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The hierarchy of ω1-Borel sets 1

The hierarchy of ω1-Borel sets

Arnold W. Miller1

Abstract

We consider the ω1-Borel subsets of the reals in models of ZFC.
This is the smallest family of sets containing the open subsets of
the 2ω and closed under ω1 intersections and ω1 unions. We show
that Martin’s Axiom implies that the hierarchy of ω1-Borel sets
has length ω2. We prove that in the Cohen real model the length
of this hierarchy is at least ω1 but no more than ω1 + 1.

Some authors have considered ω1-Borel sets in other spaces, ωω1

1 Mek-
ler and Vaananen [10] and or completely metrizable spaces of uncountable
density, Willmott [21]. But in this paper we only consider the space 2ω.

Define the levels of the ω1-Borel hierarchy of subsets of 2ω as follows:

1. Σ∗

0 = Π∗

0 = clopen subsets of 2ω

2. Σ∗

α = {
⋃

β<ω1
Aβ : (Aβ : β < ω1) ∈ (Π∗

<α)ω1}

3. Π∗

α = {
⋃

β<ω1
Aβ : (Aβ : β < ω1) ∈ (Σ∗

<α)ω1}

4. Π∗

<α =
⋃

β<αΠ
∗

β Σ∗

<α =
⋃

β<αΣ
∗

β

The length of this hierarchy is the smallest α ≥ 1 such that

Π∗

α = Σ∗

α.

It is easy to show that if α < ω2 and every ω1-Borel set is Π∗

<α, then Π∗

β = Σ∗

β

for some β < α, i.e., bounded hierarchies must have a top class (see Miller
[11] Proposition 4 p.235).

1 Thanks to the University of Florida Mathematics Department for their support and
especially Jindrich Zapletal, William Mitchell, Jean A. Larson, and Douglas Cenzer for
inviting me to the special year in Logic 2006-07 during which most of this work was done.
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The classes Π∗

1 and Σ∗

1 are the ordinary closed sets and open sets, respec-
tively, so the length of the hierarchy of ω1-Borel sets is at least 2.

Assuming the continuum hypothesis, Π∗

2 = Σ∗

2 = P(2ω), so CH implies
the order of the hierarchy is 2. It also known to be consistent that

Π∗

3 = Σ∗

3 = P(2ω) and Π∗

2 6= Σ∗

2

see Steprans [20]. In Stepran’s model, the continuum is ℵω1
. Carlson [5]

showed that if subset of 2ω is ω1-Borel, then the cofinality of the continuum
must be ω1. Stepran’s model was used earlier by Bukovsky [3] and latter by
Miller-Prikry [13].

The following is an open question from Brendle, Larson, and Todorcevic
[4].

Question 1 Is it consistent with the negation of the continuum hypothesis
that Π∗

2 = Σ∗

2?

Steprans noted that it would be too much to ask for

¬CH + Π∗

2 = Σ∗

2 = P(2ω)

since a Σ∗

2 set, i.e., an ω1 union of closed sets, of size greater than ω1 would
have to contain a perfect subset, hence ¬CH implies a Bernstein set cannot
be Σ∗

2. It is also known that Π∗

2 6= Σ∗

2 in the iterated Sacks model, see
Ciesielski and Pawlikowski [6].

Theorem 2 (MAω1
) Π∗

α 6= Σ∗

α for every α < ω2.

We prove this using the following two lemmas. A well-known consequence
of MAω1

is that every subset Q ⊆ 2ω of size ω1 is a Q-set, i.e., for every subset
X ⊆ Q there is a Gδ set G ⊆ 2ω with G ∩ Q = X (see Fleissner and Miller
[7]).

Lemma 3 Suppose there exists a Q-set of size ω1. Then there exists an onto
map F : 2ω → 2ω1 such for every subbasic clopen set C ⊆ 2ω1 the set F−1(C)
is either Gδ or Fσ.

Proof
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Fix Q = {uα ∈ 2ω : α < ω1} a Q-set. Let G ⊆ 2ω × 2ω be a universal
Gδ set, i.e., G is Gδ and for every Gδ set H ⊆ 2ω there exists x ∈ 2ω with
Gx = H . Define F as follows, given x ∈ 2ω let

F (x)(α) = 1 iff uα ∈ Gx

If C is a subbasic clopen set, then for some α and i = 0 or i = 1

Cα,i = {p ∈ 2ω1 : p(α) = i}.

