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Abstract

We consider partitions of the positive integer n whose parts satisfy
the following condition: for a given sequence of non-negative numbers
{bk}k≥1, a part of size k appears in exactly bk possible types. Assuming
that a weighted partition is selected uniformly at random from the set of
all such partitions, we study the asymptotic behavior of the largest part
Xn. Let D(s) =

∑∞

k=1
bkk

−s, s = σ+iy, be the Dirichlet generating series
of the weights bk. Under certain fairly general assumptions Meinardus
(1954) has obtained the asymptotic of the total number of such partitions
as n → ∞. Using Meinardus scheme of conditions, we prove that Xn

appropriately normalized, converges weakly to a random variable having

Gumbel’s distribution (i.e. its distribution function equals e−e
−t

,−∞ <

t < ∞). This limit theorem extends some known results on particular
types of partitions and on the Bose-Einstein model of ideal gas.

Mathematics Subject classifications: 05A17, 60C05, 60F05

1 Introduction and Statement of the Result

A weighted partition of the positive integer n is a multiset of size n whose de-
composition into a union of disjoint components (parts) satisfies the following
condition: for a given sequence of non-negative numbers {bk}k≥1, a part of size
k appears in exactly one of bk possible types. For more details on properties
of multisets, we refer the reader e.g. to [3]. Weighted partitions are also asso-
ciated with the generalized Bose-Einstein model of ideal gas, where n(= E) is
interpreted as the total energy of the system of particles. The weights bk, k ≥ 1,
are viewed as counts of the distinct positions of the particles in the state space,
where a particle in a given position has (rescaled) energy k (for more details on
the relationship between combinatorial partitions and various models of ideal
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gas, see [19]). From combinatorial point of view, it is fairly natural to assume
that bk, k ≥ 1, are integers (see e.g. the ”money changing problem” discussed in
detail in [22; Sect. 3.15]). On the other hand, it turns out that this requirement
is not necessary for the analytical approach used in this paper. That is why, we
assume that bk, k ≥ 1, are real non-negative numbers.

For a given sequence b = {bk, k ≥ 1}, let Pb(n) be the set of all weighted
partitions of the positive integer n and let pb(n) =| Pb(n) | be its cardinality. It
is known that the generating function fb(x) of the numbers pb(n) is of Euler’s
type, namely,

fb(x) = 1 +

∞
∑

n=1

pb(n)x
n =

∞
∏

k=1

(1− xk)−bk , | x |< 1 (1.1)

(see [22; Sect. 3.14]). We introduce the uniform probability measure P = Pn,b

on the set of weighted partitions of n assuming that the probability 1/pb(n)
is assigned to each n-partition with weight sequence b. In this paper we focus
on the size of the largest part Xn of a random weighted partition of n. With
respect to the probability measure P , Xn becomes a random variable, defined
on the set Pb(n). It is also well-known that

fm,b(x) = 1 +

∞
∑

n=1

pb(n)P (Xn ≤ m)xn =

m
∏

k=1

(1 − xk)−bk , m ≥ 1 (1.2)

(see [22; Sect. 3.15]).
The asymptotic behavior of the combinatorial numbers pb(n) (the Taylor

coefficients in (1.1)) will play important role in our further analysis. A fairly
general scheme of assumptions on the parametric sequence b was proposed by
Meinardus [11] (see also [2; Chap. 6]), who found an asymptotic expansion
for the numbers pb(n) as n → ∞. His approach is based on considering two
generating series:

D(s) =

∞
∑

k=1

bkk
−s, s = σ + iy, (1.3)

and

G(z) =

∞
∑

k=1

bkz
k, | z |≤ 1. (1.4)

Below we give Meinardus’ scheme of conditions. Throughout the paper by ℜ(z)
and ℑ(z) we denote the real and imaginary part of the complex number z,
respectively.

(M1) The Dirichlet series (1.3) converges in the half-plane σ > ρ > 0 and
there is a constant C0 ∈ (0, 1), such that the function D(s) has an analytic
continuation to the half-plane {s : σ ≥ −C0} on which it is analytic except for
the simple pole at s = ρ with residue A > 0.

(M2) There exists a constant C1 > 0 such that

D(s) = O(| y |C1), | y |→ ∞,
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uniformly for σ ≥ −C0.
(M3) There are constants ǫ > 0 and C2(= C2(ǫ) > 0), such that the function

g(τ) = G(e−τ ), τ = α+ 2πiu, u real and α > 0 (see (1.4)) satisfies

ℜ(g(τ))− g(α) ≤ −C2α
−ǫ, | arg(τ) |> π/4, 0 6=| u |≤ 1/2,

for enough small values of α.
The first assumption (M1) specifies the domain, say H, in which D(s) has an

analytic continuation. The second is related to the asymptotic behavior of D(s),
whenever |ℑ(s)| → ∞. Functions, which are bounded by O(|ℑ(s)|c), 0 < c < ∞,
in certain domain, as |ℑ(s)| → ∞, are called functions of finite order. It is known
that the sum of the Dirichlet series in (1.3) satisfies the finite order property
in its half-plane of convergence σ > ρ (see e.g. [18; Sect. 9.4]). Meinardus
second condition requires that the same holds for the analytic continuation of
D(s) in the domain H. Finally, Meinardus third condition implies a bound on
ℜ(G(e−τ )) (see (1.4)) for certain specific complex values of τ . In some cases its
verification is technically complicated. Granovsky et al. [9] showed that it can
be reformulated as follows:

