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ON SHAPE PRESERVING SEMIGROUPS

ANDRÁS BÁTKAI AND ADAM BOBROWSKI

Abstract. Motivated by positivity-, monotonicity-, and convexity preserving differential equa-
tions, we introduce a definition of shape preserving operator semigroups and analyze their
fundamental properties. In particular, we prove that the class of shape preserving semigroups
is preserved by perturbations and taking limits. These results are applied to partial delay
differential equations.

1. Introduction

In applications it is often important to know whether some properties of solutions of an evolution
equation involved remain unchanged in time. This is the case, for instance, with positivity of
solutions of population equations, with monotonicity of solutions in transport processes and with
convexity of solutions of certain partial differential equations, see for example [3, 4, 8]. Despite
considerable interest in these questions, an abstract operator semigroup theoretic approach seems
to be still missing. The aim of this note is to look for the right definition of shape-preserving
semigroups, and to present basic examples and properties of such semigroups. In particular,
we would like to argue that a previous definition, due to M. Kovács [14], though it connects
geometrical notions with semigroup theory in an intriguing way, has its deficiencies, and propose a
way to mend them. We leave many important questions unresolved, but hope to set the research
on the right track and stimulate some activity in this field.

As we shall see in Section 3, with the modified definition of S-shape preservability, under
natural assumptions, limits and S-shape preserving perturbations will not lead out of the class
of S-shape preserving semigroups. This, in contradistinction to Kovács’ approach, allows dealing
with concrete examples of Section 4.

To recall Kovács’ definition, let X and Y be Banach lattices, S : X → Y be a closed operator,
and let (A,D(A)) be the generator of a strongly continuous semigroup

(

etA
)

t≥0
in X . The

archetypical examples of S are the operators of first and second derivatives, describing monotone
and convex functions, respectively. More specifically, if I ⊂ R is an open interval and f : I → R is
sufficiently smooth, then f is monotonically increasing if f ′ ≥ 0, and f is convex if f ′′ ≥ 0. The
semigroup

(

etA
)

t≥0
is said to be S-shape preserving in the sense of Kovács if the following

two conditions are satisfied:

(a) D(A) ⊂ D(S),
(b) SetAx ≥ 0 for t ≥ 0, provided Sx ≥ 0, x ∈ D(A).

(We note that taking S to be the identity operator, we obtain the definition of a positive semi-
group.)

We would like to argue that the following definition is more suitable. Let X be a Banach space,
Y an ordered Banach space with closed positive cone, and let S : X → Y be a closed operator.
Consider the sets

(1) C := {x ∈ D(S), Sx ≥ 0}, CA := {x ∈ D(A) ∩D(S), Sx ≥ 0}.

Definition 1.1. We say that the semigroup
(

etA
)

t≥0
preserves S-shape if

(a) C = CA, and
(b)

(

etA
)

t≥0
leaves C invariant.
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2 A. BÁTKAI AND A. BOBROWSKI

We comment that the most important part of the definition is that the semigroup leaves the
set C invariant. The equality in (a) is a technical condition, which we could not avoid in proving
the invariance under Miyadera-Voigt type perturbations. However, in the examples presented
later on, this condition was no restriction; on the contrary, it constituted a key technical tool in
proving S-shape preservability. The requirement in question says that in a sense the semigroup
generated by A is compatible with S, and it is our conviction that it agrees with intuitions better
than Kovacs’s condition (a).

2. Motivating examples

Monotonicity. In our first two examples, X = BUC(R) is the space of bounded, uniformly
continuous functions on R. In order to describe monotone functions, we introduce S = − d

dx with

domain equal to X1, the set of continuously differentiable functions in X with the first derivative
in X.