Then for i = 1
F−1(Cα,1) = {x : uα ∈ Gx}

which is a Gδ set. Since Cα,0 is the complement of Cα,1 we have that F−1(Cα,0)
is an Fσ-set

Finally, we note that since Q is a Q-set, i.e., every subset is a relative Gδ,
it follows that F is onto.
QED

The next Lemma is true without any additional assumptions beyond ZFC.
Its proof is a generalization of Lebesgue’s 1905 proof (see Kechris [9] p.168)
for the standard Borel hierarchy.

Lemma 4 For any α with 0 < α < ω2 there exists a Σ∗

α set U ⊆ 2ω1 × 2ω

which is universal for Σ∗

α subsets of 2ω, i.e., for any Q ⊆ 2ω which is Σ∗

α

there exists p ∈ 2ω1 with Up = Q. Similarly, there is a universal Π∗

α set.

Proof
The proof is by induction on α. Note that the complement of a universal Σ∗

α

set is a universal Π∗

α-set.
For α = 1, Σ∗

α is just the open sets. There is a universal open set
V ⊆ 2ω × 2ω. Put

U = {(p, x) ∈ 2ω1 × 2ω : (p ↾ ω, x) ∈ V }

For α such that 2 ≤ α < ω2 proceed as follows. Let (δβ < α : β < ω1)
have the property that for every γ < α there are ω1 many δβ ≥ γ. It follows
that for every Σ∗

α set Q ⊆ 2ω there is (Qβ ∈ Π∗

δβ
: β < ω1) with

Q =
⋃

β<ω1

Qβ.
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By induction, there are Uβ ⊆ 2ω1×2ω universal Π∗

δβ
sets. Let a : ω1×ω1 → ω1

be a bijection. For each β define

πβ : 2ω1 × 2ω → 2ω1 × 2ω, (p, x) 7→ (q, x)

where q(α) = p(a(β, α)). Put

U =
⋃

β<ω1

π−1
β (Uβ)

then U will be a universal Σ∗

α set.
QED

Now we prove Theorem 2. Suppose for contradiction, that every ω1-Borel
set is Σ∗

α for some fixed α < ω2. Let U ⊆ 2ω1 × 2ω be a universal Σ∗

α and
define

V = {(x, y) ∈ 2ω × 2ω : (F (x), y) ∈ U}.

Then V is an ω1-Borel set (although not necessarily at the Σ∗

α) because the
preimage of any clopen box C ×D is ω1-Borel by Lemma 3. Define

D = {x : (x, x) /∈ V }.

But then D is ω1-Borel but not Σ∗

α. We see this by the usual diagonal
argument that if D = Up, then since F is onto there would be x ∈ 2ω such
that F (x) = p but then

x ∈ D iff (F (x), x) /∈ U iff x /∈ Up iff x /∈ D.

QED

Remark 5 Note that in the proof V ⊆ 2ω × 2ω is a Σ∗

2+α-set, since the
preimage of a clopen set under F is ∆0

3. Hence for levels α ≥ ω the set V is
a Σ∗

α set which is universal for Σ∗

α sets.

Remark 6 Our result easily generalizes to show that MA implies that for
any κ a cardinal with ω ≤ κ < |2ω| the κ-Borel hierarchy has length κ+. This
implies that for any κ1 < κ2 there are κ2-Borel sets which are not κ1-Borel.

2

It is also true for the Cohen real model that for ω ≤ κ1 < κ2 < |2ω| that there
are κ2-Borel sets which are not κ1-Borel.

2Since κ2-Borel sets at level κ
+
1 or higher cannot be κ1-Borel.
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Question 7 Suppose MA and the continuum, c = |2ω|, is a weakly inacces-
sible cardinal. What is the length3 of the hierarchy of (< c)-Borel sets?

Theorem 8 In the Cohen real model every ω1-Borel set is Σ∗

ω1+1 and there
is a Σ∗

ω1
set which is not in Σ∗

<ω1
.

Proof
We state the lower bound separately as Theorem 9.
We will use Steel forcing with tagged trees (Steel [18]) similarly to its use

in Stern [19]. Stern proved that assuming MAω1
an ω1 union of Σ0

α sets which
is Borel, must be Σ0

α. Since Steel forcing is countable, he only really needed
MA(ctble). Similar results are proved in Solecki [16] Cor 2.3 and Becker and
Dougherty [2] Thm 2. These authors do not consider ω1-Borel sets but are
interested only in ω1-unions of ordinary Borel sets.