(M ′
3)

∞
∑

k=1

bke
−kα sin2 (πku) ≥ C2α

−ǫ, 0 <
α

2π
<| u |≤ 1/2,

for small enough α and some constants C2, ǫ > 0 (C2 = C2(ǫ)).
Moreover, they proved that this inequality holds for any sequence bk, k ≥ 1,

satisfying the inequality bk ≥ Ckν−1, k ≥ k0, for some k0 ≥ 1 and C, ν > 0. We
notice that if

bk = Ckν−1, k ≥ 1, (1.5)

then D(s) = Cζ(s− ν +1), where ζ denotes the Riemann zeta function. There-
fore, D(s) has a single pole at s = ν with residue C > 0 and a meromorphic
analytic continuation to the whole complex plane [21; Sect. 13.13]. These facts
show that Meinardus conditions (M1)− (M3) are satisfied by the weights (1.5)
with ρ = ν and A = C.

Throughout the paper we assume that conditions (M1)−(M3)) are satisfied.
Our aim is to determine asymptotically, as n → ∞, the distribution of the
maximal part size Xn. Recalling (1.2), we also point out that our results may be
interpreted in terms of the asymptotic of the combinatorial counts of partitions
whose part sizes are ≤ m, where the range of values ofm is specified by the weak
convergence of the random variableXn to a non-degenerate random variable. In
the brief review given below we summarize some known results on the limiting
behavior of the random variable Xn.

Consider first the classical case of linear integer partitions, where the weights
satisfy bk = 1, k ≥ 1. This kind of partitions were broadly studied by many au-
thors in many respects. Their graphical representations by Ferrers diagrams
show that their total number of parts and their maximal part size Xn are iden-
tically distributed for all n (see [2; Sect.1.3]). Erdös and Lehner [6] were ap-
parently the first who applied a probabilistic approach to the study of integer
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partitions. As a matter of fact, they found an appropriate normalization for Xn

in this case and showed that πXn/(6n)
1/2− log ((6n)1/2/π) converges weakly, as

n → ∞, to a random variable having the extreme value (Gumbel’s) distribution.
The local version of their theorem was derived later by Auluck et al. [4]. Frist-
edt [8] studied linear integer partitions using a transfer method to functionals of
independent and geometrically distributed random variables. Among other re-
sults, he obtained the limiting distribution of the kth largest part size whenever
k is fixed. Finally, we notice that among weighted integer partitions only the
linear ones possess the property that number of parts and maximum part size
are identically distributed. The limiting distribution of the number of parts in
the general case of random weighted partitions under Meinardus scheme of con-
ditions is studied in [13]. It turns out that the limiting distribution laws depend
on particular ranges in which the parameter ρ varies (see condition (M1)).

Another important particular case of weighted partitions arises whenever
bk = k, k ≥ 1. It turns out that in this case the generating function fb(x)
(see (1.1)) enumerates the plane partitions. A plane partition of n ≥ 1 is a
matrix of non-negative integers arranged in non-increasing order from left to
right and from top to bottom, so that their double sum of its elements equals
n. Together with the largest part size Xn, consider also the counts of the non-
zero rows and columns of the matrix of a plane partition. It turns out that
these three quantities measure the sizes of the corresponding solid diagram of a
plane partition in the 3D space. (The solid diagram is a heap of n unit cubes
placed in the first octant of a coordinate system in a 3D space whose columns
composed by stacked cubes have non-increasing heights along the x- and y-
axis; the height of this heap along the z-axis is just Xn, the largest part size.)
Similarly to Ferrers diagrams for linear integer partitions, the three sizes of this
heap appear to be identically distributed for all n ≥ 1 (for more details, see
[17; p. 371]). Their joint limiting distribution was found in [15]. The marginal
limiting distributions (including the limiting distribution of Xn) were obtained
in [12]. For more details on various properties of plane partitions and their
applications to combinatorics and analysis of algorithms, we refer the reader to
[2; Chap. 11], [14; Chap. 11] and [17; Chap. 7].

Our study is also closely related to some recent results on the maximal
particle energy in the Bose-Einstein model of ideal gas. The general setting
and the probabilistic frame of problems from statistical mechanics and their
relationship with enumerative combinatorics was given by Vershik [19]. In the
context of the infinite product formula (1.1), he studied the Bose-Einstein model
by a family of probability measures µv, v ∈ (0, 1), defined on the set of all b-
weighted partitions Pb = ∪n≥0Pb(n). So, for a partition λ = (λ1, ..., λl) ∈
P , λ1 ≥ ... ≥ λl > 0, we let rk(λ) = {j : λj = k} to denote the number of parts
of λ that are equal to k ≥ 1. Then µv is defined by

µv({λ ∈ P : rk(λ) = j}) =
(

bk + j − 1

j

)

vkj(1− vk)bk , 0 < v < 1.

