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Sparse approximation property and stable recovery
of sparse signals from noisy measurements

Qiyu Sun

Abstract—In this paper, we introduce a sparse approximation
property of order s for a measurement matrix A:

‖xs‖2 ≤ D‖Ax‖2 + β
σs(x)√

s
for all x,

wherexs is the bests-sparse approximation of the vectorx in ℓ2,
σs(x) is the s-sparse approximation error of the vector x in ℓ1,
and D and β are positive constants. The sparse approximation
property for a measurement matrix can be thought of as a
weaker version of its restricted isometry property and a stronger
version of its null space property. In this paper, we show that
the sparse approximation property is an appropriate condition
on a measurement matrix to consider stable recovery of any
compressible signal from its noisy measurements. In particular,
we show that any compressible signal can be stably recovered
from its noisy measurements via solving anℓ1-minimization
problem if the measurement matrix has the sparse approximation
property with β ∈ (0, 1), and conversely the measurement matrix
has the sparse approximation property with β ∈ (0,∞) if
any compressible signal can be stably recovered from its noisy
measurements via solving anℓ1-minimization problem.

I. I NTRODUCTION

Given positive integersm and n with m ≤ n and a
measurement matrixA of sizem×n, we consider the problem
of compressive sampling in recovering a compressible signal
x ∈ R

n from its noisy measurementsz = Ax+n via solving
the following ℓq-minimization problem:

min ‖y‖qq subject to ‖Ay − z‖p ≤ ǫ, (I.1)

where0 < q ≤ 1, q ≤ p ≤ ∞, ǫ ≥ 0, and the measurement
noisen satisfies‖n‖p ≤ ǫ ([1] – [8]). Here‖ ·‖q, 0 < q ≤ ∞,
stand for the “ℓq-norm” on the Euclidean space.

Given a subsetS ⊂ {1, . . . , n} and a vectorx ∈ R
n,

denoted byxS the vector whose components onS are the same
as those of the vectorx and vanish on the complementSc. A
vectorx ∈ R

n is said to bes-sparse if x = xS for some subset
S ⊂ {1, . . . , n} with its cardinality#S less than or equal to
s, wheres ≥ 1. Denote byΣs the set of alls-sparse vectors.
Given a vectorx, its bests-sparse approximation vectorxs in
ℓq is an s-sparse vector which has minimal distance tox in
ℓq; i.e., ‖x−xs‖q = σs,q(x) := infy∈Σs

‖x−y‖q. For q = 1,
we useσs(x) instead ofσs,1(x) for brevity.
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In this paper, we introduce a new property of a measurement
matrix A: there exist positive constantsD andβ such that

‖xs‖qr ≤ D‖Ax‖qp + βsq/r−1(σs,q(x))
q for all x ∈ R

n,
(I.2)

where0 < p, q, r ≤ ∞, s is a positive integer, andxs is the
bests-sparse approximation of the vectorx in ℓq. The property
of a measurement matrix mentioned in the abstract is a special
case of the above property wherep = r = 2 andq = 1. We call
the property (I.2) thesparse approximation property of order
s, as it is closely related to the bests-sparse approximation.
We call the minimal constantβ such that (I.2) holds thesparse
approximation constant, and denote it byβs(A).

In this paper, we show that for the stable recovery of a com-
pressible signalx from its noisy measurementsz = Ax + n

via solving theℓq-minimization problem (I.1), the sparse ap-
proximation property (I.2) with sparse approximation constant
βs(A) < 1 is sufficient while the sparse approximation
property (I.2) with finite sparse approximation constantβs(A)
is necessary. We refer the reader to [2], [3], [7], [9] – [17]
and the references therein for other various conditions on a
measurement matrix that guarantee the stable recovery of any
compressible signal from its noisy measurements via solving
the ℓq-minimization problem (I.1).

