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Abstract

We show that any completely positive multiplier of the convolution algebra of the dual
of an operator algebraic quantum group G (either a locally compact quantum group, or a
quantum group coming from a modular or manageable multiplicative unitary) is induced in
a canonical fashion by a coisometric corepresentation of G. In the locally compact quantum
group case the corepresentation we construct is always unitary, and it follows that there
is an order bijection between the completely positive multipliers of L1(G) and the positive
functionals on the universal quantum group Cu

0 (G). We provide a direct link between the
Junge, Neufang, Ruan representation result and the representing element of a multiplier, and
use this to show that their representation map is always weak∗-weak∗-continuous. We also
show that for any G, for a completely positive multiplier, our constructed corepresentation
can be chosen to be unitary if and only if the left multiplier comes from a double multiplier.
Keywords: Locally compact quantum group, manageable multiplicative unitary, completely
bounded multiplier, completely positive multiplier, corepresentation.
MSC classification (2010): 20G42, 22D10, 22D15, 43A22, 46L07, 46L89, 81R50.

1 Introduction

Consider a locally compact group G, and the Fourier algebra A(G), [7]. As the predual of the group
von Neumann algebra V N(G), we can equip A(G) with its standard operator space structure. Then
consider McbA(G), the algebra of completely bounded multipliers of A(G), that is, the collection
of completely bounded maps T : A(G) → A(G) which satisfy T (ab) = T (a)b for all a, b ∈ A(G). A
result of Gilbert (see the simple presentation of [12]) shows that T can be identified with the map
given by pointwise multiplication by a continuous function f , which must have the special form
that there is a Hilbert space H and continuous maps α, β : G → H with f(t−1s) = (α(s)|β(t)) for
s, t ∈ G. An easy way to construct such maps α, β is to start with a unitary representation π of
G on H , to fix vectors α0, β0 ∈ H , and to define α(s) = π(s)α0 and β(s) = π(s)β0 for all s ∈ G.
However, we can integrate π to get a ∗-representation of L1(G) and hence a ∗-representation of
C∗(G), and it hence follows that f is identified with the functional ωα0,β0

◦ π on C∗(G), that is,
with a member of the Fourier-Stieltjes algebra B(G). As McbA(G) = B(G) if and only if G is
amenable (this is shown in unpublished work of Losert and Ruan; compare [19] and [2]) we see
that not every member of McbA(G) can arise in this way.

However, suppose that our multiplier T is completely positive. It follows from Jolissaint’s proof
in [12] that we map choose α = β in this case, and so the function f is readily seen to be positive
definite. Hence in this case, f is a member of B(G) (and so we also see that McbA(G) is the span
of the completely positive multipliers if and only if G is amenable). Indeed, we can assume that α
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is non-degenerate in the sense that H is the closed span of the image of α. Then we can construct
a unitary representation π of G on H by setting π(s)α(t) = α(st) for all s, t ∈ G, and α can be
recovered as α(s) = π(s)α(e), if e ∈ G is the unit.

In this paper, we extend this result on completely positive multipliers to an arbitrary locally
compact quantum group G (see Section 2 below for notation). As L1(G) is in general not com-
mutative, we work with left multipliers (although analogous results hold on the right, by working
with the opposite quantum group, or by directly using the unitary antipode). A unitary corepre-
sentation U ∈ M(C0(G) ⊗ B0(H)) gives rise to a completely bounded left multiplier of the dual
L1(Ĝ) by defining

L : L∞(Ĝ) → L∞(Ĝ); x̂ 7→ (ι⊗ ωα,α)(U(x̂⊗ 1)U∗),

where α ∈ H is some vector. Then L is normal, and its preadjoint L∗ is a left multiplier in the sense
that L∗(ω̂1ω̂2) = L∗(ω̂1)ω̂2 for ω̂1, ω̂2 ∈ L1(Ĝ). Alternatively, we can identify L1(Ĝ) as an ideal in
the dual of the universal quantum group Cu

0 (Ĝ), and then L∗ is given by left multiplication by the
positive functional ωα,α ◦π, where π : Cu

0 (Ĝ) → B(H) is the unique ∗-representation corresponding
to U . See Section 4 for further details.

Our main result, Theorem 5.10, is that any completely positive left multiplier of L1(Ĝ) arises
in this way from a unitary corepresentation, or equivalently from a positive functional on Cu

0 (Ĝ).
Indeed, Theorem 5.11 establishes an order bijection between the completely positive multipliers
and Cu

0 (Ĝ)∗+.
Our main technical tool is that “invariants are constant”; that is, if x ∈ L∞(G) with ∆(x) =

y ⊗ 1 (or 1 ⊗ y) then x = y ∈ C1. We learnt the power of this simple condition from [20]
which works in the more general setting of quantum groups given by manageable or modular
multiplicative unitaries. Actually, most of our results hold in this more general setting with no
further work– but we are only able to verify that the resulting corepresentation is coisometric, not
unitary.

The outline of the paper is as follows. Section 2 is a very quick introduction (mainly to fix
notation) to locally compact quantum groups, or quantum groups given by manageable multiplica-
tive unitaries. Using the “invariants are constant” idea, together with some basic modular theory
for weights, we show that for a locally compact quantum group G, the algebra L1(G), treated as
a completely contractive Banach algebra, is self-induced. This is a weakening of having a bounded
approximate identity (see [5, Section 5] and [8, 9]) and it is interesting that this holds for all G,
without any coamenability assumption.

In Section 3 we review some of the constructions of Junge, Neufang and Ruan in [13]– we
use these to construct corepresentations, and so we take the opportunity to show that the results
(or at least, the ones we need) hold for general quantum groups. In Section 4 we show how
corepresentations give rise to multipliers.

In Section 5 we start our programme of showing that every completely positive multiplier L
arises from a corepresentation. The ideas of [13] allow us to extend L to a map Φ on all of
B(L2(G)). We start with a careful analysis of what the Stinespring representation for Φ gives
us. From this, we can construct a coisometric corepresentation U which gives L in the sense of
Section 4; the underlying idea, slightly hidden by the technical details, is a direct generalisation
of the argument in the Fourier algebra case: see the comment after Proposition 5.3. When G is
a locally compact quantum group, we can show that our corepresentation is unitary. We present
a short proof which ultimately uses the modular theory of L∞(G), and a second proof which is
more corepresentation theoretic– it seems possible that this second proof could be extended to G

coming from manageable multiplicative unitaries, but we don’t see this at present.
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In Section 6.1, we work again in the completely bounded case. Any completely bounded
left multiplier L has a “representing element” a0 ∈ M(C0(G)) so that, under the embedding
λ̂ : L1(Ĝ) → C0(G), left multiplication by a0 induces L. We show that a0 determines the map Φ
by (

Φ(θξ,η)α
∣∣β
)

= 〈∆(a0), ωα,η ⊗ ω♯∗
ξ,β〉 (ξ, η ∈ D(P 1/2), α, β ∈ D(P−1/2)).

Here P is the positive operator which induces the scaling groups (τt) and (τ̂t). We remark that this
presents a possible definition for a “positive definite function” in M(C0(G)), namely those a0 such
that Φ becomes completely positive– however, it is both unclear when this occurs, and whether
Φ would then automatically be associated with a multiplier (and hence, by our work, a unitary
corepresentation) or whether this would need to be made a further hypothesis on a0.

