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Sparse approximation property and stable recovery
of sparse signals from noisy measurements

Qiyu Sun

Abstract—In this paper, we introduce a sparse approximation
property of order s for a measurement matrix A:

os(x)

[xsll2 < DI|Ax][|2 + 5

for all x,

where x. is the bests-sparse approximation of the vectorx in £2,
os(x) is the s-sparse approximation error of the vectorx in ¢,
and D and 8 are positive constants. The sparse approximation
property for a measurement matrix can be thought of as a
weaker version of its restricted isometry property and a stonger
version of its null space property. In this paper, we show tha
the sparse approximation property is an appropriate conditon
on a measurement matrix to consider stable recovery of any
compressible signal from its noisy measurements. In partidar,

we show that any compressible signal can be stably recovered

from its noisy measurements via solving an¢!-minimization
problem if the measurement matrix has the sparse approximaon
property with 5 € (0, 1), and conversely the measurement matrix
has the sparse approximation property with 3 € (0,00) if
any compressible signal can be stably recovered from its ney
measurements via solving ar/*-minimization problem.

I. INTRODUCTION

Given positive integersn and n with m < n and a
measurement matriA of sizem x n, we consider the problem

of compressive sampling in recovering a compressible signa

x € R™ from its noisy measurements= Ax + n via solving
the following ¢¢-minimization problem:

min [[y[| subject to Ay — z|[, <,

(1.1)

where0 < ¢ < 1,g < p < o0,e > 0, and the measurement

noisen satisfies||n||, < e ([1] — [8]). Here||-||4,0 < ¢ < o0,
stand for the #7-norm” on the Euclidean space.

Given a subsetS c {1,...,n} and a vectorx € R",
denoted by the vector whose components Srare the same
as those of the vectot and vanish on the complemefit. A
vectorx € R" is said to bes-sparse if x = xg for some subset
S c {1,...,n} with its cardinality#S less than or equal to
s, wheres > 1. Denote byX, the set of alls-sparse vectors.
Given a vectok, its bests-sparse approximation vectat, in
¢4 is an s-sparse vector which has minimal distancextan
95 0.e., |x —Xsllg = 05,¢(x) :=infyex, |x—ylq. FOrg =1,
we useo,(x) instead ofos 1 (x) for brevity.
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In this paper, we introduce a new property of a measurement
matrix A: there exist positive constanf3 and 5 such that

[xs[I# < DI Ax||T + Bs?™ Yoy 4(x))?  for all x € R,

(1.2)
where(0 < p,q,r < o0, s iS a positive integer, and; is the
bests-sparse approximation of the vectoin ¢¢. The property
of a measurement matrix mentioned in the abstract is a dpecia
case of the above property where- » = 2 andg = 1. We call
the property[(I.R) thesparse approximation property of order
s, as it is closely related to the bestsparse approximation.
We call the minimal constart such that[(I.P) holds thsparse
approximation constant, and denote it by (A).

In this paper, we show that for the stable recovery of a com-
pressible signak from its noisy measurements= Ax + n
via solving the/?-minimization problem[{L1l), the sparse ap-
proximation property[(I]2) with sparse approximation dang
Bs(A) < 1 is sufficient while the sparse approximation
property [I.2) with finite sparse approximation consta(A )
is necessary We refer the reader to [[2].[3].[7]L[9] +117]
and the references therein for other various conditions on a
measurement matrix that guarantee the stable recoveryyof an
compressible signal from its noisy measurements via splvin
the ¢2-minimization problem[({T1).
Theorem1.1l: Let0 < ¢ < 1, <r < 00,1 < p < o0,
€ > 0, positive integersn, n, s satisfy2s < m < n, A be a
matrix of sizem x n_having the sparse approximation property
(L2) with D € (0,00) and 8 € (0,1), z = Ax + n with
Inj|, < e andx € R”, and letx* be the solution of the

¢9-minimization problem[{T11). Then

(3+8)D 2(1 + B)?
1-8 1-8

Ix* = x| < (26)7 + s (05,4(%))1

(1.3)
and

2(1+ )2
1-p

[[x* —x|[|§ < (26)7 + (05,4(x))1

B+ B)Dslfq/p
=5 (1.4)

if ¢g<r, and
2D 2(1 + B)
Tt T

[[x* —x||g < (054(x)" (1.5

if g =r.