Theorem 1.1: Let 0 < q ≤ 1, q ≤ r ≤ ∞, 1 ≤ p ≤ ∞,
ǫ ≥ 0, positive integersm,n, s satisfy 2s ≤ m ≤ n, A be a
matrix of sizem×n having the sparse approximation property
(I.2) with D ∈ (0,∞) and β ∈ (0, 1), z = Ax + n with
‖n‖p ≤ ǫ and x ∈ R

n, and letx∗ be the solution of the
ℓq-minimization problem (I.1). Then

‖x∗ − x‖qr ≤ (3 + β)D

1− β
(2ǫ)q +

2(1 + β)2

1− β
sq/r−1(σs,q(x))

q

(I.3)
and

‖x∗ − x‖qq ≤ (3 + β)D

1− β
s1−q/p(2ǫ)q +

2(1 + β)2

1− β
(σs,q(x))

q

(I.4)
if q < r, and

‖x∗ − x‖qq ≤ 2D

1− β
(2ǫ)q +

2(1 + β)

1− β
(σs,q(x))

q (I.5)

if q = r.
Theorem 1.2: Let 0 < q, p ≤ ∞, positive integersm,n, s

satisfy 2s ≤ m ≤ n, and letA be a matrix of sizem × n.
If for any ǫ ≥ 0 and x ∈ R

n, the error between the given
vectorx and the solutionx∗ of the ℓq-minimization problem
(I.1) satisfies

‖x∗ − x‖qp ≤ B1ǫ
q +B2s

q/p−1(σs,q(x))
q , (I.6)
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whereB1 andB2 are positive constants independent ofǫ and
x, then

‖x‖qp ≤ B1‖Ax‖qp +B2s
q/p−1(σs,q(x))

q for all x ∈ R
n,

(I.7)
and henceA has the sparse approximation property (I.2) with
r = p, D = B1 andβ = B2.

The m × n adjacency matrixΦ of an unbalanced(2s, α)-
expander with left degreed andα ∈ (0, 1/4) satisfies

‖xs‖1 ≤ 1

d(1 − 4α)
‖Φx‖1 +

2α

1− 4α
σs(x) for all x ∈ R

n,

(I.8)
(and hence it has the sparse approximation property (I.2) with
p = q = r = 1). The above property for the adjacency matrix
Φ is established in [12, Lemma 16] implicitly. Then by (I.8)
and Theorem 1.1, we have the following result similar to [12,
Theorem 17].

Corollary 1.3: Let ǫ ≥ 0, positive integersm,n, s satisfy
2s ≤ m ≤ n, α ∈ (0, 1/6), Φ be them × n adjacency
matrix of an unbalanced(2s, α)-expander with left degreed,
z = Φx + n with ‖n‖1 ≤ ǫ for somex ∈ R

n, and letx∗ be
the solution of the minimization problem (I.1) withp = q = 1.
Then

‖x∗ − x‖1 ≤ 4

d(1− 6α)
ǫ+

2− 4α

1− 6α
σs(x). (I.9)

The paper is organized as follows. One of two basic proper-
ties of a measurement matrixA in compressive sampling ([18]
– [24]) is thenull space property of order s in ℓq, 0 < q ≤ 1;
i.e., there exists a positive constantγ such that

‖xS‖qq ≤ γ‖xSc‖qq (I.10)

hold for all vectorsx in the null spaceN(A) of the matrix
A and all setsS with cardinality#S less than or equal tos.
In Section II, we show in Theorem 2.1 that any measurement
matrix satisfying (I.2) will have the null space property (I.10).
So the sparse approximation property (I.2) of a measurement
matrix can be considered as astronger version of the null
space property (I.10). The other basic property of a measure-
ment matrixA in compressive sampling ([1], [2], [7], [18] –
[24]) is the restricted isometry property of order s; i.e., there
exists a positive constantδ ∈ (0, 1) such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 for all x ∈ Σs.
(I.11)

In Section III, we prove that if a measurement matrix has
the restricted isometry property (I.11) of order2s then it has
the sparse approximation property (I.2) withp = r = 2,
and furthermore the constantβ in (I.2) is small when the
restricted isometry constant is small, see Theorems 3.1 and3.2
for details. Thus the sparse approximation property (I.2) of a
measurement matrix can also thought of as aweaker version
of the restricted isometry property (I.11), see also Remarks
3.3 and 3.4. The proofs of all theorems are included in the
appendix.

II. N ULL SPACE PROPERTY AND SPARSE APPROXIMATION

PROPERTY

Let R(A) be the set of matricesR satisfyingA = ARA,
and denote by‖R‖p→q the operator norm of a matrixR from

ℓp to ℓq, i.e.,‖Rx‖q ≤ ‖R‖p→q‖x‖p for all vectorsx. In this
section, we show that any measurement matrix satisfying (I.2)
will have the null space property (I.10) with its null space
constant less than or equal to the constantβ in (I.2). Here
null space constant γs(A) of a measurement matrixA is the
minimal constantγ such that (I.10) holds.