In the remainder of Section 6.1, we show that for any G, the corepresentation U associated
with L is unitary if and only if L is the left part of a completely bounded double multiplier (which
is automatically completely positive, if L is). Then in the final short section we apply this link
between Φ and a0 to remove certain technical “approximation property” type assumptions on
the results of [11, Section 4], to show that the representation map in [13] is always weak∗-weak∗-
continuous.

A final word on notation. Our Hilbert space inner products shall be linear in the first variable,
and we write (·|·) for an inner product (or more generally, a sesquilinear form). We write 〈·, ·〉
for the bilinear pairing between a Banach space and its dual. For a Hilbert space H , we write
B(H) for the algebra of all bounded operators on H , write B(H)∗ for its predual (the trace class
operators) and write B0(H) for the ideal of compact operators. For ξ, η ∈ H , we denote by ωξ,η

the normal functional in B(H)∗, and by θξ,η the rank one operator in B0(H), which are defined by

〈T, ωξ,η〉 = (Tξ|η), θξ,η(γ) = (γ|η)ξ (T ∈ B(H), γ ∈ H).

Given a normal map T on a von Neumann algebra M , we write T∗ for the pre-adjoint of T
acting on the predual M∗. We write ⊗ to mean a completed tensor product, either of Hilbert
spaces, or the minimal C∗-algebraic tensor product. We write ⊗ for the von Neumann algebraic
tensor product, and ⊙ for the purely algebraic tensor product. We write Σ for the tensor swap
map of Hilbert spaces, say Σ : H ⊗H → H ⊗H ; ξ ⊗ η 7→ η ⊗ ξ. To avoid confusion, we write σ
for the tensor swap map of C∗ (or von Neumann) algebras.

We use the basic theory of Operator Spaces without comment; see, for example, [6] for further
details.

Acknowledgements: The author wishes to thank Michael Brannan for asking the initial question
which lead to this paper, and explaining to the author the folklore argument in the cocommutative
case, and to thank Zhong-Jin Ruan for point out that the argument at the end of Proposition 3.2
needed more justification.

2 Operator algebraic quantum groups

In this paper, we shall be concerned with quantum groups in the operator algebraic setting– to
be precise, either locally compact quantum groups, in the Vaes, Kustermans sense [16, 17, 18, 25],
or C∗-algebraic quantum groups built from manageable or modular multiplicative unitaries, in the
So ltan, Woronowicz sense [21, 22, 27] (the latter generalising the former). In fact, for many of our
results, we shall need remarkably little– our main tool being that “invariants are constant” (see
below– our inspiration here is [20, Section 2]).
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A locally compact quantum group in the von Neumann algebraic setting is a Hopf-von Neumann
algebra (M,∆) equipped with left and right invariant weights. As usual, we use ∆ to turn M∗

into a Banach algebra, and we write the product by juxtaposition. We shall “work on the left”; so
using the left invariant weight, we build the GNS space H , and a multiplicative unitary W acting
on L2(G)⊗L2(G) (of course, the existence of a right weight is needed to show that W is unitary).
There is a (in general unbounded) antipode S which admits a “polar decomposition” S = Rτ−i/2,
where R is the unitary antipode, and (τt) is the scaling group. There is a nonsingular positive
operator P which implements (τt) as τt(x) = P itxP−it. Then W is manageable with respect to P .

A manageable multiplicative unitary W acting on H ⊗ H has, by definition, a nonsingular
positive operator P , and an operator W̃ acting on H ⊗H such that

(
W (ξ ⊗ α)

∣∣η ⊗ β
)

=
(
W̃ (P−1/2ξ ⊗ β)

∣∣P 1/2η ⊗ α
)
,

for all α, β ∈ H and ξ ∈ D(P−1/2), η ∈ D(P 1/2). A word on notation: we work with left mul-
tiplicative unitaries, whereas So ltan and Woronowicz, in the conventions of [18], work with right
multiplicative unitaries, and so we have translated everything to the left.

Given such a W , the space {(ι ⊗ ω)W : ω ∈ B(H)∗} is an algebra, and its closure is a C∗-
algebra, say A. There is a coassociative map ∆ : A → M(A ⊗ A) given by ∆(a) = W ∗(1 ⊗ a)W .
If we formed W from (M,∆) with invariant weights, then A is σ-weakly dense in M , and the two
definitions of ∆ agree. Similarly, {(ω ⊗ ι)W : ω ∈ B(H)∗} is norm dense in a C∗-algebra Â, and
defining ∆̂(â) = Ŵ ∗(1 ⊗ â)Ŵ , we get a non-degenerate ∗-homomorphism ∆̂ : Â → M(Â ⊗ Â),
where here Ŵ = ΣW ∗Σ. If we started with (M,∆) having invariant weights, then we can construct
invariant weights on (Â′′, ∆̂). The unitary W is in the multiplier algebra M(A⊗ Â) ⊆ B(H ⊗H).

When W is a manageable multiplicative unitary, we can still form S,R and (τt) with the usual
properties. The antipode S has elements of the form (ι ⊗ ω)W as a core, and S((ι ⊗ ω)W ) =
(ι ⊗ ω)(W ∗). Then also S = Rτ−i/2 and (τt) is again implemented by P (the same map which
appears in the definition of “manageable”). Thus we recover most of the objects associated with
a locally compact quantum group. The exception is that we no longer have access to the Tomita-
Takesaki theory of weights, and so, for example, have little control over the commutant M ′, and
so forth.

There is a more general notation of a modular multiplicative unitary, see [22], which is more
natural in certain examples. However, at the cost of changing our space H , we can recover (A,∆)
from a different, but related, manageable multiplicative unitary. Indeed, in [21], it is shown that
if (A,∆) is given by some modular multiplicative unitary, then (Â, ∆̂), the σ-weak topologies on
A and Â, the image of W in M(A⊗ Â), and all the maps S,R, (τt), Ŝ, R̂ and (τ̂t), are independent
of the particular choice of modular multiplicative unitary giving (A,∆). For this reason, we shall
henceforth work only with manageable multiplicative unitaries (but all our results hold in the
modular case as well).

We write G for an abstract object to be thought of as a quantum group. We write C0(G), L∞(G)
and L1(G) for A,M and M∗ (and similar for the dual objects); as mentioned in the previous
paragraph, these are well-defined. We also write L2(G) for H , but be aware that if G is given by
a modular or manageable multiplicative unitary, then there is some arbitrary choice involved in
L2(G). If G has invariant weights, then these weights unique up to a constant, and so L2(G) is
unique.

This concludes our brief summary; we shall develop further theory as and when we need it.
We finish this section with one of our major tools– that “invariants are constant”. Notice that, by
using the unitary antipode, we could replace y13 by y23 in the following; but we shall have no need
of this variant.
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Theorem 2.1. For any G and a von Neumann algebra N , if x, y ∈ L∞(G)⊗N satisfy (∆⊗ ι)x =
y13, then x = y ∈ C⊗N .