Example 2.1. Recall, see Bertoin [2, p. 11] or Kallenberg [13, p.239], that a Lévy process in R is
a stochastic process ξt, t ≥ 0 with stationary, independent increments and right-continuous paths
with left-hand limits, and such that P (ξ0 = 0) = 1. The related semigroup of operators

Ttf(x) = E f(x+ ξt) x ∈ R, t ≥ 0

is strongly continuous in X , and X2 (the set of twice continuously differentiable functions with
both derivatives in X) is a core for its generator, see Bobrowski [5, p. 279]. (A special case is the
shift semigroup). Moreover, Tt, t ≥ 0 leave X1 invariant and

(2) STtf = TtSf, f ∈ X1,

implying that the second condition in the definition of Kovács is satisfied. However, in general,
the first one is not, as is seen from the case of the Poisson process, where the generator is bounded.
At the same time, by (2), the semigroups related to Lévy processes leave the set of non-increasing
differentiable functions invariant, and Lemma 5.1 in the Appendix implies that the same is true
for the set of all non-increasing functions. Hence, the first condition of Kovács seems to be too
stringent, and contrary to intuition. On the other hand, the conditions of Definition 1.1 are
fulfilled.

Example 2.2. Consider a non-increasing function β in X , and Aǫ = ǫS + B, ǫ > 0, where B is
the operator of multiplication by β. The explicit Feynman–Kac-type formula

etAǫf(x) = eǫ
−1

∫
x

x−ǫt
β(y) dyf(x− ǫt)

makes it clear that all
(

etAǫ
)

t≥0
, ǫ > 0 preserve S-shape in the sense of Kovács. However, while

the limit semigroup
(

etB
)

t≥0
(as ǫ → 0) given by

etBf(x) = etβ(x)f(x),

clearly maps non-increasing functions into non-increasing functions and is S-shape preserving in
the sense of Definition 1.1, it does not satisfy condition (a) in Kovács’ definition. This shows that
this condition is not only contrary to intuition, but also that it causes S-shape preservability to
be in general lost in the limit.

Example 2.3. Let X = C[0,∞] be the space of continuous functions on R+ with limits at infinity,

and let A = 1
2

d2

dx2 with domain composed of twice continuously differentiable functions with the
second derivative in X such that f ′′(0) = 0, be the generator of the stopped (or: absorbed)
Brownian motion, see Bobrowski [5] or Liggett [16]. Then

(

etA
)

t≥0
preserves monotonicity. To

see this we recall the following relation (see e.g. Bobrowski [6] or Liggett [16])

etAf(x) = etA0 f̃(x), x ≥ 0, t > 0

where etA0f(x) = 1√
2πt

∫∞
−∞ e−

(x−y)2

2t f(x+ y) dy and f̃ is an extension of f to R, given by f(x) =

2f(0)− f(−x), x ≤ 0. Hence, the claim follows as in Example 2.1, since f̃ is non-increasing if f is.
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Convexity-related notions.

Example 2.4. Consider the left shift semigroup on X = BUC(R+); the generator is Af = f ′

with domain composed of differentiable functions such that f ′ ∈ X . Clearly, convex and concave
functions are preserved by this semigroup. However, defining the operator Sf = f ′′, D(S) = {f ∈
BUC(R+) ∩ C2(R+) : f ′′ ∈ BUC(R+)}, we see that Kovacs’s condition (a) is not satisfied. On
the other hand, Lemma 5.2 shows both that convex functions in X may be conveniently described
in terms of S, and that our semigroup preserves S-shape.

Example 2.5. In X = C[0, 1], the operator Af := f ′′ with domain D(A) := {f ∈ C2[0, 1] :
f ′′(0) = f ′′(1) = 0}, generates a Feller, analytic semigroup (compare e.g. Engel [9] and Liggett
[15, p. 17]). Defining again Sf := f ′′, D(S) := C2[0, 1], we see that for f ∈ D(A) with f ′′ ≥ 0,

(3) SetAf = AetAf = etAAf = etASf ≥ 0,

because the semigroup
(

etA
)

t≥0
is positivity preserving. Hence,

(

etA
)

t≥0
leaves CA invariant. By

Lemma 5.2 it follows that C = CA, and our semigroup preserves convex functions.

We observe that the semigroup related to the heat equation with Neumann boundary conditions
does not preserve convexity. To see this, note that the range of the semigroup is contained in the
domain of the generator, but the only convex functions in the domain are the constant functions.

Finally, let us mention two examples where the choice of the space Y is nontrivial.