MAω1
(ctble) stands for Martin’s axiom for countable posets. It says that

for any countable poset and ω1-family of dense sets there is a filter meeting
all the dense sets in the family. It is equivalent to saying that the real line
cannot be covered by ω1 nowhere dense sets, see for example, Bartoszynski
and Judah [1] p. 138. It holds in any generic extension obtained with a finite
support ccc iteration of cofinality at least ω2.

Theorem 9 Suppose MAω1
(ctble) holds. Then for any α < ω1 there is an

ordinary Borel set which is not Σ∗

α.

Proof
We use Steel forcing with tagged trees4 similarly to the way it is described
in Harrington [8].

For any countable ordinal α define Q(α) to be the following countable
poset. Elements of Q(α) have the form (t, h) where t is a finite subtree of
ω<ω and h : t → α ∪ {∞} is called a tagging. The ordering on α ∪ {∞} is
∞ < ∞ and β < ∞ for each ordinal β along with the usual ordering on pairs
of ordinals from α. A tagging h is a rank function which means it satisfies:
if σ, τ ∈ t and σ is a strict initial segment of τ , then h(σ) > h(τ).5

The ordering on Q(α) is p ≤ q (p extends q) iff

1. tq ⊆ tp and

3The argument of Lemma 9 shows that it is at least ω1.
4Sami [15] gives a proof of Harrington’s Theorem which does not use Steel forcing.
5We differ from [8] by not requiring that h(〈〉) = ∞.
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2. hq ⊆ hp.

Note that nodes tagged with ∞ can always be extended and tagged with ∞
or any element of α. 6

Now suppose that G is Q(α) generic over M . Define

1. T = TG = {σ : ∃(t, h) ∈ G σ ∈ t}

2. H = HG : TG → α ∪ {∞} by H(σ) = h(σ) for any h such that there
exists (t, h) ∈ G with σ ∈ t.

It is easily seen by a density argument that H is a rank function on the
tree T where the symbol ∞ gets attached to the nodes of T which can be
extended to an infinite branch.

Define p(β) for β ≤ α and p ∈ Q(α) by p(β) = (t, hβ) where p = (t, h)
and

hβ(s) =

{

h(s) if h(s) < ω · β
∞ otherwise

Lemma 10 (Retagging Lemma) Suppose p1, p2 ∈ Q(α) and β + 1 ≤ α and
p1(β + 1) = p2(β + 1). Then for every q1 ≤ p1 there is q2 ≤ p2 such that
q1(β) = q2(β).

Proof
Let pi = (t, hi) for i = 1, 2 and suppose q1 = (t′, f1). We define q2 = (t′, f2)
as follows. Put f2 ↾ t = h2. Fix N < ω greater than the height of t′. For
each σ ∈ t′\t let τ ⊆ σ be the longest initial segment of σ which is in t.

Case 1. If h1(τ) < ω(β + 1), then by assumption, h2(τ) = h1(τ) and we
can define f2(σ) = f1(σ).

Case 2. h1(τ) ≥ ω(β + 1), then by assumption, h2(τ) ≥ ω(β + 1).
(a) If h1(σ) < ωβ, then we put h2(σ) = h1(σ).
(b) Otherwise ωβ ≤ h1(σ) and we put h2(σ) = ωβ + (N −|σ|). Note that

in this case when we look at qi(β) these σ will be retagged with ∞.
QED

Fix α < ω1 and let T be the usual Q(α)-name for the generic tree TG:

T = {(p, š) : s ∈ tp where p = (tp, hp) ∈ Q(α)}.

The following is the main property of Steel forcing. We identify P(ω<ω)
with 2ω.

6Harrington [8] makes the additional requirement that the top node, 〈〉, be tagged with
∞, but this is unnecessary and makes our proof clumsy, as in Miller [14] Lemma 4.4.
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Lemma 11 Suppose p, q ∈ Q(α), 1 + β ≤ α, p(1 + β) = q(1 + β), and
B ⊆ P(ω<ω) is Π∗

β set coded in the ground model.7 Then

p T ∈ B iff q T ∈ B.

Proof
This is proved by induction on β.