Proof. We shall prove this when N = C, the general case comes from considering (ι ⊗ ω)x and
(ι⊗ω)y, as ω ∈ N∗ varies. For locally compact quantum groups, this was shown in [1, Lemma 4.6],
compare also [17, Result 5.13]. For general G, [20, Theorem 2.6] shows that if a, b ∈ B(L2(G))
with W ∗(1 ⊗ a)W = b ⊗ 1 (working with left multiplicative unitaries) then a = b ∈ C1, and this
immediately implies the result.

2.1 L1(G) is self-induced

A completely contractive Banach algebra is a Banach algebra A which is also an operator space, and
such that the multiplication map m : A⊗̂A → A is a complete contraction (here using the operator
space projective tensor product), see [6]. Let X be the closure of {ab ⊗ c − a ⊗ bc : a, b, c ∈ A}
in A⊗̂A, and let A⊗̂AA be the quotient A⊗̂A/X . Clearly X is contained in the kernel of m, and
m induces a complete contraction m̃ : A⊗̂AA → A. When this is an isomorphism, we say that A
is self-induced. We studied this concept in [5, Section 5]; our inspiration was papers of Gronbaek,
[8, 9].

If A has a bounded approximate identity, it is not hard to see that A is self-induced; so this
shows that L1(G) is self-induced for any locally compact group G. Using work of Tomita and
Takesaki, we showed in [5, Theorem 6.5] that A(G) is self-induced for any G. In fact, using that
“invariants are constant”, we can give a simple proof that L1(G) is self-induced for any G.

In the following, we need to use invariant weights to get access to modular theory. We just
quickly recall that given the modular conjugation J , we have that JL∞(G)J = L∞(G)′, the
commutant. There is also a useful link with the quantum group structure of the dual, as the
unitary antipode is given by R̂(x̂) = Jx̂∗J for x̂ ∈ L∞(Ĝ).

Theorem 2.2. For a locally compact quantum group G, the algebra L1(G) is self-induced, as a
completely contractive Banach algebra (and in fact m̃ becomes a completely isometric isomorphism).

Proof. We can identify the dual of A⊗̂AA with

X⊥ = {τ ∈ (A⊗̂A)∗ : 〈τ, ab⊗ c〉 = 〈τ, a⊗ bc〉 (a, b, c ∈ A)}.

Thus m̃ is a (completely isometric) isomorphism if and only if m∗ : A∗ → X⊥ is a (completely
isometric) isomorphism.

For us, A = L1(G) and so (A⊗̂A)∗ = L∞(G)⊗L∞(G). As m is the pre-adjoint of ∆, we need
to prove that ∆ : L∞(G) → X⊥ is an isomorphism (notice that it is automatically completely
isometric onto its range). Similarly, we can identify X⊥ as

X⊥ = {x ∈ L∞(G)⊗L∞(G) : (∆ ⊗ ι)x = (ι⊗ ∆)x}.

So, let x ∈ X⊥, and set y = WxW ∗ ∈ L∞(G)⊗B(L2(G)). Then, using that (∆ ⊗ ι)W = W13W23,
we have that

(∆ ⊗ ι)y = W13W23((∆ ⊗ ι)x)W ∗
23W

∗
13 = W13W23((ι⊗ ∆)x)W ∗

23W
∗
13.

Now, (ι⊗∆)x = W ∗
23x13W23, and so (∆⊗ι)y = W13x13W13. By Theorem 2.1, there is z ∈ B(L2(G))

with y = 1 ⊗ z, that is, x = W ∗(1 ⊗ z)W .
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To finish the proof, we need to show that z ∈ L∞(G), which seems to require using modular
theory. Let W ′ = (J ⊗ J)W (J ⊗ J) (this is the fundamental unitary of the commutant quantum
group, see [18, Section 4]). Then for x̂ ∈ L∞(Ĝ),

W ′(x̂⊗ 1)W ′∗ = Σ(J ⊗ J)Ŵ ∗(1 ⊗ Jx̂J)Ŵ (J ⊗ J)Σ = Σ(J ⊗ J)∆̂(R(x̂))∗(J ⊗ J)Σ

= σ(R⊗ R)∆̂(R(x̂)) = ∆̂(x̂).

It hence follows that
W ′

23W12 = (ι⊗ ∆̂)(W )W ′
23 = W13W12W

′
23.

As W ∈ L∞(G)⊗L∞(Ĝ), it follows that W ′ ∈ L∞(G)′⊗L∞(Ĝ). So

(W ′
23)

∗x12 = (W ′
23)

∗W ∗
12(1 ⊗ z ⊗ 1)W12 = W ∗

12(W
′
23)

∗W13(1 ⊗ z ⊗ 1)W12

= x12(W
′
23)

∗ = W ∗
12(1 ⊗ z ⊗ 1)(W ′

23)
∗W13W12.

As W is unitary, we can cancel to get

(1 ⊗ z ⊗ 1)(W ′
23)

∗W13 = (W ′
23)

∗W13(1 ⊗ z ⊗ 1) = (W ′
23)

∗(1 ⊗ z ⊗ 1)W13.

We conclude that (z ⊗ 1)W ′ = W ′(z ⊗ 1). As {(ι ⊗ ω̂)W ′ : ω̂ ∈ L1(Ĝ)} is σ-weakly dense in
JL∞(G)J = L∞(G)′, it follows that z ∈ L∞(G)′′ = L∞(G) as required.

3 Multipliers of quantum groups

In this section, we review some of the ideas used by Junge, Neufang and Ruan in [13]. We shall
actually need some constructions coming from the proofs in [13] (and not just the statements of
the results). Rather than just give sketch proofs, we instead give quick, full proofs, and take
the opportunity to show that some of their results also hold for quantum groups coming from
manageable multiplicative unitaries. Further details and related ideas can be found in [4, 5, 11, 13].

Definition 3.1. A completely bounded left multiplier of L1(G) is a completely bounded map
L∗ : L1(G) → L1(G) with L∗(ω1ω2) = L∗(ω1)ω2 for ω1, ω2 ∈ L1(G).

Such maps are also often called “centralisers” in the literature (and in particular, in [13]). A
simple calculation shows that a completely bounded map L∗ : L1(G) → L1(G) is a left multiplier
if and only if its adjoint L = (L∗)

∗ satisfies (L⊗ ι)∆ = ∆L.
Let us make a few remarks about normal completely bounded maps. As explained, for example,

in the proof of [10, Theorem 2.5], as L is normal, we can find a normal ∗-representation π :
L∞(G) → B(H) for some Hilbert space H , and bounded maps P,Q : L2(G) → H , with L(x) =
P ∗π(x)Q for each x ∈ L∞(G). By the structure theory for normal ∗-representations (see [24,
Theorem 5.5, Chapter IV]) by adjusting P and Q, and may suppose that H = L2(G) ⊗ H ′ for
some Hilbert space H ′, and that π(x) = x⊗ 1. For example, it then follows that

(L⊗ ι)(Ŵ ) = (P ∗ ⊗ 1)Ŵ13(Q⊗ 1).

As Ŵ ∈ M(B0(L
2(G))⊗C0(G)), it follows easily from this that also (L⊗ ι)(Ŵ ) ∈ M(B0(L

2(G))⊗
C0(G)), a fact we shall use in the following proof.