Theorem 2.1: Let 0 < q ≤ r ≤ ∞, 0 < p < ∞, integers
m,n, s satisfy 2 ≤ 2s ≤ m ≤ n, andA be a matrix of size
m× n. Then the following statements hold.

(i) If the matrix A has the sparse approximation property
(I.2), then it has the null space property of orders in ℓq

with its null space constantγs(A) ≤ βs(A).
(ii) If the matrix A has the null space property of orders

in ℓq with the null space constantγs(A), then it has the
sparse approximation property (I.2) withp = q = r, D =
max(1, γs(A)) infR∈R(A) ‖R‖qq→q andβ = γs(A); i.e.,

‖xs‖qq ≤
(

max(1, γs(A)) inf
R∈R(A)

‖R‖qq→q

)

‖Ax‖qq
+γs(A)(σs,q(x))

q for all x ∈ R
n.

Applying Theorems 1.1 and 2.1 withp = q = r = 1, we
have the following result on recovering compressible signals
from noisy measurements when the measurement matrix has
the null space property of orders in ℓ1, which is obtained in
[8] for the noiseless case.

Corollary 2.2: Let ǫ ≥ 0, m,n, s be positive integers with
2s ≤ m ≤ n, A be a matrix of sizem× n satisfying the null
space property (I.10) withq = 1, z = Ax+n with ‖n‖1 ≤ ǫ
andx ∈ R

n, and letx∗ be the solution of the minimization
problem (I.1) with p = q = 1. If the null space constant
γs(A) ∈ (0, 1), then

‖x∗ − x‖1 ≤ 4 infR∈R(A) ‖R‖1→1

1− γs(A)
ǫ+

2 + 2γs(A)

1− γs(A)
σs(x).

Remark 2.3: The null space property of a measurement
matrix is invariant under preconditioning, i.e., if a measure-
ment matrixA has the null space property (I.10) then the
preconditioned matrixPA has the null space property (I.10)
with the same null space constants, where a preconditioner is
a nonsingular matrixP. The sparse approximation property
(I.2) is weakly preconditioning-invariant in the sense that if
a measurement matrixA satisfies (I.2) then the precondi-
tioned matrix PA also satisfies (I.2) withD replaced by
‖P−1‖p→pD. This suggests appropriate preconditioning the
measurement matrix (and hence the noisy measurements)
before signal recovery from its noisy measurements via solving
an ℓq-minimization problem.

Remark 2.4: Let the matrixA of sizem×n have full rank
m (which is the case in most of compressive sampling prob-
lems) andA = UΣVt be its singular value decomposition.
Here and hereafterxt stands for the transpose of a vector or
a matrixx. ThenΣ = (Σ′ 0) for some nonsingular diagonal
matrix Σ′. Now we define the conventional preconditioned
measurement matrix̃A by Ã = PA, whereP = (Σ′)−1Ut.

In this case,R ∈ R(A) if and only if R = V
(

I

B

)

, where

I is the unit matrix of sizem × m and B is an arbitrary
matrix of size(m−n)×n. Let vi, 1 ≤ i ≤ n, be the column
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vectors of the matrixV. Then the null spaceN(A) of the
matrix A is spanned byvi,m + 1 ≤ i ≤ n, and the vectors
vi, 1 ≤ i ≤ m, form an orthonormal basis forN(A)⊥, the
orthogonal complement of the null spaceN(A) of the matrix
A. As the set{Rx : ‖x‖1 ≤ 1} is a polygon, the maximal
ℓ1-norm of Rx, ‖x‖1 ≤ 1, is then attained at some vertices.
Thus

inf
R∈R(Ã)

‖R‖1→1 = inf
R∈R(Ã)

max
1≤i≤m

‖Rei‖1

= inf
B

max
1≤i≤m

‖vi − (vm+1 · · · vn)Bei‖1
= inf

u∈N(A)
max

1≤i≤m
‖vi − u‖1, (II.1)

whereei, 1 ≤ i ≤ m, form the standard orthonormal basis of
R

m. In other words, the quantityinfR∈R(Ã) ‖R‖1→1 is the
same as the distance ofvi, 1 ≤ i ≤ m, from the null space
N(A) in ℓ1. From (II.1) it follows thatinfR∈R(Ã) ‖R‖1→1 ≤
max1≤i≤m ‖vi‖1 ≤ n1/2. It would be an interesting topic on
preconditioning a measurement matrixA with the null space
property (I.10) such that the quantityinfR∈R(Ã) ‖R‖q→q, 0 <

q ≤ 1, for the preconditioned matrix̃A is not a large number.