Theorem 1.2: Let 0 < ¢,p < oo, positive integersn,n, s
satisfy 2s < m < n, and letA be a matrix of sizen x n.
If for any ¢ > 0 andx € R", the error between the given
vectorx and the solutionx* of the ¢9-minimization problem
(LI) satisfies

I =3 < Bie? + Bas®/? ™! (5,4 (x))",

(1.6)
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where B; and B, are positive constants independentaind ¢7 to ¢4, i.e., |Rx||; < [|R/|p—4l|x]|p for all vectorsx. In this
x, then section, we show that any measurement matrix satisfyiy (I.

4 < By Ax||? + Bys?/" (o, 4 for all RN will have the null space property (L110) With its null space
Iells < BrllAx]; + Bas (05,4(x))" for all x € ( %) constant less than or equal to the constdnin ([.2). Here

I
L .aull space constant -y (A) of a measurement matrix is the
and henceA has the sparse approximation propektyl (1.2 with4" s
r=p D=B, andj3 :pBQ bp propeftyl(1-2) minimal constanty such that[(I.ID) holds.
The m x n adjacency matrixp of an unbalanced2s, )- Theorem 2.1: Let0 < g < r < 00, 0 < p < oo, integers

expander with left degreé anda € (0,1/4) satisfies m,n, s salisfy 2 < 25 < m < n, and A be a matrix of size
5 m x n. Then the following statements hold.
(6%

14 os(x) forall x e R", (i) If the matrix A has the sparse approximation property
e (1.8) (2), then it has the null space property of ordein ¢4

(and hence it has the sparse approximation propery (1.@) wi _ With its null space constant, (A) < 5,(A).
p=q=r=1). The above property for the adjacency matrixXii) I_f the matrlx A has the null space property_ of order
& is established in[12, Lemma 16] implicitly. Then dy{1.8) N ¢7 with the null space constant (A), then it has the
and Theoreridl1, we have the following result similarifo [12, SParse approximation property {I.2) with= ¢ = r, D =

[®x|[x +

1
P

Theorem 17]. max(1,7s(A)) infrer(a) [IR[I, and3 = v5(A); i.e.,
Corollary 1.3: Let ¢ > 0, positive integersn,n, s satisfy ¢ < 1 A nf IR Axl?

2s < m < n, a € (0,1/6), ® be them x n adjacency Ixsllg < (max(t, 7s( ))Re%(A)H Hq—”f)H xg

matrix of an unbalance®s, o)-expander with left degreé, +75(A)(05,4(x))?  for all x € R™.

z = ®x + n with ||n|j; < e for somex € R", and letx* be i i
the solution of the minimization problei{).1) wigh— ¢ — 1.  APPlying Theoremg 111 and 2.1 with= ¢ = r = 1, we

Then have the following result on recovering compressible dgna
4 9 _ Aoy from noisy measurements when the measurement matrix has
[x* —x|l; < a0 —6a)¢ +1 GQGS(X)- (1.9)  the null space property of orderin ¢, which is obtained in

. . i 48] for the noiseless case.
The paper is organized as follows. One of two basic prop r'CoroIIary 2.2: Lete > 0, m,n, s be positive integers with
ties of a measurement matu in compressive sampling ([18] 5. . 7, .