The key feature in the study of this kind of measures is the fact that a kind
of a conditional probability measure on Pb(n) turns out to be independent of
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v for all n and coincides with the uniform probability measure P = Pn,b (for
more details, see [19]). In [20] Vershik and Yakubovich studied the limiting
distribution of the maximal particle energy X(λ), or, which is the same, the
largest part size X(λ), λ ∈ P , with respect to the measure µv, as v → 1−. In
particular, under the assumption that the weight sequence b satisfies (1.5), they
proved that

lim
v→1−

µv({λ ∈ P : (1− v)X(λ) − ν | log (1 − v) |

−(ν − 1) log | log (1 − v) | − (ν − 1) log ν − logC ≤ t})
= e−e−t

, −∞ < t < ∞. (1.6)

As it was mentioned before, the weight sequence (1.5) satisfies Meinardus con-
ditions (M1)− (M3). Vershik and Yakubovich [20] studied also a more realistic
model of quantum ideal gas in a d-dimensional space, for which the weights
satisfy

∑k
j=1 bj = cdk

d/2 +O(kκd), as k → ∞ (cd and κd < d/2 are computable
constants).

The main result of this paper is obtained in terms of the uniform probability
measure P = Pn,b on the set Pb(n). Before stating it, for the sake of brevity,
we introduce the following notation:

an(ρ,A) =

(

AΓ(ρ+ 1)ζ(ρ+ 1)

n

)
1

ρ+1

, n ≥ 1, (1.7)

where the constants ρ and A are defined by condition (M1).

Theorem 1 If the weight sequence b, satisfies conditions (M1)− (M3), then,
for all real t, the limiting distribution of the largest part size Xn is given by

lim
n→∞

P (anXn + ρ log an − (ρ− 1) log | log an | − (ρ− 1) log ρ− logA ≤ t)

= e−e−t

. (1.8)

Remark. One can easily compare (1.8) with (1.6) setting in the latter one
v = 1 − an, ν = ρ and C = A and observe the coinciding normalizations. We
also notice that the limiting results for linear and plane partitions (see [6,12])
follow from (1.8) with A = 1 and ρ = 1 and 2, respectively.

The method of our proof combines Hayman’s theorem for estimating coeffi-
cients of admissible power series [10] (see also [7; Sect. VIII.5], a generalization
of Perron’s formula, expressing partial sums of a Dirichlet series by a complex
integral of the inverse Mellin transform applied to the Dirichlet series itself (see
Thm 3.1 from the Supplement of [16]) and some Mellin transform computations.

We organize our paper as follows. Section 2 includes some auxiliary facts
that we need further. Some proofs are omitted since they are given in [9,11].
In Section 3 we present the proof of Theorem 1. The Appendix contains some
technical details related to the application of the generalized Perron’s formula
[16].
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2 Preliminary Results

We start with a lemma establishing an asymptotic estimate for infinite product
representation (1.1) of the generating function fb(x). It has been proved by
Meinardus [11] (see also [2; Lemma 6.1]).

Lemma 1 Suppose that sequence b is such that the associated Dirichlet series
(1.3) satisfies conditions (M1) and (M2). If τ = α+ iθ, then

fb(e
−τ ) = exp (AΓ(ρ)ζ(ρ + 1)τ−ρ −D(0) log τ +O(αC0))

as α → 0+ uniformly for | θ |≤ π and | arg τ |≤ π/4.

Our first goal is to show that Meinardus conditions (M1)− (M3) imply that
the generating function fb(x) possesses Hayman’s admissibility properties [10]
(see also [7; Sect. VIII.5]) in the unit disc. Hence, for 0 < r < 1, we introduce
the functions:

Fb(r) = log fb(r) = −
∞
∑

k=1

bk log (1 − rk), (2.1)

Ab(r) = rF ′
b(r) = r

f ′
b(r)

fb(r)
, (2.2)

Bb(r) = r2F ′′
b (r) + rF ′

b(r) = r
f ′
b(r)

fb(r)
+ r2

f ′′
b (r)

fb(r)
− r2

(

f ′
b(r)

fb(r)

)2

. (2.3)

Furthermore, setting in (2.1)-(2.3) r = e−α, we shall obtain their asymptotic
expansions as α → 0+. For the sake of convenience, we also set

h = h(ρ,A) = AΓ(ρ+ 1)ζ(ρ+ 1). (2.4)

The proof of the next lemma is contained in [9; Lemma 2].

Lemma 2 Meinardus conditions (M1) and (M2) imply the following asymptotic
expansions:

Ab(e
−α) = hα−ρ−1 +D(0)α−1 +O(αC0−1), (2.5)

Bb(e
−α) =

d

dα
(−Ab(e

−α)) = h(ρ+ 1)α−ρ−2 −D(0)α−2 +O(αC0−2), (2.6)

F ′′′
b = O(α−ρ−3), (2.7)

as α → 0+, where Fb,Ab and Bb are defined by (2.1)-(2.3), respectively. More-
over, from (2.5) it follows that the equation

Ab(e
−α) = n, n ≥ 1, (2.8)

has a unique solution α = αn, such that αn → 0 as n → ∞. An asymptotic
expansion of this solution, as n → ∞, is given by

αn = an +
D(0)

(ρ+ 1)n
+O(n−1−β), (2.9)

where β = min
(

C0

ρ+1 ,
ρ

ρ+1

)

and an are the normalizing constants given by (1.7).
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We notice that (2.5), (2.6) and (2.9) imply that

Ab(e
−αn) → ∞, Bb(e

−αn → ∞, n → ∞, (2.10)

that is, Hayman’s ”capture” condition [7; p. 565] is satisfied with r = rn = e−αn .
Our next step is to establish Hayman’s ”locality” condition, which implies the
asymptotic behavior of fb(x) in a suitable neighborhood of x = 1.

