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ACZÉLIAN n-ARY SEMIGROUPS

MIGUEL COUCEIRO AND JEAN-LUC MARICHAL

Abstract. We show that the real continuous, symmetric, and cancellative n-
ary semigroups are topologically order-isomorphic to additive real n-ary semi-
groups. The binary case (n = 2) was originally proved by Aczél [1]; there
symmetry was redundant.

1. Introduction

Let I be a nontrivial real interval (i.e., nonempty and not a singleton) and let
n ⩾ 2 be an integer. Recall that an n-ary function f ∶ In → I is said to be associative
if it solves the following system of n − 1 functional equations:

f(x1, . . . , f(xi, . . . , xi+n−1), xi+n, . . . , x2n−1)

= f(x1, . . . , xi, f(xi+1, . . . , xi+n), . . . , x2n−1), i = 1, . . . , n − 1.

The pair (I, f) is then called an n-ary semigroup (see Dörnte [5] and Post [8]).
We say that a function f ∶ In → I is cancellative if it is one-to-one in each variable;

that is, for every k ∈ [n] = {1, . . . , n} and every x = (x1, . . . , xn) ∈ In and x′ =(x′1, . . . , x′n) ∈ In,
(xi = x′i for all i ∈ [n] ∖ {k} and f(x) = f(x′)) ⇒ xk = x′k .

In this paper we present a complete description of those associative functions f ∶ In →
I which are continuous, symmetric, and cancellative. Our main result can be stated
as follows.

Main Theorem. A function f ∶ In → I is continuous, symmetric, cancellative, and

associative if and only if there exists a continuous and strictly monotonic function

ϕ∶ I → J such that

(1) f(x) = ϕ−1 ( n

∑
i=1

ϕ(xi)) ,
where J is a real interval of one of the forms ]−∞, b[, ]−∞, b], ]a,∞[, [a,∞[ or
R = ]−∞,∞[ (b ⩽ 0 ⩽ a). In this case I is necessarily open at least on one end.

Moreover, ϕ can be chosen to be strictly increasing. In other words, the n-ary

semigroup (I, f) is topologically order-isomorphic to the n-ary semigroup (J,+).
The binary case (n = 2) of the Main Theorem, for which symmetry is not needed,

was first stated and proved by J. Aczél [1]. A shorter, more technical proof of Aczél’s
result was then provided by Craigen and Páles [4] (see also [2] for a recent survey).
The corresponding binary semigroups are called Aczélian (see Ling [6, Section 3.2]).
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We say that an n-ary semigroup is Aczélian if it satisfies the assumptions of the
Main Theorem. Thus the Main Theorem provides an explicit description of the
class of Aczélian n-ary semigroups. Although this result is not a trivial derivation
of the binary case, we prove it by following more or less the same steps as in [4].

The following example shows that the symmetry assumption is necessary for
every odd integer n ⩾ 3.

Example 1.1. Let n ⩾ 3 be an odd integer. The function f ∶Rn → R, defined by

f(x) = n

∑
i=1

(−1)i−1xi ,
is continuous, cancellative, and associative. However, it cannot be of the form (1)
with a continuous and strictly monotonic function ϕ. Indeed, if the latter would
be the case, then by identifying the variables, we would have f(xn) = x and hence
ϕ(x) = ϕ(f(xn)) = nϕ(x), a contradiction.

This paper is organized as follows. In Section 2 we show how n-ary associative
functions can be extended to associative functions of certain higher arities. In
Section 3 we provide the proof of the Main Theorem.

To avoid cumbersome notation, we henceforth regard tuples x in In as n-strings
over I and we write ∣x∣ = n. The 0-string or empty string is denoted by ε so that
I0 = {ε}. We denote by I∗ the set of all strings over I, that is, I∗ = ⋃n∈N I

n,
where N = {0,1,2, . . .}. Moreover, we consider I∗ endowed with concatenation for
which we adopt the juxtaposition notation. For instance, if x ∈ In, y ∈ I, and
z ∈ Im, then xyz ∈ In+1+m.1 Furthermore, for x ∈ I, we use the short-hand notation
xm = x⋯x ∈ Im. Given a function g∶ I∗ → I, we denote by gm the restriction of g to
Im, i.e. gm ∶= g∣Im . We convey that g0 is defined by g0(ε) = ε.