— [24]) is thenull space property of order s in ¢9,0 < g < 1;
i.e., there exists a positive constansuch that

A be a matrix of sizen x n satisfying the null
space property (I.10) with = 1, z = Ax +n with ||n|j; <€
andx € R", and letx* be the solution of the minimization
[xsd < yllxse|[2 (1.10) problem [L1) withp = ¢ = 1. If the null space constant
~vs(A) € (0,1), then

dinfrera) [Rllis1 2+ 2v,(A)

hold for all vectorsx in the null spaceV(A) of the matrix
A and all setsS with cardinality#5S less than or equal te.
In Sectior1l, we show in Theorem 2.1 that any measureme 1 —7s(A) T Vs (A) 7).
matrix satisfying[(I.2) will have the null space propeiftyld). ]

So the sparse approximation propeityl(1.2) of a measuremenBe.ma.rk.z's' _The null space pr_o_per_ty OT a measurement
matrix can be considered ass#&ronger version of the null matrix is Invariant under preconditioning, i.e., if a measu
space property{I.10). The other basic property of a measufet"t m‘?‘F”XA has Fhe null space property (TI10) then the
ment matrixA in compressive samplingl([1].][2].[7]._[18] — preconditioned matriP'A. has the null space properf.(1110)

[24]) is the restricted isometry property of order s; i.e., there with the same null space constants, where a preconditisner i
exists a positive constante (0, 1) such that e a nonsingular matriXx?. The sparse approximation property

(L2) is weakly preconditioning-invariant in the sensettta

(1-0)|x[3 < ||Ax||3 < (1 +6)|x[|3 for all x € X,. a measurement matriA satisfies [LR) then the precondi-
(1.11) tioned matrix PA also satisfies[{I12) withD replaced by

In Section[Tll, we prove that if a measurement matrix hagp—1||,_,,D. This suggests appropriate preconditioning the

the restricted isometry property (T111) of ordzs then it has measurement matrix (and hence the noisy measurements)

the sparse approximation properfy {1.2) with= 7 = 2, before signal recovery from its noisy measurements viasglv

and furthermore the constamt in (L2) is small when the an¢¢-minimization problem.

restricted isometry constant is small, see Theoiens 3.B&d Remark 2.4: Let the matrixA of sizem x n have full rank

for details. Thus the sparse approximation propérty (If2 0 1, (which is the case in most of compressive sampling prob-

measurement matrix can also thought of asemker version |ems) andA = UXV* be its singular value decomposition.

of the restricted isometry property ([111), see also Resiarkere and hereaftet! stands for the transpose of a vector or

3.3 and[3.4. The proofs of all theorems are included in thematrixx. Then® = (X’ 0) for some nonsingular diagonal

appendix. matrix X’. Now we define the conventional preconditioned

measurement matriA by A = PA, whereP = (X')~'U".
II. NULL SPACE PROPERTY AND SPARSE APPROXIMATION

PROPERTY In this caseR € R(A) if and only if R = V( é

Let R(A) be the set of matriceR satisfyingA = ARA, I is the unit matrix of sizem x m and B is an arbitrary
and denote by|R||,—,, the operator norm of a matriR from matrix of size(m —n) x n. Letv;,1 < i <n, be the column

o =l <

), where



vectors of the matriXV. Then the null spacéV(A) of the Remark 3.3: From Theoreri 3]1, we see that a measurement
matrix A is spanned bw,;,m + 1 < i < n, and the vectors matrix with small restricted isometry constant will haves th
v;,1 < i < m, form an orthonormal basis faN(A)+, the sparse approximation properfy{l.2) with= r = 2, D close
orthogonal complement of the null spad&A) of the matrix to one andg close to zero. Conversely fgr = r = 2 we

A. As the set{Rx : ||x||; < 1} is a polygon, the maximal obtain from Theorerh 312 that if a measurement maiixas
¢t-norm of Rx, ||x||; < 1, is then attained at some verticesthe sparse approximation properfy {1.2) with close to one