III. R ESTRICTED ISOMETRY PROPERTY AND SPARSE

APPROXIMATION PROPERTY

In this section, we prove that if a measurement matrix has
the restricted isometry property (I.11) of order2s, then it has
the sparse approximation property (I.2) withp = r = 2, and
the sparse approximation constant is small when the restricted
isometry constant is small. Here therestricted isometry con-
stant δs(A) of a measurement matrixA is the smallest positive
constantδ that satisfies (I.11).

Theorem 3.1: Let 0 < q ≤ 1, positive integersm,n, s
satisfy2s ≤ m ≤ n, and the matrixA of sizem×n have the
restricted isometry property (I.11) of order2s with restricted
isometry constantδ2s(A) ∈ (0, 1). Then for allx ∈ R

n,

‖x‖22 ≤
√

1 + δ2s(A) +
√

2δ2s(A)

(1 − δ2s(A))
√

1 + δ2s(A)
‖Ax‖22

+
(

√

1 + δ2s(A) +
√

2δ2s(A)

1− δ2s(A)

)2

×δ2s(A)s1−2/q
(

σs,q(x)
)2

(III.1)

and

‖Ax‖22 ≤
(

1 + δ2s(A) +
√

2δ2s(A)
)

‖x‖22
+
(

1 +
√

2δ2s(A)
)

δ2s(A)

×s1−2/q(σs,q(x))
2. (III.2)

Theorem 3.2: Let 0 < q ≤ r ≤ ∞, 0 < p ≤ ∞, positive
integersm,n, s satisfy 2s ≤ m ≤ n, andA be a matrix of
sizem × n that has the sparse approximation property (I.2).
Then

1

D
‖x‖qr ≤ ‖Ax‖qp for all x ∈ Σs, (III.3)

and
1− β

2D
‖x‖qr ≤ ‖Ax‖qp for all x ∈ Σ2s. (III.4)

Remark 3.3: From Theorem 3.1, we see that a measurement
matrix with small restricted isometry constant will have the
sparse approximation property (I.2) withp = r = 2, D close
to one andβ close to zero. Conversely forp = r = 2 we
obtain from Theorem 3.2 that if a measurement matrixA has
the sparse approximation property (I.2) withD close to one
andβ close to zero, then the first inequality in the restricted
isometry property (I.11) holds for some constantδ close to
1/2 only. For p = q = r = 1, them × n adjacency matrices
Φ of unbalanced(2s, α)-expander with fixed left degreed
has the sparse approximation property (I.2) with small sparse
approximation constant (see (I.8)) and the restricted isometry
property with respect toℓ1-norm:

(1−Cα)‖x‖1 ≤ ‖Φx‖1/d ≤ (1+Cα)‖x‖1 for all x ∈ Σ2s

whereC is a positive constant (see [12, Theorem 1]), but
it does not have the restricted isometry property (I.11) when
m/s2 is sufficiently small [27].

Remark 3.4: If a measurement matrixA has the restricted
isometry property (I.11) with small restricted isometry con-
stant (see [1], [4], [24], [25], [26] for examples of such
measurement matrices), then the preconditioned measurement
matrix PA has the sparse approximation property (I.2) with
p = r = 2, D close to‖P−1‖2→2 andβ close to zero but it
does not have the restricted isometry property (I.11) in general.
This observation may suggest that preconditioning procedure
could generate new measurement matrices for the stable recov-
ery of compressible signals from their noisy measurements.

IV. CONCLUSIONS AND FINAL REMARKS

In this paper, we introduce the sparse approximation prop-
erty (I.2) of a measurement matrix and show that it is a suf-
ficient and almost necessary condition that any compressible
signal can be stably recovered from its noisy measurements
via solving theℓq-minimization problem (I.1).

The sparse approximation property (I.2) of a measurement
matrix with q ≤ r is a stronger version of the null space
property (I.10) with the preconditioning-invariance almost pre-
served. The sparse approximation property (I.2) withp = r =
2 and0 < q ≤ 1 is a weaker version of the restricted isometry
property (I.11). The adjacency matrices of some unbalanced
expanders have the sparse approximation property (I.2) with
p = q = r = 1 and small sparse approximation constant,
but they do not have the restricted isometry property (I.11).
A challenging problem is the construction of measurement
matrices, other than random matrices [1], [4], [24], [25], [26]
and adjacency matrices of a graph [12], [27], [28], [29], [30],
that have sparse approximation property (I.2) with small sparse
approximation constant.