Lemma 3 Suppose that the weight sequence b satisfies Meinardus conditions
(M1) and (M2) and αn is the solution of (2.8) given by (2.9). Let

δn = α1+ρ/3
n /ω(n), n ≥ 1, (2.11)

where ω(n) → ∞ as n → ∞ arbitrarily slowly. Then

e−iθn fb(e
−αn+iθ)

fb(e−αn)
= e−θ2Bb(e

−αn )/2(1 +O(1/ω3(n)) (2.12)

uniformly for | θ |≤ δn.

Proof. Applying Lemma 1, we observe that

e−iθn fb(e
−αn+iθ)

fb(e−αn)
(2.13)

= exp

(

h

ρ
((αn − iθ)−ρ − α−ρ

n )−D(0) log

(

1− iθ

αn

)

− iθn+O(αC0

n )

)

where h is given by (2.4). Expanding (αn−iθ)−ρ and log (1− iθ/αn) by Taylor’s
formula and using (2.5), (2.6) and (2.8), we obtain

h

ρ
((αn − iθ)−ρ − α−ρ

n )−D(0) log

(

1− iθ

αn

)

− iθn

= iθ(hα−ρ−1
n +D(0)α−1

n − n)− θ2

2
h(ρ+ 1)α−ρ−2

n − D(0)θ2

2α2
n

+O(| θ |3 α−3−ρ
n )

= ıθ(Ab(e
−αn)− n+O(αC0−1

n ))− θ2

2
(Bb(e

−αn) +O(αC0−2
n )) +O(| θ |3 α−3−ρ

n )

= −θ2

2
Bb(e

−αn) +O(δnα
C0−1
n ) +O(δ2nα

C0−2
n ) +O(δ3nα

−3−ρ
n ).

Substituting this into (2.13) and taking into account (2.11), we obtain (2.12).
To complete our analysis, we also need to study the behavior of fb(e

−αn+iθ)
outside the range −δn < θ < δn. The next lemma shows that Hayman’s last
(”decay”) condition [7; p. 565] is also valid.

Lemma 4 Suppose that fb(x) satisfies Meinardus conditions (M1)−(M3). Then,
for sufficiently large n,

| fb(e−αn+iθ) |≤ fb(e
−αn)e−C2α

−ǫ
n

uniformly for δn ≤ θ < π, where C2, ǫ > 0 are the constants defined in condition
(M3).
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Proof. First, we notice that

| fb(e−αn+iθ) |
fb(e−αn)

= exp (ℜ(log fb(e−αn+iθ))− log fb(e
−αn)). (2.14)

Then, setting θ = 2πu, we almost repeat the argument from [9;p. 324]:

ℜ(log fb(e−αn+iθ))− log fb(e
−αn)

ℜ
(

∞
∑

k=1

bk log

(

1− e−αn+2πiu

1− e−αn

)

)

= −1

2

∞
∑

k=1

bk log

(

1− 2e−kαn cos (2πuk) + e−2αnk

(1− e−αnk)2

)

= −1

2

∞
∑

k=1

bk log

(

1 +
4e−αnk sin2 (πuk)

(1 − e−αnk)2

)

≤ −1

2

∞
∑

k=1

bk log (1 + 4e−αnk sin2 (πuk))

≤ − log 5

2

∞
∑

k=1

bke
−αnk sin2 (πuk), (2.15)

where the last inequality follows from the fact that log (1 + v) ≥
(

log 5
4

)

v, 0 ≤
v ≤ 4. Substituting this estimate into (2.14) and applying condition (M ′

3), we
obtain the required inequality.

We now recall (2.6) from Lemma 2. It implies that

B1/2
b (e−αn) ∼ (h(ρ+ 1))1/2α−1−ρ/2

n , n → ∞.

Combining this asymptotic equivalence with the result of Lemma 4, we obtain
Hayman’s ”decay” condition [7; p. 565], namely,

| fb(e−αn+iθ) |= o(fb(e
αn)/B1/2

b (e−αn)), n → ∞, (2.16)

uniformly for δn ≤| θ |< π.
Eqs. (2.10), (2.12) and (2.16) show that the function fb(x) is admissible

in the sense of Hayman. Therefore, we can apply Thm. VIII.4 of [7] for its
coefficients. We state this result in the next lemma.

Lemma 5 Suppose that the weight sequence b satisfies Meinardus conditions
(M1)− (M3). Then, the asymptotic for the total number of weighted partitions
is given by

pb(n) ∼
e−nαnfb(e

−αn)
√

2πBb(e−αn)
(2.17)

as n → ∞, where αn is the unique solution of (2.8) whose asymptotic expansion
is given by (2.9) and Bb(e

−αn) is defined by (2.6).
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Remark. The asymptotic equivalence (2.17) is in fact Meinardus asymptotic
formula [11] for the number of weighted partitions of n. It was also established
by Granovsky et al. [9] under a condition weaker than (M3). Here we give the
formula in a slightly different form, which is more convenient for our further
asymptotic analysis. One can easily show the coincidence of (2.17) with the
Meinardus original formula, applying the result of Lemma 1 to fb(e

−αn) and
replacing αn and Bb(e

−αn) by (2.9) and (2.6), respectively.
Further, we also need a bound on the rate of growth of the weights bk, as

k → ∞. Granovsky et al. [9; p. 310] obtained it using Tauberian theorem
technique.