2. Associative extensions

Recall that a binary function f ∶ I2 → I is said to be associative if

f(f(xy)z) = f(xf(yz)) for all x, y, z ∈ I.

Using an infix notation, we can also write this property as

(x ◇ y) ◇ z = x ◇ (y ◇ z) for all x, y, z ∈ I.

Since associativity expresses that the order in which variables are bracketed is not
relevant, it can be easily extended to functions g∶ I∗ → I by defining

gm(x1⋯xm) = x1 ◇⋯ ◇ xm
for every integer m ⩾ 2. The latter definition can be reformulated in prefix notation
as g2 = f and

(2) gm(x1⋯xm) = g2(g2(⋯g2(g2(g2(x1x2)x3)x4)⋯)xm)
for every m > 2.2

1Using this convenient notation, we immediately see that a function f ∶ In → I is associative if
and only if we have f(xf(y)z) = f(x′ f(y′)z′) for every xyz,x′y′z′ ∈ I2n−1 such that y,y′ ∈ In

and xyz = x
′
y
′
z
′. Similarly, f is cancellative if and only if, for every xz ∈ In−1 and every y, y′ ∈ I,

the equality f(xyz) = f(xy′z) implies y = y′.
2Or equivalently, g2 = f and gm(x1⋯xm) = g2(gm−1(x1⋯xm−1)xm) for every m > 2.
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Note that the unary function g1 is not involved in this construction and so it could
be chosen arbitrarily. However, as we will see in Proposition 2.2, it is convenient
to ask g1 to satisfy the following condition:

(3) g1 ○ g = g and g(xg1(y)z) = g(xyz) for all xyz ∈ I∗.

Definition 2.1. A function g∶ I∗ → I is said to be associative if

(i) g2 is associative,(ii) condition (2) holds for every m > 2 and every x1, . . . , xm ∈ I, and(iii) condition (3) holds.

By definition, an associative function g∶ I∗ → I can always be constructed from
a binary associative function f ∶ I2 → I by defining g2 = f , using (2), and choosing
a unary function g1 satisfying (3) (e.g., the identity function).3 Such a function
g, which is completely determined by g1 and g2 = f , will be called an associative

extension of f .
The following proposition provides concise reformulations of associativity of func-

tions g∶ I∗ → I and justifies condition (3). We will prove a more general statement
in Proposition 2.5. The equivalence of assertions (ii)–(iv) was proved in [3].

Proposition 2.2. Let g∶ I∗ → I be a function. The following assertions are equiv-

alent.

(i) g is associative.(ii) g(xg(y)z) = g(x′g(y′)z′) for every xyz,x′y′z′ ∈ I∗ such that xyz = x′y′z′.(iii) g(xg(y)z) = g(xyz) for every xyz ∈ I∗.(iv) g(g(x)g(y)) = g(xy) for every xy ∈ I∗.

For any integer n ⩾ 2, define the sets

An = {m ∈ N ∶m ≡ 1 (mod n − 1)} and I(n) = ⋃
m∈An

Im = I × (In−1)∗.
Just as associativity for binary functions can be extended to functions g∶ I∗ → I,
one can also extend the associativity of n-ary functions to functions g∶ I(n) → I as
follows.4 Given an associative function f ∶ In → I, we define g∶ I(n) → I as gn = f
and

(4) gm(x1⋯xm) = gn(gn(⋯gn(gn(x1⋯xn)xn+1⋯x2n−1)⋯)xm−n+2⋯xm)
for every m ∈ An and m > n.5

Once again, the unary function g1 can be chosen arbitrarily. However, we ask g1
to satisfy the following condition:

(5) g1 ○ g = g and g(xg1(y)z) = g(xyz) for all xyz ∈ I(n).

