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TECHNIQUES OF COMPUTATIONS OF DOLBEAULT

COHOMOLOGY OF SOLVMANIFOLDS

HISASHI KASUYA

Abstract. We consider semi-direct products Cn ⋉φ N of Lie groups with
lattices Γ such that N are nilpotent Lie groups with left-invariant complex
structures. We compute the Dolbeault cohomology of direct sums of holo-
morphic line bundles over G/Γ by using the Delbeaut cohomology of the Lie
algebras of the direct product Cn

×N . As a corollary of this computation, we
can compute the Dolbeault cohomology Hp,q(G/Γ) of G/Γ by using a finite
dimensional cochain complexes. Computing some examples, we observe that
the Dolbeault cohomology varies for choices of lattices Γ.

1. Introduction

For compact homogeneous spaces, in many cases we have useful techniques
of computations of de Rham cohomology by using Lie algebras, for examples
nilmanifolds([9]) and solvmanifolds with certain conditions([6], [8]) where solvman-
ifolds(resp. nilamnifolds) are compact quotients G/Γ of solvable(resp. nilpotent)
Lie groups by lattices Γ. As similar to de Rham cohomology, we expect that we
can compute the Dolbeault cohomology of compact complex homogeneous spaces
by using Lie algebra. For nilmanifolds, the study motivated by this expectation
gives some results. For examples in [2] and [3], the authors of these papers showed
that for nilmanifolds M with left-invariant complex structure satisfying some condi-
tions the Dolbeault cohomologyHp,q

∂̄
(M) is completely determined by Lie algebras.

However, for solvmanifolds, techniques of computations of the Dolbeault cohomol-
ogy are hardly known. The purpose of this paper is to give ideas of computations of
the Dolbeault cohomology of certain class of solvmanifolds G/Γ. The importance of
this idea is to consider the Dolbeault cohomology on certain direct sum of holomor-
phic line bundles. We will show that such cohomology isomorphic to the Dolbeault
cohomology of certain nilpotent Lie algebra. Applying this computation to com-
pute the ordinary Dolbeault cohomology Hp,q

∂̄
(G/Γ), we get useful techniques of

computations of the Dolbeault cohomology. By this techniques, we actually com-
pute the Dolbeault cohomology of some examples. As difference from nilmanifolds,
we observe that in many cases the Dolbeault cohomology of solvmanifolds can not
be completely computed by using only Lie algebras.

2. Holomorphic line bundles over complex tori

Lemma 2.1. Consider a finitely generated free abelian group Zn. For a non-trivial
character α : Zn → C∗, we have H∗(Zn,Cα) = 0.

Proof. We consider the case n = 1. Then we have

H0(Z,Cα) = {α(g)m = m|m ∈ Cα} = 0.
1
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As the de Rham cohomology on S1, by the Poincaré duality we have

H1(Z,Cα) ∼= H0(Z,Cα−1)∗ = 0,

and obviously Hp(Z,Cα) = 0 for 2 ≥ p. Hence the lemma holds if n = 1. In general
case, we consider a decomposition Zn = A ⊕ B such that A is a rank 1 subgroup
and the restriction of α on A is also non-trivial. Then we have the Hochshild-Serre
spectral sequence Er such that

Ep,q
2 = Hp(Zn/A,Hq(A,Cα))

and this converges to Hp+q(Zn,Cα). Since Hq(A,Cα) = 0 for any p, this sequence
degenerates at E2 = 0 and hence the lemma follows. �

We consider a complex vector space Cn with a lattice Γ. For a C∞-character
α : Cn → C∗, we have the holomorphic line bundle Lα = Cn × Cρ/Γ over the
complex torus Cn/Γ. If α is holomorphic, then Lα is trivial as a holomorphic line
bundle. We define the equivalence relation on the space of C∞-characters of Cn

such that α ∼ β if αβ−1 is holomorphic. Then we have the correspondence α 7→ Lα

between {C∞−characters}/ ∼ and isomorphism classes of holomorphic line bundles
over Cn/Γ. But this is not injective.

Lemma 2.2. For a character α of Cn we have a unique unitary character β such
that α ∼ β.

Proof. For a coordinate (x1 +
√
−1y1, . . . , xn +

√
−1yn) ∈ Cn, a character α is

written as

α(x1 +
√
−1y1, . . . , xn +

√
−1yn) = exp(

n
∑

i=1

(aixi + biyi +
√
−1(cixi + diyi)))

for ai, bi, ci, di ∈ Rn. We consider the holomorphic character

α′(x1+
√
−1y1, . . . , xn+

√
−1yn) = exp(

n
∑

i=1

(−ai(xi+
√
−1yi)+

√
−1bi(xi+

√
−1yi)).

Then the character β = αα′ is unitary. If a unitary character is holomorphic, then
it is trivial. Hence such β is unique. �

Theorem 2.3. ([11]) The correspondence

Hom(Γ, U(1)) ∋ α 7→ Lα ∈ { isomorphism classes of
holomorphic line bundles over Cn/Γ}

is injective.

Proposition 2.4. For a C∞-character α : Cn → C∗, if Lα is a non-trivial holo-
morphic line bundle, then the Dolbeault cohomology H∗

Dol(C
n/Γ, Lα) with values in

the line bundle Lα is trivial.