Lemma 6 If the sequence of weights b satisfies Meinardus conditions (M1) and
(M2), then

bk = o(kρ)

as k → ∞.

Now we recall formula (1.2) for the truncated products fm,b(x),m ≥ 1.
Similarly to (2.1), we set

Fm,b(x) = log fm,b(x) = −
m
∑

k=1

bk log (1− xk). (2.18)

(Here we consider the main branch of the logarithmic function, assuming that
log y < 0 for 0 < y < 1). Further on, when computing the derivatives of (2.1)
and (2.18), we shall write

F
(j)
b (e−αn) = F

(j)
b (x) |x=e−αn , F

(j)
m,b(e

−αn) = F
(j)
m,b(x) |x=e−αn , j = 1, 2, 3.

Our next lemma establishes estimates on the tails F
(j)
b (e−αn)− F

(j)
m,b(e

−αn) for
some specific values of m.

Lemma 7 Suppose that the weight sequence b satisfies Meinardus conditions
(M1) and (M2) and αn, n ≥ 1, is defined by eq. (2.9). Moreover, let

m ∼ ρα−1
n logα−1

n , n → ∞. (2.19)

Then

F
(j)
b (e−αn)− F

(j)
m,b(e

−αn) = O(α−j
n logρ+j α−1

n ), j = 1, 2, 3.

Proof. We shall consider the case j = 1. The other two cases are studied in
a similar way.

First, we choose an integer m1 that satisfies the asymptotic equivalence

m1 ∼ (ρ+ 1)α−1
n logα−1

n (2.20)
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and decompose the difference of the first derivatives in the following way:

F ′
b(e

−αn)− F ′
m,b(e

−αn) =

∞
∑

k=m+1

kbke
−kαn

1− e−kαn
= S1 + S2, (2.21)

where

S1 =

m1
∑

k=m+1

kbke
−kαn

1− e−kαn
, S2 =

∞
∑

k=m1+1

kbke
−kαn

1− e−kαn
.

From Lemma 6, (2.19) and (2.20) it follows that

S1 ≤ 1

1− αρ
n

m1
∑

k=m+1

kbke
−kαn = o(mρ+1

1 )
e−(m+1)αn

1− e−αn

= o(mρ+1
1 e−mαn) = o(α−(ρ+1)

n (logρ+1 α−1
n )αρ

n)

= o(α−1
n logρ+1 α−1

n ). (2.22)

S2 can be estimated in a similar way, using the asymptotic expansion of the
incomplete gamma function Γ(a, z) as z → ∞ (see [1; Sect. 6.5]). We have

S2 = O

(

∞
∑

k=m1+1

kρ+1e−kαn

1− e−kαn

)

= O

(

∞
∑

k=m1+1

kρ+1e−kαn

)

= O

(

α−ρ−2
n

∫ ∞

m1αn

uρ+1e−udu

)

= O(α−ρ−2
n (m1αn)

ρ+1e−m1αn)

= O(α−1
n mρ+1

1 e−(ρ+1) logα−1
n ) = O(α−1

n logρ+1 α−1
n ). (2.23)

The required estimate now follows from (2.21)-(2.23).
Our last forthcoming lemma supplies us with integral representations for

F (e−α) and Fm(e−α), α > 0, using Dirichlet series (1.3) and its partial sums

Dm(s) =

m
∑

k=1

bkk
−s, s = σ + iy, m ≥ 1, (2.24)

respectively. The proof is based on Mellin transforms and can be found in [11],
[9; Lemma 2(ii)] and [2; Sect. 6.2].

Lemma 8 For any α,∆ > 0, we have

Fm,b(e
−α) =

1

2πi

∫ ρ+∆+i∞

ρ+∆−i∞

α−sΓ(s)ζ(s+ 1)Dm(s)ds (2.25)

and

Fb(e
−α) =

1

2πi

∫ ρ+∆+i∞

ρ+∆−i∞

α−sΓ(s)ζ(s + 1)D(s)ds, (2.26)

where Dm(s) and D(s) are defined by (2.24) and (1.3), respectively.

10



3 Proof of the Main Result

We apply first Cauchy coefficient formula to (1.2) using the circle x = e−αn+iθ, π <
θ ≤ π, as a contour of integration (αn is determined by (2.9)). We obtain

pb(n)P (Xn ≤ m) =
e−nαn

2π

∫ π

−π

fm,b(e
−αn+iθ)e−iθndθ.

Then, we break up the range of integration as follows:

pb(n)P (Xn ≤ m) = J1(m,n) + J2(m,n), (3.1)

where

J1(m,n) =
e−nαn

2π

∫ δn

−δn

fm,b(e
−αn+iθ)e−iθndθ

=
e−nαn+Fm,b(e

−αn )

2π

∫ δn

−δn

fm,b(e
−αn+iθ)

fm,b(e−αn)
e−iθndθ, (3.2)

J2(m,n) =
e−nαn+Fm,b(e

−αn )

2π

∫

δn<θ≤π

fm,b(e
−αn+iθ)

fm,b(e−αn)
e−iθndθ, (3.3)

where δn is the sequence defined by (2.11).
We start with an estimate for J1(m,n), expanding the integrand of (3.2) by

Taylor’s formula:

fm,b(e
−αn+iθ)

fm,b(e−αn)
= exp{(eiθ − 1)e−αnF ′

m,b(e
−αn)

+
1

2
(eiθ − 1)2e−2αnF ′′

m,b(e
−αn) +O(| θ |3 F ′′′

m,b(e
−αn))}.