Definition 2.3. A function g∶ I(n) → I is said to be n-associative if

(i) gn is associative,(ii) condition (4) holds for every m ∈ An, m > n, and every x1, . . . , xm ∈ I, and(iii) condition (5) holds.

3Note that g1 necessarily solves the idempotency equation g1 ○ g1 = g1.
4This construction is inspired from Dörnte [5] and Post [8].
5Or equivalently, gn = f and gm(x1⋯xm) = gn(gm−n+1(x1⋯xm−n+1)xm−n⋯xm) for every

m ∈ An and m > n.
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By definition, an n-associative function g∶ I(n) → I can always be constructed
from an n-ary associative function f ∶ In → I by defining gn = f , using (4), and
choosing a unary function g1 satisfying (5) (e.g., the identity function). Such a
function g, which is completely determined by g1 and gn = f , will be called an
n-associative extension of f .

Example 2.4. From the ternary associative function f ∶R3 → R, defined by f(x1x2x3) =
x1 − x2 + x3, we can construct the 3-associative extension g∶R(3) → R as

gm(x1⋯xm) = m

∑
i=1

(−1)i−1xi (m ⩾ 3, odd),
for which (5) provides the unique solution g1 = id.

The following proposition generalizes Proposition 2.2 and provides concise refor-
mulations of n-associativity of functions g∶ I(n) → I and justifies condition (5).

Proposition 2.5. Let g∶ I(n) → I be a function. The following assertions are

equivalent.

(i) g is n-associative.(ii) g1 ○ g = g and g(xg(y)z) = g(x′g(y′)z′) for every xyz,x′y′z′ ∈ I(n) such
that y,y′ ∈ I(n) and xyz = x′y′z′.(iii) g(xg(y)z) = g(xyz) for every xyz ∈ I(n) such that y ∈ I(n).(iv) g1 ○ g = g and g(g(x1)⋯g(xn)) = g(x1⋯xn) for every x1, . . . ,xn ∈ I(n).

Proof. Implications (iii)⇒ (i), (iii)⇒ (ii), and (iii)⇒ (iv) are easy to verify.
To prove (ii)⇒ (iii) simply take y′ = xyz (i.e., x′z′ = ε).
Let us now prove that (iv)⇒ (iii). Let xyz ∈ I(n) such that y ∈ I(n). We write

xg(y)z = t1⋯tm, with tk = g(y). By (iv) we have

g(xg(y)z) = g(t1⋯tm) = g(g(t1)⋯g(tn−1)g(tn⋯tm)).
If k ⩽ n − 1, then

g(xg(y)z) = g(g(t1)⋯g(tk)⋯g(tn−1)g(tn⋯tm))
= g(g(t1)⋯g(y)⋯g(tn−1)g(tn⋯tm)) = g(xyz).

If k ⩾ n, we proceed similarly with g(tn⋯tm), unless n =m in which case the result
follows immediately.

Let us establish that (i)⇒ (iii). We only need to prove that g(xg(y)z) = g(xyz)
for every xyz ∈ I(n) such that ∣y∣ ⩾ 2 and ∣xz∣ ⩾ 1. Using (4) twice and the
associativity of gn, we can rewrite the function xyz ↦ g(xg(y)z) in terms of
nested gn’s only. Then, using the associativity of gn again, we can move all the
gn’s to the left to obtain the right-hand side of (4), which reduces to g(xyz).

To illustrate, consider the following example with n = 3:

g(x1x2x3 g(x4x5x6x7x8)x9) = g(x1 g(x2x3 g(x4 g(x5x6x7)x8))x9)
= g(g(g(g(x1x2x3)x4x5)x6x7)x8x9)
= g(x1x2x3x4x5x6x7x8x9). �

Remark 1. Proposition 2.2 follows from Proposition 2.5. Note that the condition
g1 ○g = g is not needed in assertions (ii) and (iv) of Proposition 2.2 since I∗ is used

instead of I(n), thus allowing the use of the empty string ε.
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3. Proof of the Main Theorem

It is easy to show that the condition in the Main Theorem is sufficient. To show
that the condition is necessary, let I be a nontrivial real interval, let f ∶ In → I be
a continuous, symmetric, cancellative, and associative function, and let g∶ I(n) → I

be the unique n-associative extension of f such that g1 = id (see the observation
following Definition 2.3).