For β = 0 we take for Π∗

0 basic clopen subsets of P(ω<ω). This means
that for some pair F0, F1 of disjoint finite subsets of ω<ω that

B = {X ⊆ ω<ω : F0 ⊆ X and F1 ∩X = ∅}.

So the statement X ∈ B is a finite conjunction of statements of the form
σ ∈ X or σ /∈ X . But note that:

1. p σ̌ ∈ T iff σ = 〈〉, σ ∈ tp, or τ ∈ tp and hp(τ) > 0 where τ is the
initial segment of σ of length exactly one less than σ.

2. p σ̌ /∈ T iff there exists τ ⊆ σ with τ ∈ tp and hp(τ) < |σ| − |τ |.

Both of these are preserved when we look at p(1). Hence if p(1) = q(1)
then

p T ∈ B iff q T ∈ B.

For β > 0 suppose that B is Π∗

β+1 and coded in the ground model.
Working in the ground model let B =

⋂

α<ω1
∼Bα where8 each Bα is Π∗

<1+β.
And suppose for contradiction that p2 T ∈ B but p1 does not force this.
Then there exists a q1 ≤ p1 and α < ω1 such that

q1 T ∈ Bα.

And suppose that Bα is Π∗

1+γ where γ < β. Since 1 + γ + 1 ≤ 1 + β, by
the retagging lemma we may find q2 ≤ p2 with q1(1 + γ) = q2(1 + γ). By
inductive hypothesis

q2 T ∈ Bα

7There are many ways to code Borel (or more generally κ-Borel) sets. Solovay [17]
p.25 gives a clear definition of coding and absoluteness which is similar to what we use in
the proof of Lemma 4. Harrington [8] Definition 2.5 and Steel [18] code using infinitary
propositional logic. We like to use well-founded trees as in Lemma 12.

8We use ∼B to denote the complement of B.
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which contradicts that
p2 T ∈ B ⊇ ∼Bα.

QED
Suppose for contradiction that in the Cohen real model there is an α0 < ω1

such that every ω1-Borel set is Π∗

α0
. It well-known that for every countable

ordinal α the set

WFα = {T ⊆ ω<ω : T is a well-founded tree of rank α}

is an (ordinary) Borel set.9 Consequently it must be a Π∗

α0
-set. Fix a count-

able α > α0 · ω. Take a sufficiently large10 regular cardinal κ and let Hκ

be the sets whose transitive closure has cardinality less than κ. Take N to
be an elementary substructure of Vκ of cardinality ω1 which contains α + 1.
Then N will contain a code for B the Π∗

α0
set WFα. Let M be the transi-

tive collapse of N and consider forcing over M with Q(α + 1). Since we are
assuming MA(ctbl), for any p ∈ Q(α+ 1) there is a G Q(α+ 1)-generic over
the ground model M with p ∈ G. So take such a G with HG(〈〉) = α. Then
TG is a well-founded tree of rank α and so TG ∈ WFα. By absoluteness

M [G] |= TG ∈ B

and so there must be a p ∈ G such that

p T ∈ B.

But consider q = p(α). Note that hq(〈〉) = ∞. Consequently, for any G′

which is Q(α + 1)-generic over M with q ∈ G′, the tree TG′ is not even
well-founded and hence

M [G′] |= TG′ /∈ B.

But this means that
q T /∈ B

which contradicts Lemma 11.
QED

Next we prove an upper bound on the ω1-Borel hierarchy in the Cohen
real model. Our argument uses some ideas employed by Carlson [5].

9The exact Borel class is computed in Stern [19] and Miller [12].
10 For example κ = i+

ω
.
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Lemma 12 In the Cohen real model for any ω1-Borel set B there exists ω1

ordinary Borel sets, (Bβ : β < ω1), such that B is their limit:

B =
⋃

α<ω1

⋂

β>α

Bβ =
⋂

α<ω1

⋃

β>α

Bβ

Proof
Let B be coded by a well-founded tree T ⊆ ω<ω1

1 with basic clopen sets
(sσ ∈ 2<ω : σ ∈ T ∗) where T ∗ are the terminal nodes (or leaf nodes) of the
tree T . Then T, (sσ : σ ∈ T ∗) codes B as follows. Define

B(σ) = [sσ] = {x ∈ 2ω : sσ ⊆ x}

for σ ∈ T ∗. Then for nonterminal nodes of T define

B(σ) =
⋂

{∼B(σˆ〈α〉) : α < ω1 and σˆ〈α〉 ∈ T}.