Proof. By Lemma 2.2, we can suppose α is unitary. Consider the flat connection
D on Lα induced by α. We have decompositon D = D′ + D′′ where D′′ is the
Dolbeault operator on Lα. Since the image of α lies in a compact subgroup of C∗,
we have a Hermittian metric on Lα such that for a Kähler metric on Cn/Γ we have
the standard identity of the Laplacians of D and D′′ (see [4, Section 7]). Hence we
have an isomorphism H∗

D′′(Cn/Γ, Lα) ∼= H∗
D(Cn/Γ, Lα). If α is non-trivial, then

H∗
D(Cn/Γ, Lα) = 0 by Lemma 2.1 and the proposition follows. �



DOLBEAULT COHOMOLOGY OF SOLVMANIFOLDS 3

3. Invariant complex structure

Let G be a simply connected solvabale Lie group and g the Lie algebra of G. A
left-invariant complex structure on G is a left-invariant almost complex structure
J(i.e. J ∈ End(g) with J2 = −id) with the integrability (i.e. [X,Y ]− [JX, JY ] +
[JX, Y ] + [X, JY ] = 0 for all X,Y ∈ g). We assume G has a left-invariant complex
structure J . Denote gC = g⊗ C. Consider the decomposition gC = g

1,0 ⊕ g
0,1 into

the ±
√
−1-eigenspaces of the left invariant complex structure J on G. The exterior

algebra of the dual space g
∗
C decomposes as

k
∧

g
∗
C =

⊕

p+q=k

p
∧

g
∗1,0 ⊗

q
∧

g
∗0,1 =

⊕

p+q=k

p,q
∧

g
∗,

and the differential which is the dual map of Lie-bracket decomposes as d = ∂ + ∂̄
such that ∂ and ∂̄ are (1, 0) and (0, 1) components for the bi-grading

⊕

p+q=k

∧p,q
g
∗

respectively. We can identify (
∧p,q

g
∗, ∂̄) with left-invariant (p, q)-forms on (G, J)

with the Dolbeault operator.
Let α : G → C∗ be a C∞ unitary character of G. We consider the bi-graded

cochain complex (Ap,q(G,Cα), bar∂) = (Ap,q(G)⊗Cα, ∂̄) of the differential forms on
G with values in the representation space Cα and the subcomplex Ap,q(G,Cα)

G, ∂̄
of the elements of Ap,q(G,Cα) which are invariant of left G-action. Take a basis vα
of Cα and denote lρ = α−1vα. We have an isomorphism

(

p,q
∧

g
∗ ⊗ 〈lα〉, ∂̄) ∼= (Ap,q(G,Cα)

G, ∂̄).

Suppose G has a lattice Γ. For the homogeneous space, we consider the Dolbeault
complex (Ap,q(G/Γ, Lα), ∂̄) = (Ap,q(G,Cα)

Γ, ∂̄). Similarly we have an isomorphism

(Ap,q(G/Γ)⊗ 〈lα〉, ∂̄) ∼= (Ap,q(G/Γ, Lα), ∂̄).

Take a basis X1, . . . , Xn of g1,0 and the dual basis θ1, . . . , θn of g∗1,0. Let g
be the Hermittian metric on (G, J) defined by X1, . . . , Xn as a orthonormal basis.
Consider the Hodge star operator ∗̄ : Ap,q(G) → An−p,n−q(G). Then we have

∗̄(bθI ∧ θJ̄) = (
√
−1)nǫ(IJ̄I ′J̄ ′)b̄θI′ ∧ θJ̄′

where I = (i1, . . . , ip), J̄ = (j̄1, . . . j̄q), I
′ = (ip+1, . . . , in) and J̄ ′ = (j̄q+1, . . . , j̄n)

are complements of I and J̄ respectively and we wirte θI = θi1 ∧· · ·∧θip , θ̄J̄ = θ̄j̄1 ∧
· · ·∧θ̄j̄q and ǫ(IJ̄I ′J̄ ′) is the sign of the permutation (1, . . . , n, 1̄, . . . , n̄) → (IJ̄I ′J̄ ′).
For a unitary character α of G, we consider the Line bundle Lα = (G×Cα)/Γ over
G/Γ. For a basis vα of the trivial bundle G×Cα, we define the Hermittian metric
hα as hα(vα, vα) = 1. Since α is unitary, hα induces the Hermittian metric on Lα.
Consider the dual (Lα)

∗ of Lα. We have (Lα)
∗ = Lα−1 . Regarding hα as a C-anti

linear isomorphism hα : Lα → (Lα)
∗ = Lα−1 , we have hα(vα) = vα−1 . Hence for

the Hodge star operator ∗̄ : Ap,q(G/Γ, Lα) → An−p,n−q(G/Γ, Lα−1), we have

∗̄(bθI ∧ θJ ⊗ lα) = (
√
−1)nǫ(IJ̄I ′J̄ ′)b̄θI′ ∧ θJ′ ⊗ lα−1 .

Consider the adjoint operator δ̄ = −∗̄∂̄∗̄ of d and ∂̄-Laplacian � = ∂̄δ̄ + δ̄∂̄. Let
Hp,q(G/Γ, Lα) be the space of ∂̄-harmonic (p, q)-forms and

Hp,q(gC,Cα) = Hp,q(G/Γ, Lα) ∩ (

p,q
∧

g
∗ ⊗ 〈lα〉)

the space of ∂̄-harmonic left-invariant p, q-forms. We have:



4 HISASHI KASUYA

Theorem 3.1. ([13]) We have isomorphisms

Hp,q

∂̄
((G/Γ, Lα) ∼= Hp,q(G/Γ, Lα)

and

Hp,q

∂̄
(

p,q
∧

g
∗ ⊗ 〈lα〉) ∼= Hp,q(gC,Cα)

induced by inclusions. Hence the inclusion (
∧p,q

g
∗ ⊗ 〈lα〉, ∂̄) ⊂ (Ap,q(G/Γ, Lα), ∂̄)

induces an injection Hp,q

∂̄
(
∧p,q

g
∗ ⊗ 〈lα〉) → Hp,q

∂̄
((G/Γ, Lα).