APPENDIX

A. Proof of Theorem 1.1

Seth = x∗ − x. Let S0 be so chosen that‖xSc
0
‖q = ‖x−

xs‖q, S1 be the set of indices of thes largest components, in
absolute value, ofh in Sc

0, S2 be the set of indices of the next
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s largest components, in absolute value, ofh in (S0 ∪ S1)
c,

and so on. Then

‖Ah‖p ≤ 2ǫ and ‖hSc
0
‖qq ≤ ‖hS0

‖qq +2‖x−xs‖qq (A.1)

by (I.1), and

‖hSj
‖r̃ ≤ s1/r̃−1/q‖hSj−1

‖q, j ≥ 2 (A.2)

by the construction of the setsSj, j ≥ 1, whereq ≤ r̃ ≤ r.
Combining (I.2) and (A.1) gives

‖hT ‖qr ≤ D(2ǫ)q + βsq/r−1‖hT c‖qq (A.3)

for any subsetT of {1, . . . , n} with #T ≤ s. Applying (A.3)
with T replaced byS0 and then using the estimate (A.1) for
‖hSc

0
‖qq,

‖hS0
‖qr ≤ D(2ǫ)q + 2βsq/r−1‖x− xs‖qq + βsq/r−1‖hS0

‖qq.
(A.4)

By Hölder inequality and the property that#S0 ≤ s,

‖hS0
‖q ≤ s1/q−1/r‖hS0

‖r. (A.5)

Substituting the above inequality into the right-hand sideof
the inequality (A.4) leads to the first crucial inequality:

‖hS0
‖qr ≤

D

1− β
(2ǫ)q +

2β

1− β
sq/r−1‖x− xs‖qq. (A.6)

Combining (A.1), (A.5) and (A.6) yields the second crucial
inequality:

‖hSc
0
‖qq ≤

D

1− β
s1−q/r(2ǫ)q +

2

1− β
‖x− xs‖qq. (A.7)

For r = q, the conclusion (I.5) follows from (A.6) and (A.7).
Applying (A.3) with T replaced byS1 yields

‖hS1
‖qr ≤ D(2ǫ)q + βsq/r−1‖hSc

1
‖qq.

This together with (A.1), (A.5), (A.6) and (A.7) leads to the
third crucial inequality:

‖hS1
‖qr ≤ D(2ǫ)q + βsq/r−1

(

‖hS0
‖qq + ‖h(S0∪S1)c‖qq

)

≤ D(1 + β)

1− β
(2ǫ)q +

2β(1 + β)

1− β
sq/r−1‖x− xs‖qq.

(A.8)

Therefore forq ≤ r̃ ≤ r,

‖h‖qr̃ ≤ ‖hS0
‖qr̃ + ‖hS1

‖qr̃ +
∑

j≥2

‖hSj
‖qr̃

≤ sq/r̃−q/r‖hS0
‖qr + sq/r̃−q/r‖hS1

‖qr
+sq/r̃−1‖hSc

0
‖qq

≤ D(3 + β)

1− β
sq/r̃−q/r(2ǫ)q

+
2(1 + β)2

1− β
sq/r̃−1‖x− xs‖qq, (A.9)

where the first inequality holds by the triangle inequality for
‖ · ‖q/r̃q/r̃ as q ≤ r̃, the second inequality is true by Hölder
inequality and (A.2), and the third inequality follows from
(A.6), (A.7) and (A.8). Then the conclusions (I.3) and (I.4)
follow by letting r̃ = r and r̃ = q in (A.9) respectively.

B. Proof of Theorem 1.2

The conclusion (I.7) follows from the estimate (I.6) and
the observation that the zero vector is the solution of theℓq-
minimization problem (I.1) withǫ = ‖Ax‖p andz = Ax for
anyx ∈ R

n.

C. Proof of Theorem 2.1

(i) Take a vectorx ∈ R
n with Ax = 0 and let xs

be its bests-sparse approximation inℓq. Then it is a best
s-sparse approximation inℓr. This together with the sparse
approximation property (I.2) leads to‖xs‖qq ≤ s1−q/r‖xs‖qr ≤
βs(A)(σs,q(x))

q . Thus the measurement matrixA has the null
space property of orders with γs(A) ≤ βs(A).