Example 2.6. Consider the heat equation in X = L2(0, π) with Dirichlet boundary conditions.
The related semigroup

(

etA
)

t≥0
is not convexity preserving: for example, the function f(x) = x2

(or any other positive convex function) is mapped into a positive function g = etAf ∈ D(A) (since
(

etA
)

t≥0
is holomorphic), which cannot be convex because g(0) = g(π) = 0 . However, Faragó and

Pfeil [11] have proved that if f ∈ H2(0, π) satisfies f ≤ 0 and f ′′ ≥ 0, then (etAf)′′ ≥ 0 for t ≥ 0.
To incorporate this example into our set-up, we introduce the space Y := L2(0, π)× L2(0, π) and
the operator S : X → Y given by

Sf := (−f, f ′′), f ∈ H2(0, π).

Then the cited result says that the set {f ∈ X : f ≤ 0 , f ∈ H2(0, π), f ′′ ≥ 0} is left invariant by
(

etA
)

t≥0
, implying that the same is true for the closure of this set, denoted by C in agreement with

Definition 1.1. It is easy to see that C = CA = {f ∈ X : f ≤ 0 , f ∈ D(A), f ′′ ≥ 0}, (it suffices to
show that a negative linear function belongs to CA) i.e. that

(

etA
)

t≥0
preserves S-shape.

To interpret this result in other terms, we note that, by Lemma 5.2, the set C is the closure
of {f ∈ X ; f ≤ 0, f convex}, since uniform convergence implies convergence in X . On the other
hand,

(

etA
)

t≥0
being holomorphic, it maps X into D(A) ⊂ C[0, π]. Hence,

(

etA
)

t≥0
maps C into

C ∩C[0, π]. In particular, by Lemma 5.5, it maps negative convex functions into negative convex
functions.

Example 2.7. We present a natural example where Y is not a Banach lattice (compare our
definition with the definition of Kovács). Let Ω̄ := [0, 1]× [0, 1], X := C0(Ω̄), Y = C(Ω̄,C2×2) be
the space of continuous (2 × 2)-matrix-valued functions, and let S be defined by Sf := f ′′ (the
Hessian matrix of f) and D(S) := C0(Ω̄)∩C2(Ω̄). We see that Y is not a Banach lattice, though
it is ordered pointwise through the ordering of positive definiteness. For f ∈ D(S), convexity is
characterized by the positive semidefinitenss of f ′′(x) for all x ∈ Ω̄. Hence, by Remark 5.4 we see
that the set C equals the convex functions in X.

We close this section by mentioning an important open problem of generalization of convexity
preserving properties of the heat semigroup to higher dimensions.

Open Problem 2.8. Let Ω ⊂ RN be a smooth convex set and consider the Dirichlet-heat semi-
group. Is it true that negative convex functions are mapped into convex functions? Similarly,
considering the heat equation with Wentzell boundary conditions as discussed in Engel [9], is it
true that convex functions are mapped into convex functions?
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3. Stability of S-shape preservability

In this section, we investigate stability of shape preservability under approximations and per-
turbations. Though the results are quite straightforward corollaries of the definition, we list them
in detail because they are of importance in applications. Throughout this section, as in the def-
inition of S-shape preservability, X is a Banach space, Y an ordered Banach space with closed
positive cone, and S : X → Y is a closed linear operator.

We start with the Trotter-Kato approximation theorem.

Theorem 3.1. Assume that (A,D(A)) and (An, D(An)) are the generators of strongly continuous
S-shape preserving operator semigroups,

(

etA
)

t≥0
and

(

etAn
)

t≥0
⊂ L(X), respectively, such that

there are constants M ≥ 1 and ω ∈ R such that ‖etA‖, ‖etAn‖ ≤ Meωt, and that for some
ℜe λ > ω,

(λ−A)−1 = lim
n→∞

(λ−An)
−1 (strongly).

Suppose that A is compatible with S (i.e., CA = C). Then
(

etA
)

t≥0
is S-shape preserving, as well.

Proof. By the Trotter-Kato approximation theorem (see [10, Theorem III.4.8.]), we have Tn(t)x →
T (t)x as n → ∞ for all x ∈ X . Hence, C (being closed) is invariant for

(

etA
)

t≥0
, as claimed. �

The Chernoff product formula yields another application:

Theorem 3.2. Assume that (A,D(A)) is the generator of a C0-semigroup
(

etA
)

t≥0
and that

V : R+ → L(X) is a strongly continuous family of operators such that there exists M ≥ 1 and
ω ∈ R with

‖V (t)n‖ ≤ Metnω,

and that there is a core D ⊂ D(A) such that

∃ lim
h→0

V (h)x− x

h
= Ax.