Hence, we can rewrite (3.2) as follows:

J1(m,n) =
e−nαn

√
2π

eFm,b(e
−αn )In, (3.4)

where

In =
1√
2π

∫ δn

−δn

exp{(eiθ − 1)e−αnF ′
m,b(e

−αn)

+
1

2
(eiθ − 1)2e−2αnF ′′

m,b(e
−αn) +O(| θ |3 F ′′′

m,b(e
−αn))− iθn}dθ.

Lemma 7 shows that, for thosem satisfying (2.19), we can replace the derivatives

F
(j)
m,b(e

−αn) by F
(j)
b (e−αn), j = 1, 2, 3, at the expense of a negligible error term.

In fact, combining Lemma 7 with (2.11), we have

(eiθ − 1)jF
(j)
m,b(e

−αn) = (eiθ − 1)jF
(j)
b (e−αn) +O(δjnα

−j
n logρ+j α−1

n )

= (eiθ − 1)jF
(j)
b (e−αn) +O(αρj/3

n logρ+j α−1
n /ωj(n)), j = 1, 2,

11



and
O(| θ |3 F ′′′

m,b(e
−αn)) = O(αρ

n(log
ρ+3 α−1

n )/ω3(n)),

for any function ω(n) → ∞ as n → ∞ arbitrarily slowly. Since all error terms
above tend to 0, we obtain

In =
1 + o(1)√

2π

∫ δn

−δn

exp{(eiθ − 1)e−αnF ′
b(e

−αn)

+
1

2
(eiθ − 1)2e−2αnF ′′

b (e
−αn) +O(| θ |3 F ′′′

b (e−αn))− iθn}dθ

=
1 + o(1)√

2π

∫ δn

−δn

exp{Fb(e
−αn+iθ)− Fb(e

−αn)− iθn}dθ

=
1 + o(1)√

2π

∫ δn

−δn

fb(e
−αn+iθ)

fb(e−αn)
e−iθndθ,

where the last equality follows from a similar Taylor’s expansion for Fb(e
−αn+iθ).

Now, from Lemma 3 it follows that

In ∼
∫ δn

−δn

e−θ2Bb(e
−αn )/2dθ

=
1

√

2πBb(e−αn)

∫ δn
√

Bb(e−αn )

−δn
√

Bb(e−αn )

e−y2/2dy ∼ 1
√

2πBb(e−αn)

∫ ∞

−∞

e−y2/2dy

=
1

√

Bb(e−αn)
, n → ∞.

The last asymptotic equivalence follows from (2.6) of Lemma 2, which implies
that

δn
√

Bb(e−αn) ∼ α
−ρ/6
n

ω(n)

√

h(ρ+ 1) → ∞,

if ω(n) → ∞ slower than α
−ρ/6
n .

Substituting the asymptotic equivalence for In into (3.4), we conclude that

J1(m,n) ∼ e−nαn

√

2πB(e−αn)
eFm,b(e

−αn ), (3.5)

whenever m satisfies (2.19) as n → ∞.
For the estimate of J2(m,n), we recall (3.3) and the proof of Lemma 4.

Using an argument, similar to that presented in (2.15), for any real u, we obtain

ℜ(Fm,b(e
−αn+2πiu))− Fm,b(e

−αn) ≤ − log 5

2

m
∑

k=1

bke
−αnk sin2 (πuk)

= − log 5

2

(

∞
∑

k=1

bke
−αnk sin2 (πuk)−

∞
∑

k=m+1

bke
−αnk sin2 (πuk)

)

. (3.6)

12



Combining Lemma 6 with (2.19) and repeating the argument given in the proof
of Lemma 7, we also get the following estimate:

∞
∑

k=m+1

bke
−αnk sin2 (πku) ≤

∞
∑

k=m+1

bke
−αnk = O(logρ α−1

n ).

Replacing the second term of the right-hand side of (3.6) by the last O-estimate
and applying condition condition (M ′

3) to its first term, for δn/2π <| u |≤ 1/2,
we obtain

ℜ(Fm,b(e
−αn+2πiu))− Fm,b(e

−αn) ≤ −C2α
−ǫ
n +O(logρ α−1

n ).

Now, we are ready to compare the growth of (3.3) with that of (3.5). So, if m
satisfies (2.19) as n → ∞, we have

| J2(m,n) |≤ exp (−nαn + Fm,b(e
−αn))

×
∫

δn
2π

<|u|≤ 1
2

| fm,b(e
−αn+2πiu)/fm,b(e

−αn) | du

= exp (−nαn + Fm,b(e
−αn))

∫

δn
2π

<|u|≤ 1
2

(ℜ(Fm,b(e
−αn+2πiu)− Fm,b(e

−αn))du

= O(exp (−nαn + Fm,b(e
−αn)− C2α

−ǫ
n +O(logρ α−1

n )))

= O(e−C2α
−ǫ
n

√

2πBb(e−αn)J1(m,n)) = o(J1(m,n)). (3.7)

It is now clear that (3.1), (3.5) and (3.7) imply that

pb(n)P (Xn ≤ m) ∼ e−nαn

√

2πBb(e−αn)
eFm,b(e

−αn ), n → ∞.