Finally, put B = B(〈〉).
Fix such a T for B and for any α < ω1 define Bα inductively just as above

but for the countable tree T ∩ α<ω.
We will show that for some closed unbounded set C ⊆ ω1 that B is the

ω1-limit of (Bβ : β ∈ C).
By the Cohen real model we mean an model obtained by forcing with

Fn(ω2, 2), the finite partial maps from ω2 into 2, over a model of ZFC+GCH.
By standard arguments using the countable chain condition and product
Lemma, we may without loss of generality assume that our code for B,
T, (sσ : σ ∈ T ∗), is in the ground model M a model of ZFC+GCH. For any
x ∈ M [G] ∩ 2ω (where G is Fn(ω2, 2)-generic over M there is an H ∈ M [G]
which is Fn(ω, 2)-generic over M and x ∈ M [H ].

Since the ground model M satisfies CH, there is a set of canonical names,
CN, for elements of 2ω in the extension M [H ] has size ω1.

Working in the ground model M construct an continuous chain (Nα :
α < ω1) of countable elementary submodels of Hω2

, with the code for B,
T, (sσ : σ ∈ T ∗), in N0, Nα � Nβ and Nα ∈ Nβ for α < β < ω1. Note that it
is automatically the case that every canonical name is in some Nα.

Now take for our club C the set

C = {ω1 ∩Nα : α < ω1}.
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Suppose that x = τH where τ ∈ Nα and H is Fn(ω, 2)-generic over
M . Let Mα be the transitive collapse of Nα. By standard arguments H is
Fn(ω, 2)-generic over Mα. Note that ordinal δ = N∩ω1 is the ω1 of Mα i.e.,

Mα |= δ = ω1.

Let p ∈ Fn(ω, 2) be such that either

Mα |= p τ ∈ B

or
Mα |= p τ ∈ ∼B.

Assume the former. Note that BMα[H]=Bδ ∩M [H ]. And since it is forced it
must be that x = τH ∈ Bδ.

For every β > α the model Nβ elementary superstructure of Nα and hence
that

Mβ |= p τ ∈ B

and for the same reason x ∈ Bδ′ where δ′ is the ω1 of Mβ .
QED

Remark 13 Lemma 12 easily generalizes to the ω1-Borel hierarchy giving
that every ω2-Borel set is the ω2 limit of ω1-Borel sets, and since each of
them is at level ω1 + 1, we get an upperbound of ω1 + 2 for the length of the
ω2-Borel hierarchy.

Remark 14 Lemma 12 is also true in the random real model.

Remark 15 In Steprans [20] the hierarchy on the ω1-Borel sets is defined by
letting the bottom level, Πℵ1

0 = Σℵ1

0 , be the family of all ordinary Borel sets.
Lemma 12 shows that every ω1-Borel set in the Cohen real model is Πℵ1

2 and
hence Σℵ1

2 . It is easy to see that in this model there are Σℵ1

1 sets which are
not Πℵ1

1 , for example, any nonmeager subset of 2ω of size ω1.

Remark 16 In Miller [11] Theorem 34 and 54, it is shown consistent for
any countable ordinal α0 ≥ 2 to have separable metric space X such that
every subset of X is Borel and the Borel hierarchy on X has length exactly
α0. It is easy to show that if the set X ⊆ 2ω has cardinality at least ω2

that for each β < α0 the generic Π0
β sets produced are not Σ∗

β relative to X.
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Hence these spaces have order α0 in the relativized ω1-Borel hierarchy. If we
replace the use of almost disjoint forcing in Steprans model [20] Definition 2,
by Π0

α0
-forcing from Miller [11] p. 236, then we get a model of ZFC in which

every subset of 2ω is ω1-Borel and the ω1-Borel hierarchy has length at least
α0 but no more than α0 + 1. Similarly if we change the Steprans model by
using Π0

α-forcing in the α model, then in the resulting model every subset of
2ω is ω1-Borel and the ω1-Borel hierarchy has length at least ω1 but no more
than ω1 + 1.

Question 17 Is possible to have a model of ZFC in which the ω1-Borel hi-
erarchy has length α where ω1 + 2 ≤ α < ω2?
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