Claim 1. f is strictly increasing in each variable.

Proof. Since f is continuous and cancellative, it must be strictly monotonic in
each variable. Suppose it is strictly decreasing in the first variable. Then, by
associativity, for every y ∈ In−1, u ∈ I, and v ∈ In−2, the unary function x ↦
f(f(xy)uv) = f(xf(yu)v) is both strictly increasing and strictly decreasing, which
leads to a contradiction. Thus f must be strictly increasing in the first variable
and hence in every variable by symmetry. �

An element e ∈ I is said to be an idempotent for f if f(en) = e. For instance,
any real number is an idempotent for the function defined in Example 1.1.

Claim 2. There cannot be two distinct idempotents for f .

Proof. Otherwise, if d and e were distinct idempotents, we would have

f(den−1) = f(f(dn) en−1) = f(df(dn−1e) en−2)
and hence (by cancellation), e = f(dn−1e) = f(e dn−1). Similarly, d = f(en−1d) =
f(den−1). Now, if e < d, then d = f(den−1) < f(dn−1e) = e (by Claim 1), a
contradiction. We arrive at a similar contradiction if d < e. �

Because of Claim 2, there is a c ∈ I such that either c < f(cn) or c > f(cn). We
assume w.l.o.g. that the former holds and fix such a c. The latter case can be dealt
with similarly.

Claim 3. For all fixed x ∈ I, we have x < f(xcn−1). Thus the sequence xm =
f(xm−1cn−1) strictly increases, and limxm ∉ I (hence limxm = sup I and I is open
from above).

Proof. Since c < f(cn), we have f(cxn−1) < f(f(cn)xn−1) = f(c f(cn−1x)xn−2) and
hence (by strict monotonicity) x < f(cn−1x) = f(xcn−1). Thus xm = f(xm−1cn−1) >
xm−1. If limxm = x′ and x′ ∈ I, continuity gives the following:

x′ = limxm = limf(xm−1cn−1) = f(limxm−1c
n−1) = f(x′cn−1),

a contradiction. Thus x′ ∉ I, so limxm = sup I. �

Hereinafter we work on the extended real line so that suprema of arbitrary sets
exist and all monotone sequences converge.

Claim 4. Let x ∈ I and let j, k, p, q ∈ N such that j+1, k, p, q+1 ∈ An. Then we have

g(cp) > g(xcq) ⇔ g(ckp) > g(xkckq) ⇔ g(cp+j) > g(xcq+j).
The same equivalence holds if “<” or “=” replaces “>”.

Proof. Assume that g(cp) > g(xcq). Then, by Proposition 2.5(iv), Claim 1, and
symmetry, we have g(ckp) = g(g(cp)k) > g(g(xcq)k) = g(xkckq), which proves the
first equivalence (since the same conclusion clearly holds if “<” or “=” replaces
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“>”). For the second equivalence, assume again that g(cp) > g(xcq). Then, as
before, we have g(cp+j) = g(g(cp) cj) > g(g(xcq) cj) = g(xcq+j). �

Let x be any fixed element of I. Define Sx to be the subset of all rational numbers
r for which there exist k, p, q ∈ N such that k, p, q + 1 ∈ An, g(cp) > g(xkcq), and
r = (p − q)/k. Now, if r = (p − q)/k = (p′ − q′)/k′, then we have pk′ + q′k = p′k + qk′

and it follows from Claim 4 that

g(cp) > g(xkcq) ⇔ g(cpk′) > g(xkk′cqk′)
⇔ g(cpk′+q′k) > g(xkk′cqk′+q′k)
⇔ g(cp′k+qk′) > g(xkk′cq′k+qk′)
⇔ g(cp′k) > g(xkk′cq′k)
⇔ g(cp′) > g(xk′cq′).