4. Main results

We consider a semi-direct product G = Cn ⋉φ N such that:
(1) N is simply connected nilpotent Lie group with a left-invariant complex struc-
ture.
(2) For any t ∈ Cn, φ(t) is a holomorphic automorphism of (N, J).
(3) φ induces a semi-simple action on the Lie algebra of N .
Denote a and n as the Lie subalgebras of g corresponding to C

n and N respectively.

4.1. left-Invariant forms on G. We can write g = a ⋉dφ n. Consider the de-
composition nC = n

1,0 ⊕ n
0,1. By the condition (2), this decomposition is a direct

sum of Cn-submodules. By the condition (3) we have a basis Y1, . . . , Ym of n1,0

such that the action φ on n
1,0 is represented by φ(t) = diag(α1(t), . . . , αm(t)). Let

X1, . . . , Xn be a basis of a1,0. As we regard X1, . . . , Xn and Y1, . . . , Ym as (1,0)-
invariant vector fields on Cn and N respectively, by φ(t)Yi = αi(t)Yi for t ∈ C, we
have the basis X1, . . . , Xn, α1Y1, . . . , αmYm of g1,0 = (a ⋉dφ n)1,0. Take the (1, 0)
left-invariant differential forms x1, . . . , xn on Cn and y1, . . . , ym on N which are the
dual to X1, . . . , Xn and Y1, . . . , Ym respectively. Then x1, . . . , xn, α

−1
1 y1, . . . , α

−1
m ym

is a basis of the (1, 0) left-invariant forms g∗1,0 = (a⋉dφn)
∗1,0 on G. Hence we have

p,q
∧

g
∗ =

p
∧

〈x1, . . . , xn, α
−1
1 y1, . . . , α

−1
m ym〉 ⊗

q
∧

〈x̄1, . . . , x̄n, ᾱ
−1
1 ȳ1, . . . , ᾱ

−1
m ȳm〉.

4.2. Holomorphic fibration. Suppose G has a lattice Γ. Then Γ can be written
by Γ = Γ′ ⋉φ Γ′′ such that Γ′ and Γ′′ are lattices of Cn and N respectively and for
any t ∈ Γ′ φ(t) preserves Γ′′.

Proposition 4.1. By the projection p : Cn ⋉φ N → Cn, G/Γ is a holomorphic
fiber bundle p : G/Γ → Cn/Γ′ with the fiber N/Γ′′ such that the structure group of
this fibration is discrete.

Proof. Consider the covering Cn × (N/Γ′′) → G/Γ such that the covering trans-
formation is the action of Γ′ on C

n × (N/Γ′′) given by g · (a, b) = (a + g, φ(g)b).
Hence we have the fiber bundle G/Γ → Cn/Γ′ with the fiber N/Γ′′ and the discrete
structure group φ(Γ′) ⊂ Aut(N). Since φ(g) is holomorphic automorphism, this
fiber bundle is holomorphic. �

4.3. Unitary characters and line bundles. We consider the C∞-unitary char-
acters Hom(Cn, U(1)) of Cn. For the projection p : Cn ⋉φ N → Cn, the pull-back
p∗ : Hom(Cn, U(1)) → Hom(G,U(1)) is injective. Similarly we also have the in-
jection p∗ : Hom(Γ′, U(1)) → Hom(Γ, U(1)). Taking the restriction on Γ, we have
the map RΓ : Hom(G,U(1)) ∋ α 7→ α|Γ ∈ Hom(Γ, U(1)). Similarly we also have
RΓ′ : Hom(Cn, U(1)) ∋ α 7→ α|

Γ′ ∈ Hom(Γ′, U(1)). For α′ ∈ RΓ(Hom(Cn, U(1)),
we have the line bundle Lα′ over the complex torus C

n/Γ′. By the fibration
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p : G/Γ → Cn/Γ′, we consider the pull-back p∗Lα′ . The holomorphic line bundle
p∗Lα′ is given by p∗Lα′ = (G × Cp∗α′)/Γ. By Theorem 2.3, the map α′ 7→ p∗Lα′

from RΓ(Hom(Cn, U(1)) to the set of isomorphism classes of holomorphic line bun-
dle over G/Γ is injective. Hence we have the commutative diagram

Hom(Cn, U(1))

p∗

��

R
Γ′

// Hom(Γ′, U(1)) //

p∗

��

{ isomorphism classes of
holomorphic line bundles over C/Γ′}

p∗

��

Hom(G,U(1))
RΓ

// Hom(Γ, U(1)) // { isomorphism classes of
holomorphic line bundles over G/Γ}

such that except RΓ and RΓ′ each homomorphism in this diagram is injective. In
this paper, for α ∈ Hom(C, U(1)) we also regard α ∈ Hom(G,U(1)) if it is not
necessary to distinguish α from p∗α.