If C = CA and V (t)C ⊂ C, then
(

etA
)

t≥0
is S-shape preserving.

Proof. By the Chernoff product formula [10, Theorem III.5.2], we have

V (t/n)nx → etAx

for all x ∈ X . Hence, the claim follows since C is closed. �

An important consequence is that certain time-discretizations of S-shape preserving semigroups
are S-shape preserving. This is enormously important in numerical problems: if a differential
equation preserves a quantity we aim for numerical methods preserving the same quantity. Such
numerical methods are called geometric integrators; see Hairer et al. [12] for the corresponding
theory for ordinary differential equations.

Corollary 3.3. Assume that (A,D(A)) and (B,D(B)) generate S-shape preserving semigroups
(

etA
)

t≥0
and

(

etB
)

t≥0
, and (A+B,D(A+B)) generates a C0-semigroup (U(t))t≥0. If there exists

M ≥ 1, ω ∈ R such that
∥

∥

∥

(

etAetB
)n

∥

∥

∥
≤ Mentω,

then (U(t))t≥0 is S-shape preserving. Moreover, in each time-step the sequential and the Strang
splittings are S-shape preserving, i.e., for each x ∈ C,

usq :=
(

e
t
n
Ae

t
n
B
)n

x ∈ C,

and

uSt :=

(

e
t
2nBe

t
n
Ae

t
2nB

)n

x ∈ C.

Proof. The stability for the Strang splitting follows from [7, Lemma 2.3]. The consistency for
the sequential splitting is in [10, Corollary III.5.8], for the Strang splitting it is a straightforward
modification. �
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Note that the sequential splitting is usually referred to as the Lie product formula.

We turn now our attention to perturbation problems.

Corollary 3.4. Assume that (A,D(A)) generates an S-shape preserving semigroup
(

etA
)

t≥0
and

that B ∈ L(X) is a bounded operator leaving C invariant. Then the semigroup generated by
(A+B,D(A)) is S-shape preserving.

Proof. Since C is closed, it is clear that the (semi-)group etB :=
∑∞

n=0
(tB)n

n! is S-shape preserving.
The stability of the Lie product formula follows from the following considerations. Let M ≥ 1,
ω ∈ R be such that ‖etA‖ ≤ Metω. Introduce the new, equivalent norm as in [10, Lemma II.3.10]
such that |||etA||| ≤ etω. Since |||etB||| ≤ et|||B|||, the statement follows by

∥

∥

∥
(e

t
n
Ae

t
n
B)nx

∥

∥

∥
≤

∣

∣

∣

∣

∣

∣(e
t
n
Ae

t
n
B)nx

∣

∣

∣

∣

∣

∣ ≤ e(ω+|||B|||)t|||x||| ≤ Me(ω+|||B|||)t‖x‖.

�

Example 3.5. If A is the generator of a Lévy process semigroup in X = BUC(R) and B is the
multiplication operator related to a non-increasing function β in X , then the semigroup generated
by A+B preserves monotonicity.

We can relax the boundedness of B to allow Miyadera-type perturbations.

Theorem 3.6. Assume that (A,D(A)) generates an S-shape preserving semigroup
(

etA
)

t≥0
and

that B ∈ L(D(A), X) is such that for all x ∈ D(A) ∩D(S) with Sx ≥ 0, we have

Bx ∈ C.

If further there is a q ∈ (0, 1) and t0 > 0 such that
∫ t0

0

‖BetAx‖ dt ≤ q‖x‖ for all x ∈ D(A),

then (A+B,D(A)) generates an S-shape preserving semigroup.

Proof. By the perturbation theorem of Miyadera-Voigt [10, Theorem III.3.14 and Corollary III.3.16]
(A+B,D(A)) generates a strongly continuous semigroup (U(t))t≥0, which is given by the Dyson-
Phillips series

U(t)x =

∞
∑

n=0

Un(t)x,

where U0(t) = etA and

Un(t)x =

∫ t

0

Un−1(t− s)BesAxds for all x ∈ D(A).