Thus and 5 close to zero, then the first inequality in the restricted
) . _ isometry property[(L71) holds for some constantlose to
Rg%{A) Rfl1—1 = Relgf(A) 1o Reis 1/2 only. Forp = ¢ = r = 1, them x n adjacency matrices
— inf max ||V — (Vims1 -+ va)Beill1 P of unbalanced(2s,a_)-expander with fixed Igft degreé
B 1<i<m has the sparse approximation propeltyl (1.2) with small spar
= inf max |v; —ul, (I.1) approximation constant (s€e_{l.8)) and the restricted &om

uEN(A) 1=ism property with respect t@'-norm:

wheree;, 1 < i < m, form the standard orthonormal basis of
R™. In other words, the quantitinfg  z, [Rl1-1 is the (1=Ca)lx| <[[®x][1/d < (1+Ca)([x[ls for all x € Xy

same as the distance of,1 < i < m, from the null space here C' is a positive constant (se& [12, Theorem 1]). but
N(A)in ¢*. From it follows thatinf i IR < W ' itv e 112, » bu
(A) oy Mrer(a) IRl < it does not have the restricted isometry propelfy {1.11) mvhe

; 1 < nt/2. [ i [ ) C :
maxi<i<m ||[Vill1 <n It would be an interesting topic on m/s? is sufficiently small [27].

preconditioning a measurement matdxwith the null space . .
. Remark 3.4: If a measurement matriA has the restricted
roperty [.10) such that the quanti i IR 0 : . . .
property ) q Ii?lfRGR(A) Rflg—q, 0 < isometry property[(I.71) with small restricted isometryneo

q < 1, for the preconditioned matriA is not a large number. stant (see[]1], [[4], [[24], [[25],[]26] for examples of such
measurement matrices), then the preconditioned measaoteme
IIl. RESTRICTED ISOMETRY PROPERTY AND SPARSE  matrix PA has the sparse approximation propeffyl (1.2) with
APPROXIMATION PROPERTY p=r=2,D close to|[P~"|,,» and § close to zero but it
In this section, we prove that if a measurement matrix ha®es not have the restricted isometry propérty1.11) iregain
the restricted isometry property (T111) of ord&y, then it has This observation may suggest that preconditioning proeedu
the sparse approximation properfy {1.2) wjth= r = 2, and could generate new measurement matrices for the stable-reco
the sparse approximation constant is small when the resdricery of compressible signals from their noisy measurements.
isometry constant is small. Here thestricted isometry con-
stant §;(A) of a measurement matrix is the smallest positive
constant that satisfies[(I.11).
Theorem 3.1: Let 0 < ¢ < 1, positive integersm,n, s In this paper, we introduce the sparse approximation prop-
satisfy2s < m < n, and the matrixA of sizem x n have the erty (L2) of a measurement matrix and show that it is a suf-
restricted isometry property (LIL1) of ord2s with restricted ficient and almost necessary condition that any compressibl

IV. CONCLUSIONS AND FINAL REMARKS

isometry constaniz;(A) € (0,1). Then for allx € R™, signal can be stably recovered from its noisy measurements
via solving the/?-minimization problem[(T11).
Ix]|3 < VLF 26(A) + /26, (A) | Ax||2 The sparse approximation properfy [1.2) of a measurement
(1 —025(A))\/1 + d24(A) matrix with ¢ < r is a stronger version of the null space
V14 025(A) + 1/2025(A) 2 property [I.10) with the preconditioning-invariance akhpre-
+( 1 —025(A) ) served. The sparse approximation propdrty (1.2) with r =

1-2/q 2 2 and0 < ¢ < 1 is a weaker version of the restricted isometry
X025(A)s (05.4()) (1) property [[.11). The adjacency matrices of some unbalanced
and expanders have the sparse approximation property (1.2) wit
9 9 p = g = r = 1 and small sparse approximation constant,
1Axz < (14 d26(A) + V2025(A)) ]2 but they do not have the restricted isometry property [1.11)

+(1 + \/2623(A))625(A) A challenging problem is the construction of measurement
Xsl—2/q(as,q(x))2_ (11.2) matrices, other than random matrices [1], [4],1[24].][2Z6]

- and adjacency matrices of a graphl[12],/[2F].[28].![29].][30
Theorem3.2: Let 0 < ¢ < r < 00,0 < p < oo, positive  that have sparse approximation propelriyl (1.2) with smairsp
integersm, n, s satisfy 2s < m < n, and A be a matrix of approximation constant.
sizem x n that has the sparse approximation propdrty (1.2).