4.4. Direct sum of Dolbeault complexes. We consider the direct sum
⊕

α′∈R
Γ′(Hom(Cn,U(1))

(Ap,q(G/Γ, p∗Lα′), ∂̄)

of Dolbeault complexes and the direct sum
⊕

α∈Hom(Cn,U(1))

(Ap,q(G,Cp∗α)
G, ∂̄)

of left-invariant Dolbeault complexes. By the inclusion

(Ap,q(G,Cp∗α)
G, ∂̄) ⊂ (Ap,q(G,Cp∗α)

Γ, ∂̄) = (Ap,q(G/Γ, p∗LRΓ(α)), ∂̄),

We have the cochain map

I :
⊕

α∈Hom(Cn,U(1))

(Ap,q(G,Cp∗α)
G, ∂̄) →

⊕

α′∈R
Γ′ (Hom(Cn,U(1))

(Ap,q(G/Γ, p∗Lα′), ∂̄).

If distinct characters α 6= β ∈ Hom(Cn, U(1)) satisfy RΓ′(α) = RΓ′(β), then
I(Ap,q(G,Cp∗α)

G) and I(Ap,q(G,Cp∗β)
G) are contained in Ap,q(G/Γ, p∗LR

Γ′(α)) =
Ap,q(G/Γ, p∗LR

Γ′ (β)). Otherwise in this case we have

I(Ap,q(G,Cp∗α)
G) ∩ I(Ap,q(G,Cp∗α)

G)

= ((Ap,q(G)G⊗(p∗α−1
CR

Γ′ (α)=R
Γ′ (β)))∩((Ap,q(G)G⊗(p∗β−1

CR
Γ′ (α)=R

Γ′ (β))) = Ø.

Hence the map

I :
⊕

α∈Hom(Cn,U(1))

(Ap,q(G,Cp∗α)
G, ∂̄) →

⊕

α′∈R
Γ′ (Hom(Cn,U(1))

(Ap,q(G/Γ, p∗Lα′), ∂̄)

is injective.

4.5. The subcomplex Ap,q. Since the action φ on
∧

nC is semi-simple, we have
the weight decomposition

∧

n
∗
C =

⊕

I

WαI

for the action φ. Then as similar to subsection 4.1, we have
∧

gC =
⊕

I

∧

a
∗
C ⊗ α−1

I WαI
.
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By Lemma 2.2, we have βI ∈ Hom(Cn, U(1)) such that αI ∼ βI for each αI . We
define the subspace A∗ of

⊕

α∈Hom(Cn,U(1))(A
p,q(G,Cp∗α)

G, ∂̄) as

A∗ =
⊕

I

∧

a
∗
C ⊗ α−1

I WαI
⊗ 〈lβ−1

I
〉

where we consider the identification (
∧p,q

g
∗ ⊗ 〈lβ−1

I
〉, ∂̄) ∼= (Ap,q(G,Cβ−1

I
)G, ∂̄) as

Section 3.

Lemma 4.2. (Ap,q, ∂̄) is a subcomplex of
⊕

α∈Hom(Cn,U(1))(A
p,q(G,Cp∗α)

G, ∂̄) and

we have an isomorphism

(Ap,q, ∂̄) ∼= (

p,q
∧

(a ⊕ n)∗, ∂̄)

of bi-graded cochain complexes.

Proof. For θ∧α−1
I wαI

⊗lβ−1

I
∈
∧

a
∗⊗α−1

I WαI
⊗〈lβ−1

I
〉, since α−1

I βI is holomorphic,

we have

∂̄(θ ∧ α−1
I wαI

⊗ lβ−1

I
)

= (−1)degθθ ∧ ∂̄(α−1
I βIwαI

)⊗ vβ−1 = (−1)degθθ ∧ ᾱ−1
I ∂̄wαI

⊗ lβ−1 .

Since φ(t) is holomorphic for any t ∈ C
n, we have ∂̄WI ⊂ WI . Thus ∂̄ preserves A∗

and so (Ap,q , ∂̄) is a subcomplex of
⊕

α∈Hom(Cn,U(1))(A
p,q(G,Cp∗α)

G, ∂̄). Consider

the linear map A∗ →
∧p,q

(a ⊕ n)∗ given by

A∗ =
⊕

I

∧

a
∗
C ⊗ α−1

I WαI
⊗ 〈lβ−1

I
〉 ∋ θ ∧ α−1

I wαI
⊗ lβ−1

I

7→ θ ∧ wαI
∈
⊕

I

∧

a
∗
C ⊗WαI

=
∧

(a⊕ n)∗C.

Then this map is an isomorphism of vector spaces and by the above computation
this map is a homomorphism of cochain complexes and hence the lemma follows. �

Consider the basis x1, . . . , xn, α
−1
1 y1, . . . , α

−1
m ym of g1,0 as Subsection 4.1. By

Lemma 2.2, we take unique unitary characters βi, γi ∈ Hom(Cn, U(1)) such that
αi ∼ βi and ᾱi ∼ γi. We have

Ap,q =

p
∧

〈x1, . . . , xn, α
−1
1 y1 ⊗ lβ−1

1

, . . . , α−1
m ym ⊗ lβ−1

m
〉

⊗
q
∧

〈x̄1, . . . , x̄n, ᾱ
−1
1 ȳ1 ⊗ lγ−1

1

, . . . , ᾱ−1
m ȳm ⊗ lγ−1

m
〉

and the isomorphism (Ap,q , ∂̄) ∼= (
∧p,q

(a ⊕ n)∗, ∂̄) as above is given by

xI ∧ x̄J ∧ αKyK ∧ ᾱLyL ⊗ lβKγL
7→ xI ∧ x̄J ∧ yK ∧ ȳL ∈

p,q
∧

(a⊕ n)∗.

where I = {i1, . . . , ip1
}, J = {j1, . . . , jq1}, K = {k1, . . . , kp2

}, and L = {l1, . . . , lq2}
with p1 + p2 = p, q1 + q2 = q and I ′, J ′, K ′ and L′ are complements and we write
xI = xi1 ∧ · · · ∧ xip1