By induction argument, since CA is closed, we have Un(t)CA ⊂ CA, hence U(t)CA ⊂ CA. Note
that here we use heavily that CA = C. �

4. Delay equations

Since many physical processes depend on a former state of the system as well, they have to
be described by partial delay differential equations containing a term depending on the history
function. Although these partial differential equations cannot be written as an abstract Cauchy
problem on the original state space X , their solutions can be obtained by an operator semigroup
on an appropriate function space (called phase space). For a systematic treatment of the problem
we refer to the monograph Bátkai and Piazzera [1], which will be our main reference here.
Consider the abstract delay equation in the following form (see, e.g., Bátkai and Piazzera [1]):

(DE)



















du(t)

dt
= Bu(t) + Φut, t ≥ 0,

u(0) = x ∈ X,

u0 = f ∈ Lp
(

[−1, 0], X
)
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on the Banach space X , where
(

B,D(B)
)

is a generator of a strongly continuous semigroup on X ,

1 < p < ∞, and Φ : W1,p
(

[−1, 0], X
)

→ X is a bounded and linear operator. The history function
ut is defined by ut(σ) := u(t+ σ) for σ ∈ [−1, 0].

Our main assumptions will be the following.

(1) The operator (B,D(B)) is S-shape preserving.
(2) There is η ∈ BV ([−1, 0],L(X)) such that

Φf :=

∫ 0

−1

dη(s)f(s).

(3) We have that η(s)C ⊂ C.

We start with the following abstract statement.

Theorem 4.1. The solutions of the delay equation (DE) are S-shape preserving, i.e., for all initial
values x ∈ C, f ∈ Lp([−1, 0], C), we have that u(t) ∈ C.

Proof. In order to rewrite (DE) as an abstract Cauchy problem, we take the product space E :=
X × Lp

(

[−1, 0], X
)

and the new unknown function as

t 7→ U(t) :=

(

u(t)

ut

)

∈ E .

Then (DE) can be written as an abstract Cauchy problem on the space E in the following way:

(ACP)







dU(t)

dt
= AU(t), t ≥ 0,

U(0) =
(

x
f

)

∈ E ,

where the operator
(

A, D(A)
)

is given by the matrix

(4) A :=

(

B Φ
0 d

dσ

)

on the domain

D(A) :=
{

(

x
f

)

∈ D(B) ×W1,p
(

[−1, 0], X
)

: f(0) = x
}

.

It is shown in Bátkai and Piazzera [1, Corollary 3.5, Proposition 3.9] that the delay equation
(DE) and the abstract Cauchy problem (ACP) are equivalent, i.e., they have the same solutions.
More precisely, the first coordinate of the solution of (ACP) always solves (DE). Due to this
equivalence, the delay equation is well-posed if and only if the operator

(

A, D(A)
)

generates a
strongly continuous semigroup on the space E .

Further, it was also shown in [1] that

A = A1 +A2,

where

A1 :=

(

B 0
0 d

dσ

)

,

with D(A1) := D(A), and

A2 :=

(

0 Φ
0 0

)

with D(A2) = X ×W1,p([−1, 0], X), and that A2 satisfies the conditions of the Miyadera-Voigt
perturbation theorem.

Defining C := C × Lp([−1, 0], C) and

S :=

(

S 0
0 S ⊗ Id

)

mapping to Y × Lp([−1, 0], Y ), we see that A1 and A2 satisfy the conditions of Theorem 3.6. �

Using this abstract result, we are able to deal with a large class of partial differential equations
with delay. As an illustration, we give here two examples.
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Corollary 4.2. Consider the transport equation

∂tu(t, x) = ∂xu(t, x) + cu(t− τ, x), t ≥ 0, x ≥ 0,

u(s, x) = f(s, x), s ∈ [−τ, 0], x ≥ 0,

where β : R+ → R+ is a monotonically increasing bounded continuous function. If f(s, ·) is
an increasing (decreasing) function for all s ∈ [−τ, 0], then u(t, ·) is a monotonically increasing
(decreasing) function for all t ≥ 0.