Then
(I11.3) APPENDIX

A. Proof of Theorem[T.1]

1-3 Seth = x* — x. Let Sy be so chosen thdxse|l, = [|x —
WIIXIIﬁ < [JAx||} for all x € Xos. (.4) x|, Si be the set of indices of thelargest components, in
absolute value, ok in S§, S2 be the set of indices of the next

SIxll? < [Ax]j for all x € X,

and



s largest components, in absolute valueofn (S, U S1)¢, B. Proof of Theorem[1.2

and so on. Then The conclusion[{TJ7) follows from the estimate {I.6) and
the observation that the zero vector is the solution ofthe
Ah|, <2¢ and [||hgc||? <|lhg,||?4+2]|x —xs]|? (A.1 o .
|abll, < 2 and lhsllg < f[hsoflg +2lx =x.]lg (A1) minimization problem[{L1l) withe = || Ax||, andz = Ax for
by (L), and anyx € R,

s, |z < s hg, g, G>2 (A-2) " c. Proof of Theorem 21l
by the construction of the set§;, j > 1, whereq < 7 < r. () Take a vectorx € R"™ with Ax = 0 and letx,
Combining [[.2) and[{All) gives be its bests-sparse approximation i?. Then it is a best
. . ofr—1 . s-sparse approximation id". This together with the sparse
Ihe[|7 < D(2e)? + Bs e[| (A-3) " approximation property{112) leads o [|2 < 179/ %, ]|2 <

for any subsef” of {1,...,n} with #T < s. Applying (A3) Bs(A)(0s,4(x))?. Thus the measurementmatrAxhas the null
with T replaced byS, and then using the estimafe (A.1) forSPace property of order with v,(A) < 5,(A).

e[ (i) Take a vectorx € R™. Then it suffices to prove that
0 L
q 3 q q
s, 12 < D@7+ 2950 = x g+ Aoy g, <ol S (maxClon(A) int IR ) IAxI]
I (A4) +7s(A)|xre |2, (A.10)
By Holder inequality and the property th#sS, < s, _
for all subsetsI" C {1,...,n} with #T < s, where0 < p <
Ihs,llg < 977 g, |- (A.5) oo. Note thatA(x — RAx) = (A — ARA)x = 0 for all

R € R(A). This together with the null space propeify (1.10)
of the measurement matriA leads to||(x — RAx)r[|? <
¥s(A)|l(x — RAX)7||¢ for all subsetsI" C {1,...,n} with

Substituting the above inequality into the right-hand side
the inequality [[A%) leads to the first crucial inequality:

D 2 < .
Ihsgllz < 125200+ gt x - xff. (a) TS @ andRER(A), Hence
o , xrl§ < max(1, ys (A)IR[IF [AX]IF + s (A)[[xre|7.
_Combln_mg [A1). (A) and[{AK) yields the second Cruc'a+aking minimum over all matriceR € R(A) in the right-
inequality: hand side of the above estimate leads[to (A.10), and hence
9 :
gl < — ﬂsl—q/r(2€)q + 3 Ix —x[|7. (A7) proves the second conclusion.
For r = ¢, the conclusion[{T]5) follows fronT (Al6) and (A.7). D. Proof of Theorem3.1 _ _
Applying (A.3) with T' replaced bys; yields T:_;\ke_a vectorx € R™ and letx, be its s-sparse approxi-
. mation in¢2. We writex = Zj>0 xs,, wheresS is the set of
[hs, |2 < D(2€)? + 85" {|hge ||2. indices of thes largest components, in absolute valuexp®;