The following is a short unification of (the left version of) [13, Corollary 4.4] (compare [13,
Theorem 4.10]) and [4, Theorem 4.2]; we make use of the “invariants are constant” technique.
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Proposition 3.2. Let L∗ be a completely bounded left multiplier of L1(Ĝ). There is a ∈ M(C0(G))
with aλ̂(ω̂) = λ̂(L∗(ω̂)) for ω̂ ∈ L1(G), or equivalently, with (1 ⊗ a)Ŵ = (L⊗ ι)(Ŵ ).

Proof. That aλ̂(ω̂) = λ̂(L∗(ω̂)) for each ω̂ ∈ L1(G), if and only if (1 ⊗ a)Ŵ = (L⊗ ι)(Ŵ ) follows
easily from the definition that λ̂(ω̂) = (ω̂ ⊗ ι)(Ŵ ). Consider now

(∆̂ ⊗ ι)
(
(L⊗ ι)(Ŵ )Ŵ ∗

)
=

(
(L⊗ ι⊗ ι)(∆̂ ⊗ ι)Ŵ

)
(∆̂ ⊗ ι)(Ŵ ∗)

=
(
(L⊗ ι⊗ ι)(Ŵ13Ŵ23)

)
Ŵ ∗

23Ŵ
∗
13

= (L⊗ ι)(Ŵ )13Ŵ
∗
13,

where we have used that ∆̂L = (L ⊗ ι)∆̂, that ∆̂ is a ∗-homomorphism, and that (∆̂ ⊗ ι)(Ŵ ) =
Ŵ13Ŵ23. By Theorem 2.1, it follows that there is a ∈ L∞(G) with (L⊗ι)(Ŵ )Ŵ ∗ = 1⊗a. However,
as Ŵ ∈ M(B0(L

2(G)) ⊗ C0(G)), we see that

1 ⊗ a = (L⊗ ι)(Ŵ )Ŵ ∗ ∈ M(B0(L
2(G)) ⊗ C0(G)),

from which it follows immediately that a ∈ M(C0(G)).

In the language of [4], the previous lemma says that L∗ is “represented”; in the language of
[13], the element a is the “multiplier” associated to the “centraliser” L∗.

Proposition 3.3. Let L∗ be a completely bounded left multiplier of L1(Ĝ). There is a completely
bounded, normal map Φ : B(L2(G)) → B(L2(G)) which extends L, and which is a L∞(G)′-bimodule
map. Indeed, Φ satisfies

1 ⊗ Φ(x) = Ŵ
(
(L⊗ ι)(Ŵ ∗(1 ⊗ x)Ŵ )

)
Ŵ ∗ (x ∈ B(L2(G))).

Proof. We closely follow [13, Proposition 4.3], while translating “to the left” and using that “in-
variants are constant”. Define

T : B(L2(G)) → L∞(Ĝ)⊗B(L2(G)), T (x) = Ŵ
(
(L⊗ ι)(Ŵ ∗(1 ⊗ x)Ŵ )

)
Ŵ ∗.

We now perform a similar calculation to that in the previous lemma:

(∆̂ ⊗ ι)T (x) = Ŵ13Ŵ23(L⊗ ι⊗ ι)
(
(∆̂ ⊗ ι)(Ŵ ∗(1 ⊗ x)Ŵ )

)
Ŵ ∗

23Ŵ
∗
13

= Ŵ13Ŵ23(L⊗ ι⊗ ι)
(
Ŵ ∗

23Ŵ
∗
13(1 ⊗ 1 ⊗ x)Ŵ13Ŵ23

)
Ŵ ∗

23Ŵ
∗
13

= Ŵ13(L⊗ ι⊗ ι)
(
Ŵ ∗

13(1 ⊗ 1 ⊗ x)Ŵ13

)
Ŵ ∗

13

= T (x)13.

So by Theorem 2.1, there is Φ(x) ∈ B(L2(G)) with T (x) = 1 ⊗ Φ(x). It is easy to see that Φ is
completely bounded and normal.

For x ∈ L∞(Ĝ)

1 ⊗ Φ(x) = T (x) = Ŵ ((L⊗ ι)∆̂(x))Ŵ ∗ = Ŵ ∆̂(L(x))Ŵ ∗ = 1 ⊗ L(x),

and so Φ extends L. For y, z ∈ L∞(G)′, as Ŵ ∈ L∞(Ĝ)⊗L∞(G), it is easy to see that

T (yxz) = (1 ⊗ y)T (x)(1 ⊗ z) (x ∈ B(L2(G))),

and so Φ(yxz) = yΦ(x)z as required.
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In the language of [13], we have thus constructed a map from the set of completely bounded

left multipliers of L1(Ĝ)) to CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))). It seems that, to continue with the arguments

of [13], we start to need to use arguments that involve the relative position of L∞(G) and its

commutant in B(L2(G)). In particular, to show that every Φ ∈ CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))) comes from

a left multiplier would require us to know that L∞(G) ∩ L∞(Ĝ) = C (at least if one is following
the proof of [13, Proposition 3.2]), and we have no proof of this in the Manageable Multiplicative
Unitary setting.

4 Multipliers coming from invertible corepresentations

A corepresentation of G shall be, for us, an element U ∈ L∞(G)⊗B(H) with (∆⊗ ι)(U) = U13U23

(so, we don’t assume that U is unitary). We state the following in a little generality, but note that
it obviously applies to unitary corepresentations. Similar ideas are explored in [4, Section 6].

Proposition 4.1. Let U be a corepresentation of G, and suppose there is V ∈ B(L2(G) ⊗ H)
with V U∗ = 1 (that is, U has a right inverse). For each α, β ∈ H, there is a completely bounded
left multiplier of L1(Ĝ) represented by a = (ι ⊗ ωα,β)(U∗). If U∗ is an isometry (so we may take
V = U) and α = β, then the multiplier is completely positive.

Proof. We have that (∆ ⊗ ι)(U∗) = U∗
23U

∗
13, or equivalently, W ∗

12U
∗
23 = U∗

23U
∗
13W

∗
12. Thus also

V23W
∗
12U

∗
23 = U∗

13W
∗
12, and using that Ŵ = ΣW ∗Σ, it follows that V13Ŵ12U

∗
13 = U∗

23Ŵ12. Thus
define L : L∞(Ĝ) → B(L2(G)) by

L(x̂) = (ι⊗ ωα,β)(V (x̂⊗ 1)U∗) (x̂ ∈ L∞(Ĝ)).

Clearly L is a normal, completely bounded map. Then immediately we see that (L ⊗ ι)Ŵ =
(1 ⊗ a)Ŵ , and it is now easy to see (compare [4, Proposition 2.3]) that L maps into L∞(Ĝ), and
that L is the adjoint of left multiplier on L1(Ĝ), represented by a.

When U∗ is an isometry, V = U and α = β, clearly L is completely positive.

For U, V as in the proposition, we could weaken the condition on U to asking that U ∈
B(L2(G) ⊗H) with W ∗

12U23W12 = U13U23. Then, arguing as in [27, Page 142], we see that U13 =
W ∗

12U23W12V
∗
23 ∈ M(C0(G) ⊗ B0(L

2(G)) ⊗ B0(H)), and so U ∈ M(C0(G) ⊗ B0(H)), in particular,
U is a corepresentation in our sense.