, αK = αk1
· · ·αkp2

, etc.
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4.6. Harmonic forms and Dolbeault cohomology. Let g be the Hermittian
metric such that x1, . . . , xn, α1y1, . . . , αmym is an orthonormal basis. Consider the
Hermittian metric hα on Lα for α ∈ RΓ′(Hom(Cn, U(1)) as Section 3. Then for the
Hodge star operator ∗̄ on

⊕

α′∈R
Γ′ (Hom(Cn,U(1))(A

p,q(G/Γ, p∗Lα′), ∂̄) we have

∗̄(xI ∧ x̄J ∧ αKyK ∧ ᾱLyL ⊗ lβKγL
)

= (
√
−1)n

2

ǫ(IJKLI ′J ′K ′L′)xI′ ∧ x̄J′ ∧ αK′yK′ ∧ ᾱL′yL′ ⊗ lβK′γL′ .

Hence the operator ∗̄ preserves the subcomplex Ap,q. Consider the Hermittian
metric on Cn ×N such that X1, . . . , Xn, Y1, . . . , Ym is an orthonormal basis. Then
by this computation, for the isomorphism Φ : (Ap,q, ∂̄) ∼= (

∧p,q
(a ⊕ n)∗, ∂̄) in the

proof of Lemma 4.2, we have Φ ◦ ∗̄ = ∗̄ ◦Φ. Thus by the inclusion

Ap,q ⊂
⊕

α′∈R
Γ′ (Hom(Cn,U(1))

Ap,q(G/Γ, p∗Lα′),

we have an injection

Hp,q((a ⊕ n)C,C) →
⊕

α′∈R
Γ′ (Hom(Cn,U(1)))

Hp,q((G/Γ, p∗Lα′)

and hence by Theorem 3.1 we have:

Lemma 4.3. There exists an injection

Hp,q

∂̄
(

p,q
∧

(a⊕ n)∗) → Hp,q

∂̄
(

⊕

α′∈R
Γ′ (Hom(Cn,U(1))

(Ap,q(G/Γ, p∗Lα′)).

4.7. Main theorem.

Theorem 4.4. Let G = C
n
⋉φ N such that:

(1) N is simply connected nilpotent Lie group with a left-invariant complex struc-
ture.
(2) For any t ∈ Cn, φ(t) is a holomorphic automorphism of (N, J).
(3) φ induces a semi-simple action on the Lie algebra of N .
Denote a and n as the Lie subalgebras of g corresponding to Cn and N respectively.
Suppose G has a lattice Γ = Γ′ ⋉φ Γ

′′ such that Γ′ and Γ′′ are lattices of Cn and N
respectively. Moreover we suppose that the inclusion

∧p,q
n
∗ ⊂ Ap,q(N/Γ′′) induces

an isomorphism Hp,q

∂̄
(
∧p,q

n
∗) ∼= Hp,q

∂̄
(N/Γ′′). Then we have an isomorphism

Hp,q

∂̄
(

p,q
∧

(a ⊕ n)∗) ∼= Hp,q

∂̄
(

⊕

α′∈R
Γ′ (Hom(Cn,U(1))

Ap,q(G/Γ, p∗Lα′)).

Proof. For α′ ∈ RΓ′(Hom(Cn, U(1)), by Borel’s results in [7, Appendix 2], we have
the spectral sequence (Er, dr) of the filtration of Ap,q(G/Γ, p∗Lα′) induced by the
holomorphic fiber bundle p : G/Γ → Cn/Γ′ in Proposition 4.1 such that :
(1)Er is 4-graded, by the fiber-degree, the base-degree and the type. Let p,qEs,t

r

be the subspace of elements of Er of type (p, q), fiber-degree s and base-degree t.
We have p,qEs,t

r = 0 if p+ q = s+ t or if one of p, q, s, t is negative.
(2) If p+ q = s+ t, then we have

p,qEs,t
2

∼=
∑

i≥0

Hi,i−s

∂̄
(Cn/Γ′, Lα′ ⊗Hp−i,q−s+i(N/Γ′′))
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where Hp−i,q−s+i(N/Γ′′) is the holomorphic fiber bundle
⋃

b∈Cn/Γ′ H
p,q

∂̄
(p−1(b)).

(3)The spectral sequence converges to H∂̄(G/Γ, Lα′).
By the assumptionHp,q

∂̄
(
∧p,q

n
∗) ∼= Hp,q

∂̄
(N/Γ′′), the fiber bundleHp−i,q−s+i(N/Γ′′)

is the holomorphic vector bundle with the fiber Hp−i,q−s+i

∂̄
(
∧p−i,q−s+i

n
∗) induced

by the action φ of Γ on Hp−i,q−s+i

∂̄
(
∧p−i,q−s+i

n
∗). Since the action φ on n is

semi-simple, diagonalizing the action φ, we have the weight decomposition

Hp−i,q−s+i

∂̄
(

p−i,q−s+i
∧

n
∗) = ⊕Vβj

as Cn-modules and hence the fiber bundle splits as Hp−i,q−s+i(N/Γ′′) = ⊕LR
Γ′ (βj).

Hence we have

Hi,i−s

∂̄
(Cn/Γ′, Lα′ ⊗Hp−i,q−s+i(N/Γ′′)) = Hi,i−s

∂̄
(Cn/Γ′,

⊕

βj

Lα′ ⊗ LR
Γ′(βj)).