Hence Sx is in fact the subset of rational numbers r for which every representation
r = (p − q)/k with k, p, q + 1 ∈ An satisfies g(cp) > g(xkcq).
Claim 5. The set S = { p−q

k
∶ k, p, q + 1 ∈ An} is dense in R.

Proof. For every a, b ∈ N, the sequence

xm =
1 ± am (n − 1)
1 + bm (n − 1)

of S converges to ±a/b. Thus S is dense in Q and hence (by transitivity) in R. �

Claim 6. Any two numbers r, r′ ∈ S may be written r = (p− q)/k, r′ = (p′ − q)/k for
suitable k, p, p′, q + 1 ∈ An.

Proof. Let r = (p−q)/k and r′ = (p′−q′)/k′, with k, k′, p, p′, q+1, q′+1 ∈ An. Assume

w.l.o.g. that r′ > r. Setting k̃ = k k′, q̃ = ∣k̃ r−1∣, p̃ = k̃ r+ q̃, and p̃′ = k̃ r′ + q̃, we have
r = (p̃ − q̃)/k̃, r′ = (p̃′ − q̃)/k̃ with k̃, p̃, p̃′, q̃ + 1 ∈ An. �

Claim 7. Sx is a nonempty, proper, and upper subset of S (“upper” means that if
r ∈ Sx and r′ ∈ S, r′ > r, then r′ ∈ Sx).

Proof. To show that Sx is an upper subset, let r = (p−q)/k ∈ Sx and r′ = (p′−q)/k > r
(cf. Claim 6). Then p′ > p and, since p, p′ ∈ An, we have p′ = p + j(n − 1) for some
integer j ⩾ 1. Using the definition of Sx and the first part of Claim 3, we obtain

g(xkcq) < g(cp) < g(g(cp) cn−1) = g(cpcn−1)
< g(g(cpcn−1) cn−1) = g(cpc2(n−1))
< ⋯
< g(cpcj(n−1)) = g(cp′).

Hence r′ ∈ Sx. Now, by Claim 3, limf(cm(n−1)+1) = sup I > g(xcn−1), and hence
there is some p ∈ An with g(cp) > g(xcn−1). Hence r = (p − (n − 1))/1 ∈ Sx, and so

Sx is nonempty. Similarly, since lim g(xcm(n−1)) = sup I, there must a q such that
q + 1 ∈ An and g(c) < g(xcq), and so (1 − q)/1 ∉ Sx. �

Now, by Claim 7, Sx is precisely the set of elements in S which are greater (and
possibly equal to) inf Sx. Using this fact, let ϕ∶ I → R be the function given by

ϕ(x) ∶= inf Sx .
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Claim 8. If g(cp) = g(xkcq), then ϕ(x) = (p − q)/k. In particular, ϕ(c) = 1.
Proof. Note that g(cp) = g(xkcq) implies r = (p − q)/k ∉ Sx. Moreover, by Claim 7

it follows that if r′ = (p′−q)/k > r (resp. r′ < r), then g(cp′) > g(cp) = g(xkcq) (resp.
g(cp′) < g(cp) = g(xkcq)), and hence r′ ∈ Sx (resp. r′ /∈ Sx). Thus inf Sx = (p − q)/k
by Claim 5. For the last claim just note that g(cq+1) = g(c cq). �

Claim 9. We have ϕ(g(x1⋯xn)) = ∑n
i=1 ϕ(xi) for every x1, . . . , xn ∈ I.

Proof. Let ri = (pi − q)/k > ϕ(xi) for all i ∈ [n]. Then g(cpi) > g(xki cq), and by
Proposition 2.5(iv), Claim 1, and symmetry, we have

g(c∑n

i=1
pi) = g(g(cp1)⋯g(cpn)) > g(g(xk1cq)⋯g(xkncq)) = g(g(x1⋯xn)kcnq).