Let us just remark that if also V is a corepresentation, then consider forming Φ as in Section 3,
using the L given as in the proposition. So, for x ∈ B(L2(G)),

1 ⊗ Φ(x) = (ι⊗ ωα,β ⊗ ι)
(
Ŵ13V12Ŵ

∗
13(1 ⊗ 1 ⊗ x)Ŵ13U

∗
12Ŵ

∗
13

)

= (ι⊗ ι⊗ ωα,β)
(
Ŵ12V13Ŵ

∗
12(1 ⊗ x⊗ 1)Ŵ12U

∗
13Ŵ

∗
12

)
.

Now, Ŵ (a⊗ 1)Ŵ ∗ = ΣW ∗(1 ⊗ a)WΣ = Σ∆(a)Σ for a ∈ L∞(G), and so

1 ⊗ Φ(x) = (ι⊗ ι⊗ ωα,β)
(
V23V13(1 ⊗ x⊗ 1)U∗

13U
∗
23

)
= 1 ⊗ (ι⊗ ωα,β)

(
V (x⊗ 1)U∗

)
.

Hence Φ has the same “defining formula” as L.
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4.1 Links with universal quantum groups

Universal quantum groups are constructed in [15] and [22, Section 5]. We write Cu
0 (Ĝ) for the

universal dual of C0(G). For us, the important properties are that:

• There is a coassociative non-degenerate ∗-homomorphism ∆̂u : Cu
0 (Ĝ) → M(Cu

0 (Ĝ)⊗Cu
0 (Ĝ));

• There is a surjective ∗-homomorphism π̂u : Cu
0 (Ĝ) → C0(Ĝ) with ∆̂π̂u = (π̂u ⊗ π̂u)∆̂u;

• There is a unitary corepresentation W ∈ M(C0(G)⊗Cu
0 (Ĝ)) of C0(G) such that (ι⊗ π̂u)W =

W and (ι⊗ ∆̂u)W = W13W12.

• The space {(ω ⊗ ι)W : ω ∈ L1(G)} is dense in Cu
0 (Ĝ).

• There is a bijection between unitary corepresentations U of C0(G) and non-degenerate ∗-
homomorphisms π : Cu

0 (Ĝ) → B(H) given by the relation that U = (ι⊗ π)W.

Note that our W is denoted by V̂ in the notation of [15]; and is the “left analogue” of W in the
notation of [22].

The map π̂∗
u : L1(Ĝ) → Cu

0 (Ĝ)∗ is an isometry and an algebra homomorphism. We know (see
for example [5, Proposition 8.3]) that this identifies L1(Ĝ) with an ideal in Cu

0 (Ĝ)∗, and hence that
members of Cu

0 (Ĝ)∗ induce multipliers on L1(Ĝ). Let us make links with Proposition 4.1.

Proposition 4.2. Let U be a unitary corepresentation of G on H, and let α, β ∈ H. Let π be the ∗-
representation of Cu

0 (Ĝ) on H associated with U . Then the multiplier represented by (ι⊗ωα,β)(U∗)

is given by left multiplication by µ = ωα,β ◦ π ∈ Cu
0 (Ĝ)∗.

Proof. Let L : L∞(Ĝ) → L∞(Ĝ) be the adjoint of the completely bounded left multiplier repre-
sented by a = (ι⊗ ωα,β)(U∗), as constructed in Proposition 4.1. Then (L⊗ ι)(Ŵ ) = (1 ⊗ a)Ŵ , or
equivalently, (ι⊗ L)(W ∗) = (a⊗ 1)W ∗.

Define L†(x̂) = L(x̂∗)∗ for x̂ ∈ L∞(Ĝ), so L† is a normal, completely bounded map on L∞(Ĝ).
For any von Neumann algebra M and X ∈ M⊗L∞(Ĝ), we see that (ι⊗L†)(X∗) = (ι⊗L)(X)∗. In
particular, it follows that (L† ⊗ ι)∆̂ = ∆̂L†, and so L† is the adjoint of a completely bounded left
multiplier of L1(Ĝ), represented by b say. The proof of Proposition 4.1 shows that b = (ι⊗ωβ,α)(U∗).

Given ω̂ ∈ L1(Ĝ), we wish to show that µπ̂∗
u(ω̂) = π̂∗

u(L∗(ω̂)). Let ω ∈ L1(G) and set x =
(ω ⊗ ι)W ∈ Cu

0 (Ĝ). Then

〈µπ̂∗
u(ω̂), x〉 = 〈µ⊗ π̂∗

u(ω̂), ∆̂u((ω ⊗ ι)W)〉 = 〈ω ⊗ µ⊗ π̂∗
u(ω̂),W13W12〉

= 〈ω ⊗ ωα,β ⊗ ω̂, (ι⊗ π̂u)(W)13(ι⊗ π)(W)12〉 = 〈W13U12, ω ⊗ ωα,β ⊗ ω̂〉,

and also

〈π̂∗
u(L∗(ω̂)), x〉 = 〈(ι⊗ π̂u)W, ω ⊗ L∗(ω̂)〉 = 〈W,ω ⊗ L∗(ω̂)〉 = 〈(ι⊗ L)(W ), ω ⊗ ω̂〉.

Now, (ι⊗L)(W ) = (ι⊗L†)(W ∗)∗ = ((b⊗1)W ∗)∗ = W (b∗⊗1), and so, using that b∗ = (ι⊗ωα,β)(U),
we have that

〈π̂∗
u(L∗(ω̂)), x〉 = 〈W (b∗ ⊗ 1), ω ⊗ ω̂〉 = 〈W13U12, ω ⊗ ωα,β ⊗ ω̂〉.

As such x are dense in Cu
0 (Ĝ), the proof is complete.

In particular, taking U = W, we see that every positive functional on Cu
0 (Ĝ) induces a com-

pletely positive left multiplier of L1(Ĝ). We shall prove that the converse is also true, for any
locally compact quantum group G.
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5 Completely positive multipliers

In this section, we study completely positive multipliers of L1(Ĝ). Motivated by Proposition 3.3,
we will first study completely positive normal maps on B(L2(G)). As B0(L

2(G)) is σ-weakly-
dense in B(L2(G)), it suffices to consider completely positive maps B0(L

2(G)) → B(L2(G)). The
following adaptation of the Stinespring construction is surely folklore, but we give the details, as
they are central to our argument. For ξ, η ∈ L2(G), let θξ,η ∈ B0(L

2(G)) be the rank-one operator
α 7→ (α|η)ξ.

Let Φ : B0(L
2(G)) → B(L2(G)) be a completely positive map, and let Φ0 be the normal

extension of Φ to B(L2(G)). Let H be the completion of the algebraic tensor product L2(G)⊙L2(G)
for the pre-inner-product (

ξ ⊗ α
∣∣η ⊗ β

)
H

=
(
Φ(θη,ξ)α|β

)
.