Subsequent application of the asymptotic equivalence (2.17) from Lemma 5
implies that

P (Xn ≤ m) ∼ exp {Fm,b(e
−αn)− Fb(e

−αn)}, (3.8)

where αn and m satisfy (2.9) and (2.19) as n → ∞, respectively.
Further on we shall study the asymptotic behavior of the exponent in (3.8).

Our analysis will be based on a generalization of Perron’s formula that expresses
partial sums of a Dirichlet series as complex integrals of the inverse Mellin type
transforms applied to the Dirichlet series itself. We shall use it in the form
given in the Supplement of [16; Sect. 3]. So, first we represent Fm,b(e

−αn) using
representation (2.25) of Lemma 8 and then, we apply Perron’s formula to the
partial sum Dm(s) of the Dirichlet series D(s) that is included in the integrand
of (2.25) (recall also (2.24) and (1.3)). In this way we arrive at the following
complex integral representation: for any ∆ > 1, we have

Fm,b(e
−αn) (3.9)

=
1

2πi

∫ ρ+∆+i∞

ρ+∆−i∞

α−sΓ(s)ζ(s + 1)

(

A(m+ 1)ρ−s

ρ− s
+D(s) + o(1)

)

ds.
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Furthermore, (3.8) and (3.9) imply that

P (Xn ≤ m) (3.10)

∼ exp

{

−Aα−ρ
n

2πi

∫ ∆+i∞

∆−i∞

((m+ 1)αn)
−sΓ(s+ ρ)ζ(s + ρ+ 1)

ds

s

}

.

The proofs of (3.9) and (3.10) contain some technical details that will be given
in the Appendix.

We continue with the computation of the complex integral in the exponent
of (3.10). The exact value of m = m(n) will be specified later. First, setting in
the integral of (3.10)

u = un = (m+ 1)αn, (3.11)

we consider it as inverse Mellin transform of the function Γ(s+ρ)ζ(s+ρ+1)/s.
For the sake of convenience, we also set

H(u) =
1

2πi

∫ ∆+i∞

∆−i∞

u−sΓ(s+ ρ)ζ(s + ρ+ 1)
ds

s
. (3.12)

Then, clearly g1(s) = 1/s is the Mellin transform of

H1(u) =

{

1 if u ≤ 1,
0 if u < 1

(see [5; formula 6.2.18]), while g2(s) = Γ(s)ζ(s) is the Mellin transform of

H2(u) =
∞
∑

j=1

e−ju

j
= − log (1− e−u)

(see [7; p. 764]). Next, for ∆ > 1, we apply formula (6.1.14) from [5] with α = 0
and β = ρ− 1. We obtain

H(u) = uα

∫ ∞

0

ξβH1(u/ξ)H2(ξ)dξ = −
∫ ∞

u

yρ−1 log (1− e−y)dy

=

∫ ∞

u

yρ−1e−ydy +R(u) = Γ(ρ, u) +R(u), (3.13)

where Γ(ρ, u) denotes the incomplete gamma function, while R(u) is an error
term given by

R(u) =

∫ ∞

u

yρ−1





∑

j=2

e−jy

j



 dy.

It is easily estimated as follows:

R(u) = O(

∫ ∞

u

yρ−1e−2ydy) = O(e−uΓ(ρ, u)), u → ∞.
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Combining this estimate with (3.10)-(3.13) and applying the asymptotic expan-
sion of the incomplete gamma function [1; Sect. 6.5], for u = un ∼ mαn → ∞,
we obtain

P (Xn ≤ m) = exp {−Aα−ρ
n (uρ−1

n e−un + O(uρ−1
n e−2un))}

= exp {−Aα−1
n mρ−1e−mαn(1 +O(e−mαn))}. (3.14)

It is now clear that P (Xn ≤ m) converges to the distribution function e−e−t

,−∞ <
t < ∞, if m = m(n) satisfies

−mαn + (ρ− 1) logm+ log (Aα−1
n ) = −t+ o(1)

as n → ∞. From this we deduce

m = α−1
n logα−1

n + (ρ− 1)α−1
n logm+ (logA+ t)α−1

n + o(α−1
n ), (3.15)

which in turn implies that

logm = log (α−1
n logα−1

n )

+ log

(

1 +
logA+ t

logα−1
n

+ (ρ− 1)
logm

logα−1
n

)

= logα−1
n + log logα−1

n

+ log

(

1 +
logA+ t

logα−1
n

+ (ρ− 1)
logα−1

n + log logα−1
n +O(1)

logα−1
n

)

= logα−1
n + log logα−1

n + log

(

1 + (ρ− 1) +O

(

log logα−1
n

logα−1
n

))

= logα−1
n + log logα−1

n + log ρ+O

(

log logα−1
n

logα−1
n

)

.

Hence, (3.15) becomes

m = ρα−1
n logα−1

n + (ρ− 1)α−1
n log logα−1

n

+α−1
n (ρ− 1) log ρ+ (logA+ t)α−1

n +O

(

log logα−1
n

logα−1
n

)

.