(ii) Take a vectorx ∈ R
n. Then it suffices to prove that

‖xT ‖qq ≤
(

max(1, γs(A)) inf
R∈R(A)

‖R‖qp→q

)

‖Ax‖qp
+γs(A)‖xT c‖qq, (A.10)

for all subsetsT ⊂ {1, . . . , n} with #T ≤ s, where0 < p ≤
∞. Note thatA(x − RAx) = (A − ARA)x = 0 for all
R ∈ R(A). This together with the null space property (I.10)
of the measurement matrixA leads to‖(x − RAx)T ‖qq ≤
γs(A)‖(x −RAx)T c‖qq for all subsetsT ⊂ {1, . . . , n} with
#T ≤ s andR ∈ R(A). Hence

‖xT ‖qq ≤ max(1, γs(A))‖R‖qp→q‖Ax‖qp + γs(A)‖xT c‖qq.
Taking minimum over all matricesR ∈ R(A) in the right-
hand side of the above estimate leads to (A.10), and hence
proves the second conclusion.

D. Proof of Theorem 3.1

Take a vectorx ∈ R
n and letxs be its s-sparse approxi-

mation inℓ2. We writex =
∑

j≥0 xSj
, whereS0 is the set of

indices of thes largest components, in absolute value, ofx, S1

is the set of indices of thes largest components, in absolute
value, of x in Sc

0, and so on. From the construction of the
setsSj, j ≥ 0, we obtain thatxS0

= xs, ‖xSc
0
‖q = σs,q(x),

∑

j≥2 ‖xSj
‖2 ≤ s1/2−1/qσs,q(x),

‖xSj
‖2 ≤ s1/2−1/q‖xSj−1

‖1−q/2
q ‖xSj

‖q/2q

≤ s1/2−1/q‖xSj−1
‖q (A.11)

for all j ≥ 1, and

‖Ax‖22 = ‖A(xS0
+ xS1

)‖22 +
∑

j≥2

‖AxSj
‖22

+2
∑

j≥2

〈AxS0
,AxSj

〉+ 2
∑

j≥2

〈AxS1
,AxSj

〉

+2
∑

2≤j<j′

〈AxSj
,AxSj′

〉. (A.12)

Recalling that|〈AxSj
,AxSj′

〉| ≤ δ2s(A)‖xSj
‖2‖xSj′

‖2 for
all j′ 6= j ([1]), and applying the restricted isometry property
(I.11), we obtain from (A.11) and (A.12) that

(1− δ2s(A))‖x‖22 ≤ ‖Ax‖22 + δ2s(A)s1−2/q(σs,q(x))
2

+2
√
2δ2s(A)s1/2−1/q‖x‖2σs,q(x)

≤ ‖Ax‖22 + δ2s(A)ǫ‖x‖22
+δ2s(A)(1 + 2ǫ−1)s1−2/q(σs,q(x))

2,
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where ǫ > 0. Then (III.1) follows by takingǫ = −2 +
√

2(δ2s(A))−1 + 2.
Similarly we get

‖Ax‖22 ≤
(

1 + δ2s(A) +
√

2δ2s(A)
)

‖x‖22
+
(

1 +
√

2δ2s(A)
)

δ2s(A)s1−2/q(σs,q(x))
2.

This proves (III.2).

E. Proof of Theorem 3.2

Take an s-sparse vectorx ∈ R
n. Then x = xs and

σs,q(x) = 0. This together with the sparse approxima-
tion property (I.2) gives‖x‖qr = ‖xs‖qr ≤ D‖Ax‖qp +

βsq/p−1σs,q(x)
q = D‖Ax‖qp, and hence proves (III.3).

Take a2s-sparse vectorx ∈ R
n and write x = xS0

+
xS1

for some subsetsS0 and S1 of {1, . . . , n} with empty
intersection and cardinality less than or equal tos. Applying
(I.2) to the given2s-sparse vectorx and replacingS by S0

andS1 respectively, we obtain

‖xS0
‖qr ≤ D‖Ax‖qp+βsq/p−1‖xS1

‖qq ≤ D‖Ax‖qp+β‖xS1
‖qr

(A.13)
and

‖xS1
‖qr ≤ D‖Ax‖qp+βsq/p−1‖xS0

‖qq ≤ D‖Ax‖qp+β‖xS0
‖qr.

(A.14)
Summing up the above estimates (A.13) and (A.14) yields the
following inequality:

(1− β)‖x‖qr = (1− β)(‖xS0
‖rr + ‖xS1

‖rr)q/r

≤ (1− β)(‖xS0
‖qr + ‖xS1

‖qr) ≤ 2D‖Ax‖qp.

Hence (III.4) follows.
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