That this is a positive sesquilinear form follows from the fact that Φ is completely positive (compare
with [24, Theorem 3.6]). We shall abuse notation, and continue to write ξ ⊗ α for the equivalence
class it defines in H . Let (ei) be an orthonormal basis of L2(G), and define

V : L2(G) → L2(G) ⊗H ; α 7→
∑

i

ei ⊗ (ei ⊗ α).

This makes sense, as

∑

i

‖ei ⊗ α‖2H =
∑

i

(Φ(θei,ei)α|α) = (Φ0(1)α|α).

Then, for α, β, ξ, η ∈ L2(G),

(V ∗(θξ,η ⊗ 1)V α|β) =
∑

i,j

(θξ,η(ei) ⊗ (ei ⊗ α)|ej ⊗ (ej ⊗ β))H

=
∑

i

(ei|η)(ξ|ej)(Φ(θej ,ei)α|β) = (Φ(θξ,η)α|β).

Thus we have a Stinespring dilation of Φ. Now let (fi) be an orthonormal basis of H , and define
a family (ai) in B(L2(G)) by setting

V (α) =
∑

i

ai(α) ⊗ fi ∈ L2(G) ⊗H (α ∈ L2(G)).

It follows that Φ0(x) =
∑

i a
∗
ixai for each x ∈ B(L2(G)). Furthermore, for ξ, η, α, β ∈ L2(G),

(ξ ⊗ α|η ⊗ β)H =
∑

i

(a∗i θη,ξaiα|β) =
∑

i

(aiα|ξ)(η|aiβ),

and so ξ ⊗ α =
∑

i(aiα|ξ)fi in H .

Proposition 5.1. Suppose further that M is a von Neumann algebra on L2(G), and that Φ is an
M-bimodule map. Then (x⊗ 1)V = V x for each x ∈ M , and ai ∈ M ′ for each i.

Proof. For x ∈ M and ξ, η, α, β ∈ L2(G),

(x∗(ξ) ⊗ α|η ⊗ β)H = (Φ(θη,ξx)α|β) = (Φ(θη,ξ)xα|β) = (ξ ⊗ x(α)|η ⊗ β)H .
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Thus x∗(ξ) ⊗ α = ξ ⊗ x(α) in H . It follows that

V (x(α)) =
∑

i

ei ⊗ (ei ⊗ x(α)) =
∑

i

ei ⊗ (x∗(ei) ⊗ α) =
∑

i,j

ei ⊗ ((x∗(ei)|ej)ej ⊗ α)

=
∑

i,j

(x(ej)|ei)ei ⊗ (ej ⊗ α) =
∑

j

x(ej) ⊗ (ej ⊗ α) = (x⊗ 1)V (α),

remembering that H is the completion of L2(G) ⊗ L2(G). It now follows that xai = aix for each
i, and so as x ∈ M was arbitrary, ai ∈ M ′ for each i.

The previous result (in the more general completely bounded setting) is well-known, see for
example [23, Theorem 3.1] and unpublished work of Haagerup. However, the actual construction
will be central to our arguments.

5.1 Constructing a corepresentation

Now let L be a completely positive left multiplier on L1(Ĝ). Form Φ : B(L2(G)) → B(L2(G)) using
Proposition 3.3, and apply the construction of the previous section to find H and V : L2(G) →
L2(G)⊗H . Fixing an orthonormal basis (fi) for H , we find ai such that Φ(x) =

∑
i a

∗
ixai for each

x ∈ B(L2(G)). By Proposition 5.1, we see that (x⊗ 1)V = V x for each x ∈ L∞(G)′, equivalently,
that ai ∈ L∞(G) for each i.

Proposition 5.2. There is a unique isometry U∗ on L2(G) ⊗H which satisfies

U∗
(
ξ ⊗

∑

i

(aiα|η)fi
)

=
∑

i

(ωα,η ⊗ ι)∆(ai)ξ ⊗ fi,

for all ξ, η, α ∈ L2(G).

Proof. As ξ ⊗ α =
∑

i(aiα|ξ)fi in H , uniqueness of U∗ follows by density. We know that L(x) =

Φ0(x) =
∑

i a
∗
ixai for x ∈ L∞(Ĝ). We now use Proposition 3.3, which tells us that

1 ⊗ Φ(x) =
∑

i

Ŵ (a∗i ⊗ 1)Ŵ ∗(1 ⊗ x)Ŵ (ai ⊗ 1)Ŵ ∗ (x ∈ B0(L
2(G))).

For ξ1, η1, α1, ξ2, η2, α2 ∈ L2(G), we have that

(
ξ1 ⊗ (η1 ⊗ α1)

∣∣ξ2 ⊗ (η2 ⊗ α2)
)
L2(G)⊗H

=
(
(1 ⊗ Φ(θη2,η1))ξ1 ⊗ α1

∣∣ξ2 ⊗ α2

)

=
∑

i

(
Ŵ (a∗i ⊗ 1)Ŵ ∗(1 ⊗ θη2,η1)Ŵ (ai ⊗ 1)Ŵ ∗ξ1 ⊗ α1

∣∣ξ2 ⊗ α2

)

=
∑

i

(
(1 ⊗ θη2,η1)Σ∆(ai)Σξ1 ⊗ α1

∣∣Σ∆(ai)Σξ2 ⊗ α2

)

=
∑

i

(
(θη2,η1 ⊗ 1)∆(ai)α1 ⊗ ξ1

∣∣∆(ai)α2 ⊗ ξ2
)

=
∑

i

(
(ωα1,η1 ⊗ ι)∆(ai)ξ1

∣∣(ωα2,η2 ⊗ ι)∆(ai)ξ2
)
,

using that Ŵ (a ⊗ 1)Ŵ ∗ = Σ∆(a)Σ for a ∈ L∞(G). It follows immediately that U∗ exists and is
an isometry.
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Proposition 5.3. The operator U is a member of L∞(G)⊗B(H), and is a corepresentation, that
is, (∆ ⊗ ι)U = U13U23.

Proof. Let x ∈ L∞(G)′, so for ξ, α, β ∈ L2(G),

U∗(xξ ⊗ (β ⊗ α)) =
∑

i

(ωα,β ⊗ ι)∆(ai)xξ ⊗ fi = (x⊗ 1)U∗(ξ ⊗ (β ⊗ α)).

Thus U∗ ∈ (L∞(G)′⊗C)′ = L∞(G)⊗B(H), and of course the same is true of U .
We shall prove that (∆ ⊗ ι)(U∗) = U∗

23U
∗
13. It is easy to see that this is equivalent to π :

L1(G) → B(H);ω 7→ (ω ⊗ ι)(U∗) being an anti-homomorphism of the Banach algebra L1(G).
However, notice that for ω1, ω2 ∈ L1(G) and ξ, η ∈ L2(G),

(
π(ωξ,η)

∑

i

〈ai, ω1〉fi

∣∣∣
∑

j

〈aj , ω2〉fj

)
=

(
U∗

(
ξ ⊗

∑

i

〈ai, ω1〉fi

)∣∣∣η ⊗
∑

j

〈aj, ω2〉fj

)

=
∑

i

(
(ω1 ⊗ ι)∆(ai)ξ

∣∣η
)
〈ai, ω2〉

=
(∑

i

〈ai, ω1ωξ,η〉fi

∣∣∣
∑

j

〈aj , ω2〉fj

)
.