Corollary 4.3. Consider the diffusion equation

∂tu(t, x) = ∂2
xxu(t, x) +

{

cu(t− τ, x+ 1
2 ), t ≥ 0, x ∈ [0, 1

2 ],

cu(t− τ, x− 1
2 ), t ≥ 0, x ∈ [ 12 , 1],

u(t, 0) = u(t, 1) = 0 t ≥ −τ,

u(s, x) = f(s, x), s ∈ [−τ, 0], x ∈ [0, 1],

where c > 0. If f(s, ·) is a negative convex function for all s ∈ [−τ, 0], then u(t, ·) is negative and
convex for all t ≥ 0.

5. Appendix

We show here that sets of monotone and convex functions in certain spaces, are closures of the
positivity sets of the first and the second derivatives, respectively. The aim is to give a further
justification of our definition of preservation of shape. Though the following statements seem to
be a common knowledge we include them for the convenience of the reader.

Lemma 5.1. A non-increasing function in BUC(R) may be approximated by continuously differ-
entiable, non-increasing functions in the same space.

Proof. Given numbers a < b and c ≥ d, we may find a non-increasing differentiable function g on
[a, b] such that g(a) = c, g′(c) = 0, g(b) = d and g′(b) = 0; this may be achieved by stretching and
translating g(x) = cosx, x ∈ [0, π]. In particular, for any non-increasing f ∈ C[a, b] with f(a) = c
and f(b) = d, we have ‖g − f‖C[a,b] ≤ c− d.

Given ǫ > 0 and a non-increasing f ∈ X we may find reals a and b such that f(−∞)− f(a) < ǫ
and f(b) − f(+∞) < ǫ. Next, we may find a natural n and points a = a1 < a2 < · · · < an = b
such that f(ai)− f(ai−1) < ǫ. Then,

g = f(−∞)1(−∞,a0) +

n
∑

k=0

gi1[ai,ai+1) + f(∞)1(an+1,∞)

where a0 = a1 − 1, an+1 = an + 1, and gi are defined on [ai, ai+1] as non-increasing, continuously
differentiable functions satisfying g(ai) = f(ai), g

′(ai) = 0, g(ai+1) = f(ai+1) and g′(ai+1) = 0,
satisfies supx∈R

|f(x)− g(x)| < ǫ. �

Lemma 5.2. Let −∞ < a < b < ∞ and let I = [a, b] or I = [a,∞) or I = (−∞, b]. Then
all convex functions in BUC(I) can be approximated by twice continuously differentiable convex
functions.

Proof. We give the proof here for a finite interval; the infinite case can be handled similarly. We
approximate f first by a piecewise linear function g: given a natural n and midpoints a = x0 <
x1 < . . . < xn = b we find a function g such that g is linear on each interval [xi, xi+1], and
g(xi) = f(xi) at all points xi. Since f is convex, so is g and continuity of f implies that given
ǫ > 0 we may choose a sufficiently dense mesh of midpoints to make sure that the distance between
f and g is less than a given ǫ. Moreover, since the number of points where g is not differentiable
is finite and at these points both functions are equal, we may smoothen g out at these points
without increasing the distance between the functions to find a twice continuously differentiable
convex function within ǫ distance of f , as claimed. �

Remark 5.3. Note that the approximating function g described above satisfies g′′(a) = g′′(b) = 0.
Additionally, if f(a) = f(b) = 0 then g(a) = g(b) = 0, as well.



8 A. BÁTKAI AND A. BOBROWSKI

Remark 5.4. This argument can be generalized in a straightforward way to higher dimensions.
Namely, we have the following. Let Ω̄ := [0, 1]× [0, 1] and assume that f : Ω̄ → R is convex. Then
it can be approximated uniformly by smooth convex functions.

Lemma 5.5. Let X = Lp(a, b) and D := {f ∈ X : f convex}. Then D ∩ C[a, b] is composed of
convex functions.

Proof. Assume that fn ∈ X,n ≥ 1 are convex and fn → f in X , where f is convex. Then there
is a subsequence (nk)k≥1 such that fnk

(x) → f(x), as k → ∞ for x in a set E ⊂ [a, b] of measure
b− a. It follows that

f(αx+ (1− α)y) ≤ αf(x) + (1 − α)f(y)

for all x, y ∈ E and for all α ∈ Ex,y, where Ex,y ⊂ [0, 1] is a set of measure 1. By continuity of f
we conclude first that the same inequality is true for all α ∈ [0, 1], and then for all x, y ∈ [a, b]. �
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