By Claim 8, (∑n
i=1 pi−nq)/k ∈ Sg(x1⋯xn). Thus ∑

n
i=1 ri > ϕ(g(x1⋯xn)). Similarly, if

ri ⩽ ϕ(xi) for all i ∈ [n], then ∑n
i=1 ri ⩽ ϕ(g(x1⋯xn)). The result then follows from

Claim 5. �

Claim 10. ϕ is nondecreasing.

Proof. Suppose y > x and (p−q)/k ∈ Sy. Then g(cp) > g(ykcq) > g(xkcq) and hence
Sy ⊆ Sx and so ϕ(y) = inf Sy ⩾ inf Sx = ϕ(x). �

Claim 11. ϕ is continuous.

Proof. Since ϕ is nondecreasing, the only possible sort of discontinuity is a gap
discontinuity. Hence, if ϕ is discontinuous, there must exist x, y ∈ I, say x < y,
and an interval, and thus a rational r ∉ ϕ(I), such that ϕ(x) < r < ϕ(y). Now
if r = (p − q)/k, then g(xkcq) < g(cp) ⩽ g(ykcq). By continuity of gk+q, there is

t ∈ ]x, y] such that g(cp) = g(tkcq). By Claim 8 it then follows that ϕ(t) = r, which
yields the desired contradiction. �

Claim 12. ϕ is strictly increasing.

Proof. For the sake of contradiction, suppose that there are x, y ∈ I such that x < y
and ϕ(x) = ϕ(y) = a. Since ϕ is nondecreasing, there is an interval I ′ containing
x and y, and such that ϕ(z) = a, for all z ∈ I ′. Let I ′ be the largest interval
having this property, and set t = sup I ′. If t ∉ I, then for every z > x, ϕ(z) = a.
Now g(xcn−1) > x (by Claim 3) and hence a = ϕ(g(xcn−1)) = a + (n − 1) > a
(by Claim 9), a contradiction. Thus t ∈ I, and ϕ(t) = a by Claim 11. We have
g(xtn−1) < g(tn) and, by Claim 3, there exists q such that q + 1 ∈ An and g(tn) <
g(xcq(n−1)) = g(xg(cq)n−1) and g(cq) > t. By continuity of gn, there is z ∈ I such
that t < z < g(cq) (and so z ∉ I ′) and g(xzn−1) = g(tn). Thus
a + (n − 1)ϕ(z) = ϕ(x) + (n − 1)ϕ(z) = ϕ(g(xzn−1)) = ϕ(g(tn)) = nϕ(t) = na ,

and we obtain ϕ(z) = a, so z ∈ I ′, a contradiction. �

Thus ϕ is a continuous strictly increasing n-ary semigroup homomorphism and,
by Claim 9, its range J is a connected real additive n-ary semigroup. Hence the
only possibilities for J are ]−∞, b[, ]−∞, b], ]a,∞[, [a,∞[ or ]−∞,∞[ (b ⩽ 0 ⩽ a);
see final comments in [4]. This completes the proof of the Main Theorem. �

Remark 2. The function ϕ is determined up to a multiplicative constant, that is,
with ϕ all functions ψ = r ϕ (r ≠ 0) belong to the same function f , and only these;
see the “Uniqueness” section in [2].
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Remark 3. An n-ary semigroup (I, f) is said to be reducible to (or derived from)
a binary semigroup (I,◇) if there is an associative extension g∶ I∗ → I of ◇ such
that gn = f ; that is, f(x1⋯xn) = x1 ◇⋯◇ xn (see [5, 8]). The Main Theorem shows
that every Aczélian n-ary semigroup is reducible. The n-ary semigroup given in
Example 1.1 is not reducible (see [7]). Finding necessary and sufficient conditions
for an n-ary semigroup to be reducible remains an interesting open problem (see
[3]).
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