Thus
π(ω)

(∑

i

〈ai, ω
′〉fi

)
=

∑

i

〈ai, ω
′ω〉fi (ω, ω′ ∈ L1(G)),

and it is now immediate that π is an anti-homomorphism.

We remark that we can view H as being a completion of L1(G), where we identify ω ∈ L1(G)
with

∑
i〈ai, ω〉fi ∈ H . Then π in the above proof (that is, the anti-homomorphism from L1(G) to

B(H) induced by U∗) is simply the map π(ω) : ω′ 7→ ω′ω. We can view this as an analogue of the
construction of a representation of G in the commutative setting, as sketched in the introduction.

5.2 Characterising when U is unitary

We only see how to prove that U is unitary in the locally compact quantum group setting. Notice
that U is unitary precisely when U∗ is surjective. Recall the operator V : L2(G) → L2(G) ⊗ H
which we used to construct the family (ai) at the start of Section 5.

Lemma 5.4. The closed image of U∗ is equal to the closed linear span of {(â ⊗ 1)V (ξ) : ξ ∈
L2(G), â ∈ C0(Ĝ)}. In particular, the image of U∗ contains the image of V , and so U∗UV = V .

Proof. Let ξ1, ξ2, η ∈ L2(G), and let
∑

i ξi ⊗ fi ∈ L2(G) ⊗H , and observe that

(
U∗

(
ξ1 ⊗

∑

i

(aiξ2|η)fi
)∣∣∣
∑

j

ξj ⊗ fj

)
=

∑

i

(
(ωξ2,η ⊗ ι)∆(ai)ξ1

∣∣ξi
)

=
∑

i

(
(1 ⊗ ai)W (ξ2 ⊗ ξ1)

∣∣W (η ⊗ ξi)
)
.

As W is unitary, we see that the image of U∗ is the closed linear span of vectors of the form

∑

i

(ω ⊗ ι)(W )∗ai(ξ) ⊗ fi (ω ∈ L1(G), ξ ∈ L2(G)).
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Now, {(ω⊗ι)(W )∗ : ω ∈ L1(G)} is dense in C0(Ĝ), and so the result follows, as V (ξ) =
∑

i ai(ξ)⊗fi.

As C0(Ĝ) contains a bounded approximate identity, clearly the image of U∗ contains the image of
V . As U∗U is the orthogonal projection onto the image of U∗ (as U∗ is an isometry) it follows
immediately that U∗UV = V .

Remark 5.5. While we started with a completely positive left multiplier L, we immediately used
Proposition 3.3 to extend L to a completely positive map Φ on all of B(L2(G)). Remember that
the representation Φ(x) = V ∗(x ⊗ 1)V is unique (up to unitary isomorphism), as this dilation is
minimal. This is equivalent to the non-degeneracy condition that {(x⊗ 1)V ξ : x ∈ B0(L

2(G)), ξ ∈
L2(G)} is linearly dense in L2(G) ⊗H .

As Φ extends L, we hence have a normal Stinespring representation of L, as L(x̂) = V ∗(x̂⊗1)V .
However, this might not be minimal; indeed, the previous lemma shows immediately (as C0(Ĝ) is
σ-weakly dense in L∞(Ĝ)) that this representation will be minimal if and only if U is unitary.

However, we don’t see a way to use this observation to prove that U is unitary, because
constructing a Stinespring representation directly from L would give a general ∗-homomorphism
π : C0(Ĝ) → B(K) for some K, and not a representation of the special form x̂ 7→ x̂ ⊗ 1 on
L2(G) ⊗H for some H .

When G is a locally compact quantum group, we have a number of ways (all of which ultimately
rely upon invariant weights) to show that U is unitary. Firstly, we give a proof which is similar
in nature to arguments in [13]. This uses that L∞(Ĝ)L∞(G)′ = {x̂x′ : x̂ ∈ L∞(Ĝ), x′ ∈ L∞(G)′}
is σ-weakly dense in B(L2(G)). This is well-known to experts, but self-contained proofs can be
hard to find, so we give a quick sketch. It is easy to adapt the nice presentation in the proof of
[26, Proposition 5.13] to show that the norm closure of X = {âJaJ : â ∈ C0(Ĝ), a ∈ C0(G)} is a
C∗-algebra acting non-degenerately on L2(G). Here J is the modular conjugation given by the left
Haar weight on L∞(G), but also J implements the unitary antipode on the dual by R̂(x̂) = Jx̂∗J
for x̂ ∈ L∞(Ĝ). The proof of [26, Proposition 5.13] uses the Pentagonal equation for W , together
with the fact that (R ⊗ R̂)(W ) = W . Then X ′ = C0(Ĝ)′ ∩ (JC0(G)J)′ = L∞(Ĝ)′ ∩ L∞(G), and
we claim that this is equal to C1. Indeed, if x ∈ L∞(Ĝ)′ ∩ L∞(G) then ∆(x) = W ∗(1 ⊗ x)W =
W ∗W (1 ⊗ x) = 1 ⊗ x, as W ∈ L∞(G)⊗L∞(Ĝ), and so by Theorem 2.1, x ∈ C1 as required. Thus
X ′′ = B(L2(G)), and obviously X ⊆ L∞(Ĝ)L∞(G)′, which completes the argument.

Proposition 5.6. If G is a locally compact quantum group, then U is unitary.

Proof. Suppose that
∑

i ξi ⊗ fi ∈ L2(G) ⊗ H is orthogonal to the image of U∗. By Lemma 5.4,
this means that

0 =
∑

i

(
x̂aiξ

∣∣ξi
)

=
∑

i

(
x̂x′aiξ

∣∣ξi
)

(ξ ∈ L2(G), x̂ ∈ L∞(Ĝ), x′ ∈ L∞(G)′),

using that C0(Ĝ) is strongly dense in L∞(G), and that ai ∈ L∞(G) for each i. As elements of the
form x̂x′ are σ-weakly dense in B(L2(G)), this shows in particular that

0 =
∑

i

(
xaiξ

∣∣ξi
)

=
(

(x⊗ 1)V (ξ)
∣∣∣
∑

i

ξi ⊗ fi

)
(x ∈ B0(L

2(G)), ξ ∈ L2(G)).

However, we know that {(x⊗ 1)V (ξ) : x ∈ B0(L
2(G)), ξ ∈ L2(G)} is linearly dense in L2(G) ⊗H .

Hence
∑

i ξi ⊗ fi = 0, and so U∗ has dense range, as required.
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We can also argue more abstractly, using the results of [3] or [15]. Indeed, for the moment,
suppose that U is any coisometric corepresentation— that is, U ∈ L∞(G)⊗B(H) for some H , that
(∆ ⊗ ι)(U) = U13U23, and that UU∗ = 1. Firstly, we make links with the antipode– this result is
well-known when U is unitary (see [27, Theorem 1.6] and compare with [26, Proposition 5.6]).

Proposition 5.7. For any G, let U ∈ L∞(G)⊗B(H) be a coisometric corepresentation. For all
ω ∈ B(H)∗, we have that (ι⊗ ω)(U) ∈ D(S) and S((ι⊗ ω)(U)) = (ι⊗ ω)(U∗).