By Proposition 2.4, we have Hi,i−s

∂̄
(Cn/Γ′, Lα′ ⊗ LR

Γ′ (βj
)) ∼= Hi,i−s

∂̄
(Cn/Γ′) if

α′−1 = RΓ′(βj) and Hi,i−s

∂̄
(Cn/Γ′, Lα′ ⊗ Lβj

) = 0 if α′−1 6= RΓ′(βj). Hence we
have

Hi,i−s

∂̄
(Cn/Γ′,

⊕

α′∈R
Γ′ (Hom(Cn,U(1))

Lα′ ⊗Hp−i,q−s+i(N/Γ′′))

∼= Hi,i−s

∂̄
(Cn/Γ′)⊗Hp−i,q−s+i

∂̄
(

p−i,q−s+i
∧

n
∗).

For the direct sum
⊕

α′∈R
Γ′ (Hom(Cn,U(1))(A

p,q(G/Γ, p∗Lα′), we consider this spec-

tral sequence Er. Then we have

p,qEs,t
2

∼=
∑

i≥0

Hi,i−s

∂̄
(Cn/Γ′,

⊕

α′∈R
Γ′ (Hom(Cn,U(1))

Lα′ ⊗Hp−i,q−s+i(N/Γ′′))

∼=
∑

i≥0

Hi,i−s

∂̄
(Cn/Γ′)⊗Hp−i,q−s+i

∂̄
(

p−i,q−s+i
∧

n
∗)

By this we have an isomorphism E2
∼=

⊕

p,q H
p,q

∂̄
(
∧p,q

(a ⊕ n)∗). Otherwise by
Lemma 4.3, we have

E∞ ∼=
⊕

p,q

Hp,q

∂̄
(

⊕

α′∈R
Γ′ (Hom(Cn,U(1))

Ap,q(G/Γ, p∗Lα′)) ⊃
⊕

p,q

Hp,q

∂̄
(

p,q
∧

(a ⊕ n)∗).

Hence the spectral sequence degenerates at E2 and the theorem follows. �

Remark 1. It is not known whether an isomorphism Hp,q

∂̄
(
∧p,q

n
∗) ∼= Hp,q

∂̄
(N/Γ′′)

holds for any simply connected nilpotent Lie group N with a lattice Γ′′ and a
left invariant complex structure J . But this holds under the one of the following
conditions:
(N) J is a nilpotent complex structure i.e. there exists a basis y1, . . . , ym such that

dyi ∈
2
∧

〈y1, . . . , yi−1〉 ⊕
1,1
∧

〈y1, . . . , yi−1〉 ⊗ 〈ȳ1, . . . , ȳi−1〉
for each i (see [3]).
(Q) J is a rational complex structure i.e. for the rational structure nQ ⊂ n of the
Lie algebra n induced by a lattice Γ(see [12, Section 2]) we have J(nQ) ⊂ nQ (see
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[2]).
(C) (N, J) is a complex Lie group (see [14]).

Remark 2. By the wedge products and the tensor products, the direct sum of
cochain complexes

⊕

α′∈R
Γ′ (Hom(Cn,U(1))(A

p,q(G/Γ, p∗Lα′), ∂̄) is a differential bi-

graded algebra(DBA). Since the subcomplex Ap,q is a subalgebra of this DBA,
the isomorphism in Theorem 4.4 is an isomorphism of graded algebra. If N has
a nilpotent complex structure as (N) in Remark 1, then (

∧p,q
(a ⊕ n)∗, ∂̄) is the

minimal model of the DBA
⊕

α′∈R
Γ′ (Hom(Cn,U(1))(A

p,q(G/Γ, p∗Lα′), ∂̄)(see [10])

Consider the injection Ap,q → ⊕

α′∈R
Γ′ (Hom(Cn,U(1))(A

p,q(G/Γ, p∗Lα′)). For the

Dolbeault complex Ap,q(G/Γ) on the trivial holomorphic line bundle, by the above
theorem the injection I : I−1(Ap,q(G/Γ)) → Ap,q(G/Γ) induces a cohomology
isomorphism. Consider

p,q
∧

g
∗ =

p
∧

〈x1, . . . , xn, α
−1
1 y1, . . . , α

−1
m ym〉 ⊗

q
∧

〈x̄1, . . . , x̄n, ᾱ
−1
1 ȳ1, . . . , ᾱ

−1
m ȳm〉

and βi, γi ∈ Hom(Cn, U(1)) such that αi ∼ βi and ᾱi ∼ γi. Then we have

Ap,q =
⊕

|I|+|K|=p,
|J|+|L|=q

〈xI ∧ x̄J ∧ α−1
K yK ∧ ᾱ−1

L yL ⊗ lβ−1

K
γ−1

L
〉.

Then I(xI∧x̄J∧α−1
K yK∧ᾱ−1

L yL⊗lβKγL
) ∈ Ap,q(G/Γ) if and only if RΓ′(βKγL) = 1.

Thus we have:

Corollary 4.5. Consider the subcomplex Bp,q ⊂ Ap,q(G/Γ) given by

Bp,q =
⊕

|I|+|K|=p,
|J|+|L|=q,

RΓ(βKγL)=1

〈xI ∧ x̄J ∧ α−1
K βKyK ∧ ᾱ−1

L γLyL〉.

Then Bp,q is a subcomplex of
∧p,q

(a ⊕ n)∗ and the inclusion Bp,q ⊂ Ap,q(G/Γ)
induces a cohomology isomorphism

Hp,q

∂̄
(Bp,q) ∼= Hp,q

∂̄
(G/Γ).

