N1−1/α
/∈ [ε, ε−1]

}

≤ c̄1 + o(1)

N
1
2
− 1

2α

Ẽ1[ε,ε−1]c

(√
N1−1/α

η(N)

)√
N1−1/α

η(N) + 1
+ o(N−1).

Then the required estimate for R1 + R2 follows from (13) and the uniform integrability of√
N1−1/α

η(N)+1
, which we checked when proved Theorem 3.

For the last term we proceed as above to obtain

R3(ε,N) ≤ P̃

{
min

1≤k≤η(N)
Ψk > 0, ε ≤ η(N)

N1−1/α
≤ ε−1, 1− ε2 ≤ Θη(N)

N
≤ 1

}

≤
ε−1N1−1/α∑

k=εN1−1/α

P̃

{
min
1≤i≤k

Ψi ≥ 0
}
P̃

{
(1− ε2)N ≤ Θk ≤ N, θk+1 > N −Θk

}

≤ c̄1 + o(1)

ε
1
2N

1
2
− 1

2α

P̃

{N −Θη(N)

N
≤ ε2

}
,

and by Feller [11, Ch. XIV.3], the last probability converges to
∫ ε2

0

sin(π(1− 1/α))dx

πx1−1/α(1− x)1/α
< ε

2
α .

Combine the estimates above to conclude (32) and the proof of the theorem.
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