Replacing now this value of m into (3.14) and using the continuity of the dis-

tribution function e−e−t

,−∞ < t < ∞, we obtain

P (Xn ≤ m)

= P (αnXn − ρ logα−1
n − (ρ− 1) log logα−1

n − (ρ− 1) log ρ− logA ≤ t) + o(1)

→ e−e−t

, n → ∞. (3.16)

To complete the proof of the limit theorem (1.8), it remains to justify the ap-
propriate normalization replacing the sequence αn, n ≥ 1, in (3.16) by an =
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an(ρ,A), n ≥ 1, given by (1.7). To show this we recall (2.9) and notice that
after taking logarithms from its both sides, we easily obtain

logαn = log an +O(n− ρ
ρ+1 ). (3.17)

Furthermore, (2.9) implies that

anXn = αnXn − Yn, (3.18)

where Yn = D(0)
(ρ+1)nXn. From (3.16) it is not difficult to conclude that, for

every η > 0, limn→∞ P (Yn > η) = 0, that is, the sequence of the random
variables Yn, n ≥ 1, tends to 0 in probability, as n → ∞. In other words,
(3.18) represents anXn as a sum of two random variables: the first one, αnXn,
converges in distribution, as n → ∞, to a random variable with a distribution
function e−e−t

,−∞ < t < ∞, while the second one, Yn, tends to 0 in probability.
Using this fact, (3.17) and the continuity of the distribution function e−e−t

, it
is an easy probabilistic exercise to show that the limit theorem given by (1.8)
holds.

4 Appendix

Proof of (3.9). First, we recall eq. (2.25) of Lemma 8. Our goal is to represent
the mth partial sum Dm(s), defined by (2.24), using the inversion formula given
by Thm. 3.1 in the Supplement of [16] (see also formula (3.4) there). Instead
of D(s), we shall consider now the Dirichelet series

D(s+ ρ− 1) =

∞
∑

k=1

bkk
−s−ρ+1, s = σ + iy,

which converges absolutely for σ > 1. Lemma 6 implies that the coefficients of
D(s+ ρ− 1) satisfy

bkk
−ρ+1 = o(kρ)k−ρ+1 = o(k) < c̃k

for any constant c̃ > 0 and all k (in other words, the function Φ(x), introduced
in [16] satisfies Φ(x) = x in this case). Furthermore, from Meinardus condition
(M1) it follows that

∞
∑

k=1

bkk
−ρ+1k−σ =

A

σ − 1
+ φ(s),

where φ(s) denotes a function which is analytic for σ ≥ −C0. Hence

∞
∑

k=1

bkk
−ρ+1k−σ = O((σ − 1)−1), σ → 1+.
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So, the conditions of Thm. 3.1 (the Supplement of [16]) are satisfied and by
its second part we conclude that, for large enough T > 0 and any pair of fixed
constants ∆ > 1 and d > 0, we have

Dm(w + ρ− 1) +
1

2
bm+1(m+ 1)−ρ+1(m+ 1)−w

=
1

2πi

∫ d+iT

d−iT

D(w + z + ρ− 1)
(m+ 1)z

z
dz

+O

(

md

T

)

+O

(

m1−∆ logm

T

)

, w = 1 +∆+ iv,−∞ < v < ∞. (4.1)

Lemma 6 implies that the second term in the left-hand side of (4.1) is o(m1−ρ−∆)
as m → ∞. To compute the integral in the right-hand side of (4.1), we use a
contour integral around the rectangle d− iT, d+ iT,−C0−ρ−∆+ iT,−C0−ρ−
∆− iT . Using Meinardus condition (M2), we estimate the integral over the end
segment (−C0 − ρ−∆+ iT,−C0 − ρ−∆− iT ) by O(TC1m−C0−ρ−∆). Hence,
it tends to 0 as m,T → ∞, provided

T = o(m(C0+ρ+∆)/C1). (4.2)

An estimate for the integrals on the segments (−C0 − ρ−∆+ iT, d+ iT ) and
(−C0 − ρ−∆− iT, d− iT ) is given by

O

(

md

T logm

)

= o

(

md

T

)

.

Taking into account the first O-estimate in the right-hand side of (4.1), we
conclude that T and d should also satisfy

md = o(T ), m, T → ∞, (4.3)

Therefore, further we shall assume that m and T satisfy (4.2) and (4.3) with
certain constants ∆ > 1 and d > 0. Thus, all integrals on the end segments
except the integral on (d− iT, d+ iT ) are negligible for such m and T as m,T →
∞. The same obviously holds for both O-estimates in the right-hand side of
(4.1). So, we can compute Dm(w + ρ − 1) summing up the residues of the
integrand in (4.1). We obtain

Dm(w+ρ−1) =
A(m+ 1)1−w

1− w
+D(w+ρ−1)+o(1), w = 1+∆+iv,−∞ < v < ∞.

Setting w = s− ρ+ 1 and substituting this expression into (2.25), we arrive at
(3.9).

Proof of (3.10). (3.9) and (2.26) imply that

Fm(e−αn) =
A

2πi

∫ ρ+∆+i∞

ρ+∆−i∞

α−s
n Γ(s)ζ(s+ 1)

(m+ 1)ρ−s

ρ− s
ds

+F (e−αn) + o(1)

= −Aα−ρ
n

2πi

∫ ∆+i∞

∆−i∞

((m+ 1)αn)
−sΓ(s+ ρ)ζ(s+ ρ+ 1)

ds

s
+ F (e−αn) + o(1).
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Replacing this into (3.8), we obtain (3.10).
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