Remark 3. We suppose the following condition:
(⋆) For any K, L, if βKγL) 6= 1, then RΓ(βKγL) 6= 1.
Then we have Bp,q ⊂ ∧p,q

g
∗ and hence in this condition we have an isomorphism

Hp,q

∂̄
(gC) ∼= Hp,q

∂̄
(G/Γ).

Remark 4. Suppose φ : Cn → Aut(n1,0) is a holomorphic map. Then each αi is
holomorphic and hence

B1,0 = 〈x1, . . . , xn, α
−1
1 y1, . . . , α

−1
m ym〉 = g

1,0.

Moreover if N is a complex nilpotent Lie group, then G = Cn⋉φN is also a complex
Lie group and any element of B1,0 = g

1,0 is holomorphic and hence ∂̄Bp,0 = 0. Thus
by the above corollary, in this case we have an isomorphism

Hp,q(G/Γ) ∼=
p
∧

g
1,0 ⊗Hq

∂̄
(
∧

B0,q).
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5. Examples

5.1. Example 1. Let G = C⋉φC
2 such that φ(x+

√
−1y) =

(

ex 0
0 e−x

)

. Then

for some a ∈ R the matrix

(

ex 0
0 e−x

)

is conjugate to an element of SL(2,Z).

Hence for any 0 6= b ∈ R we have a lattice Γ = (aZ+ b
√
−1Z)⋉ Γ′′ such that Γ′′ is

a lattice of C2. Then for a coordinate (z1 = x+
√
−1y, z2, z3) ∈ C⋉φ C2 we have

p,q
∧

g
∗ =

p,q
∧

〈dz1, e−xdz2, e
xdz3〉 ⊗ 〈dz1, e−xdz̄2, e

xdz̄3〉.

Since we have ex ∼ e−
√
−1y, the subcomplex

Ap,q ⊂
⊕

α′∈R
Γ′ (Hom(Cn,U(1))

Ap,q(G/Γ, p∗Lα′)

as Section 4 is given by

Ap,q =

p,q
∧

〈dz1, e−xdz2 ⊗ le
√

−1y , e
xdz3 ⊗ le−

√
−1y 〉

⊗ 〈dz̄1, e−xdz̄2 ⊗ le
√

−1y , exdz̄3 ⊗ le−
√

−1y 〉.
Bp,q ⊂ Ap,q(G/Γ) varies for a choice of b ∈ R as the following.

(A) If b = 2nπ for n ∈ Z, then RΓ(e
√
−1y) = 1 and we have:

Bp,q =
⊕

p,q
∧

〈dz1, e−x−
√
−1ydz2, e

x+
√
−1ydz3〉 ⊗ 〈dz̄1, e−x−

√
−1ydz̄2, e

x+
√
−1ydz̄3〉.

(B) If b = (2n− 1)π for n ∈ Z, then RΓ(e
√
−1y) 6= 1 but RΓ(e

2
√
−1y) = 1 and so we

have:
B1,0 = 〈dz1〉, B0,1 = 〈dz̄1〉,

B2,0 = 〈dz2 ∧ dz3〉, B0,2 = 〈dz̄2 ∧ dz̄3〉,
B1,1 = 〈dz1 ∧ dz̄1, e

−2x−2
√
−1ydz2 ∧ dz̄2, e

2x+2
√
−1ydz3 ∧ dz̄3, dz2 ∧ dz̄3, dz3 ∧ dz̄2〉,

B3,0 = 〈dz1 ∧ dz2 ∧ dz3〉,

B2,1 = 〈dz2 ∧ dz3 ∧ dz̄1, e
−2x−2

√
−1ydz1 ∧ dz2 ∧ dz̄2,

e2x+2
√
−1ydz1 ∧ dz3 ∧ dz̄3, dz1 ∧ dz2 ∧ dz̄3, dz1 ∧ dz3 ∧ dz̄2〉,

B1,2 = 〈dz1 ∧ dz̄2 ∧ dz̄3, e
−2x−2

√
−1ydz2 ∧ dz̄1 ∧ dz̄2,

e2x+2
√
−1ydz3 ∧ dz̄1 ∧ dz̄3, dz2 ∧ dz̄3 ∧ dz̄1, dz3 ∧ dz̄2 ∧ dz̄1〉,

B0,3 = 〈dz̄1 ∧ dz̄2 ∧ dz̄3〉,
B3,1 = 〈dz1 ∧ dz2 ∧ dz3 ∧ dz̄1〉, B1,3 = 〈dz̄1 ∧ dz̄2 ∧ dz̄3 ∧ dz̄1〉,

B2,2 = 〈dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄3,

e−2x−2
√
−1ydz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2, e

2x+2
√
−1ydz1 ∧ dz3 ∧ dz̄1 ∧ dz̄3,

dz2 ∧ dz3 ∧ dz̄2 ∧ dz̄3, dz1 ∧ dz3 ∧ dz̄1 ∧ dz̄2〉,

B3,2 = 〈dz2 ∧ dz3 ∧ dz̄1 ∧ dz̄2 ∧ dz̄3〉, B2,3 = 〈dz1 ∧ dz2 ∧ dz3 ∧ dz̄2 ∧ dz̄3〉,
B3,3 = 〈dz1 ∧ dz2 ∧ dz3 ∧ dz̄1 ∧ dz̄2 ∧ dz̄3〉.
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(C) If b 6= nπ for any n ∈ Z, then RΓ(e
√
−1y) 6= 1 and RΓ(e