This togeth ith , A6 7 leads t thés the set of indices of the largest components, in_ absolute
thirlz corgiialei;\(lavthug%m [{AK).[{Al6) and (A7) leads to value, ofx in S§, and so on. From the construction of the

setsS;,j > 0, we obtain thatks, = x5, [xs¢q = 0s,4(%),
s, 2 < D)+ 85" (|Ihs, [+ Ihsousielld)  Xjss lIxs,llz < 872790, 4(x),

D(1 283(1 _ _
< P oo B sl < 81727 s, s, 3
(A.8) < sk, g (A.11)
P>
Therefore forg < 7 < r, for all j > 1, and Z
[Ax]5 = [|A(xs, +x5,)l5+ ) [[Axs,]3
ff < s+ [hs, |2+ Ilhs, |12 ’ 1 s
§>2
Fea/r Fea/r +2 Axg ,AXS]. +2 Axg ,AXSj
< Y797 | hg,||9 + 597797 || hg, || JZ; 0 ) g; 1 )
q/7—1 e _ T
+s9" [ hsg g +2 > (Axs,, Axs,,). (A.12)
< quﬁ*q/r(ge)q 2<5<y’
1=6 Recalling that|(Axs,, Axs )| < d24(A)[xs, l2llxs,, ||z for
+2(1 +6) s Ix — x4, (A.9) all 5/ # 5 ([1]), and applying the restricted isometry property
1-5 ? (L13), we obtain from[{AZ1) and (A.12) that

Wher%the first irlequality holds_by the_tria_ngle inequal'.rpy fa- Sas(AN[x[2 < JAXZ + 620(A)s ~2/9(0, 4 (x))>

[ - Hgﬁ asq < 7, the second inequality is true by Holder V25 (A)s1/2 11 x]| (x)

inequality and [(A.R), and the third inequality follows from 225 5 2X 205,04\ %
[Ax[[3 + 525 (A)el[x]l2

follow by letting 7 = r and7 = ¢ in (A9) respectively. +3026(A) (1 4 2675 72/(g, ,(x))?,

IN

(A.6), (A7) and [[AB). Then the conclusiorls {I.3) arhd](l.4)



where e > 0. Then [IIL1) follows by takinge = —2 +
2(d25(A))~ 1 + 2.
Similarly we get

[Ax[3 < (1+025(A) + /2025(A)) [Ix][3
+(1+ \/2525(A))525(A)Slfz/q(asyq(x))z.
This proves[(II[.2).

El

[10]

[11]

[12]

E. Proof of Theorem

Take ans-sparse vectorx € R™. Then x xs and
0s¢(x) = 0. This together with the sparse approxima-
tion property [[2) gives||x||? = [x|¢ < D[Ax|z + [
Bs1/P~1g, . (x)? = D||Ax]||4, and hence proves(Il.3).

Take a2s-sparse vectox € R"™ and writex = xg, +
xg, for some subset$, and S; of {1,...,n} with empty
intersection and cardinality less than or equaktdpplying

(23]

[15]

[16]

([2) to the given2s-sparse vectok and replacingS by Sy [17]
and S; respectively, we obtain (18]
%55 ll¢ < DIIAX[&+ 8577~ |xs, |4 < D Ax[|g+ B |xs, [|2
(A.13) [19]
and [20]

%, I < DI Ax|Z+5sP~"|xs, 1 < D Ax||+5]|xs, |-
(A.14) 21

Summing up the above estimatés (A.13) dnd (A.14) yields the

following inequality: [22]

(1= B)IxIIF (1= B)(Ixsolly + lIxs, [I7)2/"
(1= B)(lIxs, 17 + [[xs, (1) < 2D[| Ax]|3.

Hence [(IIT.4) follows.
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