2
√
−1y) 6= 1 and so we

have:
B1,0 = 〈dz1〉, B0,1 = 〈dz̄1〉,

B2,0 = 〈dz2 ∧ dz3〉, B0,2 = 〈dz̄2 ∧ dz̄3〉,
B1,1 = 〈dz1 ∧ dz̄1, dz2 ∧ dz̄3, dz3 ∧ dz̄2〉,

B3,0 = 〈dz1 ∧ dz2 ∧ dz3〉, B2,1 = 〈dz2 ∧ dz3 ∧ dz̄1dz1 ∧ dz2 ∧ dz̄3, dz1 ∧ dz3 ∧ dz̄2〉,
B1,2 = 〈dz1 ∧ dz̄2 ∧ dz̄3, dz2 ∧ dz̄3 ∧ dz̄1, dz3 ∧ dz̄2 ∧ dz̄1〉, B0,3 = 〈dz̄1 ∧ dz̄2 ∧ dz̄3〉,

B3,1 = 〈dz1 ∧ dz2 ∧ dz3 ∧ dz̄1〉, B1,3 = 〈dz̄1 ∧ dz̄2 ∧ dz̄3 ∧ dz̄1〉,
B2,2 = 〈dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄3, dz2 ∧ dz3 ∧ dz̄2 ∧ dz̄3, dz1 ∧ dz3 ∧ dz̄1 ∧ dz̄2〉,
B3,2 = 〈dz2 ∧ dz3 ∧ dz̄1 ∧ dz̄2 ∧ dz̄3〉, B2,3 = 〈dz1 ∧ dz2 ∧ dz3 ∧ dz̄2 ∧ dz̄3〉,

B3,3 = 〈dz1 ∧ dz2 ∧ dz3 ∧ dz̄1 ∧ dz̄2 ∧ dz̄3〉.
By Corollary 4.5, for each case we have an isomorphism Hp,q

∂̄
(G/Γ) ∼= Bp,q. More-

over considering the left-invariant Hermittian metric g = dz1dz̄1 + e−2xdz2dz̄2 +
e2xdz3dz̄3, we have Hp,q(G/Γ) ∼= Bp,q.

Remark 5. In the case (A), the Dolbeault cohomology Hp,q

∂̄
(G/Γ) is isomorphic

to the Dolbeault cohomology of complex 3-torus. But G/Γ is not isomorphic to
a complex 3-torus. Moreover considering the metric g, the space of the harmonic
forms does not satisfy Hodge symmetry(i.e. H̄p,q(G/Γ) 6= Hq,p(G/Γ)).

Remark 6. By Hattori’s result in [6], we have an isomorphism H∗(G/Γ) ∼= H∗(g) of
de Rham cohomology of G/Γ and the Lie algebra cohomology. Hence considering
the space Hk

d(g) of left-invariant d-harmonic forms of the left-invariant Hermittian
metric g, we have an isomorphism Hk

d(g)
∼= Hk

d (G/Γ). By simple computations, we
have the Hodge decomposition Hk

d(G/Γ) =
⊕

p+q=k Hp,q(G/Γ). Hence G/Γ has

cohomological properties(for example the Frölicher spectral sequence degenerates
at E1) of compact Kähler manifolds. But by Arapura’s result (solving Benson-
Gordon’s conjecture) in [1], G/Γ admits no Kähler structure.

Remark 7. In the case (C), an isomorphism Hp,q

∂̄
(gC) ∼= Hp,q

∂̄
(G/Γ) holds. But in

the other cases, this isomorphism does not hold.

5.2. Example 2. Let G = C⋉φ C2 such that

φ(x +
√
−1y) =

(

ex+
√
−1y 0

0 e−x−
√
−1y

)

.

Then we have a +
√
−1b, c +

√
−1d ∈ C such that Z(a +

√
−1b) + Z(c +

√
−1d)

is a lattice in C and φ(a +
√
−1b) and φ(c +

√
−1d) are conjugate to elements of

SL(4,Z) where we regard SL(2,C) ⊂ SL(4,R) (see [5]). Hence we have a lattice
Γ = (Z(a +

√
−1b) + Z(c +

√
−1d)) ⋉φ Γ′′ such that Γ′′ is a lattice of C2. For a

coordinate (z1, z2, z3) ∈ C ⋉ C2, we have
p,q
∧

g
∗ =

p,q
∧

〈dz1, e−z1dz2, e
z1dz3〉 ⊗ 〈dz̄1, e−z̄1dz̄2, e

z̄1dz̄3〉.
We have

Ap,q =

p,q
∧

〈dz1, e−z1dz2, e
z1dz3〉 ⊗ 〈dz̄1, e−z̄1dz̄2 ⊗ le2

√
−1y1

, ez̄1dz̄3 ⊗ le−2
√

−1y1
〉

for z1 = x1 +
√
−1y1.
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If b, d ∈ πZ, then we have

Hp,q(G/Γ) ∼= Bp,q =

p,q
∧

〈dz1, e−z1dz2, e
z1dz3〉 ⊗ 〈dz̄1, e−z1dz̄2, e

z1dz̄3〉.
In this case a solvmanifold in the case (A) of Example 1 is diffeomorphic to this
G/Γ or a double covering of this G/Γ.

If b 6∈ πZ or c 6∈ πZ, then we have

B0,1 = 〈dz̄1〉, B0,2 = 〈dz̄2 ∧ dz̄3〉, B0,3 = 〈dz̄1 ∧ dz̄2 ∧ dz̄3〉
and

Hp,q(G/Γ) ∼= Bp,q =

p
∧

〈dz1, e−z1dz2, e
z1dz3〉 ⊗B0,q.
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