Proof. For a locally compact quantum group, we could slice against an orthonormal basis, and
appeal to [17, Corollary 5.34]; for the details of this approach, see [4, Section 5.2].

For general G, we argue as follows. By Proposition 4.1, L(x̂) = (ι⊗ ωα,β)(U(x̂⊗ 1)U∗) defines

a completely bounded left multiplier of L1(Ĝ), which is represented by a = (ι ⊗ ωα,β)(U∗). That
is,

(ι⊗ L)(W ∗) = (a⊗ 1)W ∗.

As in the proof of Theorem 4.2, if we define L†(x̂) = L(x̂∗)∗, then L† is a completely bounded left
multiplier of L1(Ĝ), represented by b = (ι⊗ ωβ,α)(U∗). Then

(b⊗ 1)W ∗ = (ι⊗ L†)(W ∗) = (ι⊗ L)(W )∗.

Let ω̂ ∈ L1(Ĝ); recall (see [27, Theorem 1.5]) that (ι ⊗ ω̂)(W ) ∈ D(S) with S((ι ⊗ ω̂)(W )) =
(ι⊗ ω̂)(W ∗). Hence

(ι⊗ ω̂)(W )b∗ = (ι⊗ L∗(ω̂))(W ) ∈ D(S),

and we see that

S
(
(ι⊗ ω̂)(W )b∗

)
= (ι⊗ L∗(ω̂))(W ∗) = a(ι⊗ ω̂)(W ∗) = aS

(
(ι⊗ ω̂)(W )

)
.

As {(ι⊗ ω̂)(W ) : ω̂ ∈ L1(Ĝ)} is a core for S, this is enough to show that b∗ ∈ D(S) with S(b∗) = a,
that is, (ι⊗ ωα,β)(U) ∈ D(S) with S((ι⊗ ωα,β)(U)) = (ι⊗ ωα,β)(U∗), as required.

To justify this, we work with analytic extensions of the scaling group (τt). Firstly we extend
this to M(C0(G)), say giving a group of automorphisms (τ t); this is all very carefully explained
in [14]. In particular, [14, Proposition 2.42] shows that if y, z ∈ M(C0(G)) are such that for
each x ∈ D(τ−i/2), we have that xy ∈ D(τ−i/2) with τ−i/2(xy) = τ−i/2(x)z, then y ∈ D(τ−i/2)
and τ−i/2(y) = z. As R and S commute, we have just shown that this condition holds with
y = b∗ and z = R(a), at least when x = (ι ⊗ ω̂)(W ) (recall that U ∈ M(C0(G) ⊗ B0(H))
and so a, b ∈ M(C0(G))). The case of general x ∈ D(τ−i/2) = D(S) follows by continuity, as

{(ι⊗ ω̂)(W ) : ω ∈ L1(Ĝ)} is a core for S, and S is a closed operator.

Theorem 5.8. Let G be a locally compact quantum group, and let U ∈ L∞(G)⊗B(H) be a coiso-
metric corepresentation. Then U is unitary.

Proof. Recall (see [15, Section 3] for example) that we may define a dense subalgebra L1
♯ (G) of

L1(G) by setting ω ∈ L1
♯ (G) if and only if there is ω♯ ∈ L1(G) with 〈x, ω♯〉 = 〈S(x)∗, ω〉 for all

x ∈ D(S). Let π : L1(G) → B(H) be the completely bounded map ω 7→ (ω ⊗ ι)(U). As U is
a corepresentation, π is a homomorphism. As in [3, Section 4] define π∗ : L1

♯ (G) → B(H) by

π∗(ω) = π(ω♯)∗. Then, for α, β ∈ H , by the previous proposition,

(π∗(ω)α|β) = (π(ω♯)β|α) = 〈(ι⊗ ωβ,α)(U), ω♯〉 = 〈(ι⊗ ωβ,α)(U∗)∗, ω〉 = (π(ω)α|β).

Thus π = π∗, that is, π restricts to a ∗-homomorphism on L1
♯ (G).
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It follows immediately from [3, Theorem 4.7], that U∗U = UU∗, and so U is unitary. Alter-
natively, assuming that π is non-degenerate, we can invoke [15, Corollary 4.3] to find a unitary
V ∈ M(C0(G)⊗B0(H)) with π(ω) = (ω⊗ ι)(V ) for all ω ∈ L1

♯ (G). As L1
♯ (G) is dense in L1(G), it

follows that V = U , and so U is unitary. We finish by observing that π is indeed non-degenerate,
as U is coisometric. The map π̃ : L1(G) → B(H);ω 7→ π(ω∗)∗ is non-degenerate if and only if
π∗ = π is non-degenerate, and furthermore, π̃(ω) = (ω ⊗ ι)(U∗). Now, if β ∈ H is such that
(π∗(ω)α|β) = 0 for all ω and α, then (U∗(ξ ⊗ α)|η⊗ β) = 0 for all ξ, η and α. As U∗ surjects, this
shows that β = 0, which shows that π∗ is indeed non-degenerate.

The proof of [3, Theorem 4.7] uses [3, Theorem 3.4] which states that if (ai), (bi) ⊆ L∞(G) with∑
i a

∗
i ai < ∞, with b∗i ∈ D(S) for each i with

∑
i S(b∗i )

∗S(b∗i ) < ∞, and such that ∆(a) =
∑

i ai⊗bi
for some a, then there is a completely bounded left multiplier L represented by a. The proof makes
extensive use of invariant weights; it would be interesting to know if similar results are true for
quantum groups coming from Manageable Multiplicative Unitaries.

5.3 Recovering the multiplier

Finally, we show that for any G, we can recover L from the corepresentation U using Proposi-
tion 4.1.

Proposition 5.9. There is α0 ∈ H such that U∗(ξ ⊗ α0) =
∑

i ai(ξ) ⊗ fi for all ξ ∈ L2(G).

Proof. Recall again the map V which satisfies V (ξ) =
∑

i ai(ξ) ⊗ fi for ξ ∈ L2(G). Let the left

multiplier L be represented by a0 ∈ M(C0(G)), so that (1 ⊗ a0)Ŵ = (L ⊗ ι)(Ŵ ) =
∑

i(a
∗
i ⊗

1)Ŵ (ai ⊗ 1). Equivalently,
∑

i(1 ⊗ a∗i )∆(ai) = a0 ⊗ 1. For ω ∈ L1(G) and ξ, η ∈ L2(G), observe
that

(
U∗

(
ξ ⊗

∑

i

〈ai, ω〉fi
)∣∣∣V (η)

)
=

∑

i

(
(ω ⊗ ι)∆(ai)ξ

∣∣ai(η)
)

=
(

(ω ⊗ ι)
(
(1 ⊗ a∗i )∆(ai)

)
ξ
∣∣η
)

= 〈a0, ω〉(ξ|η).

So the Riesz representation theorem for Hilbert spaces provides α0 ∈ H such that

(∑

i

〈ai, ω〉fi

∣∣∣α0

)
= 〈a0, ω〉.

By continuity,

(
U∗(ξ ⊗ α)

∣∣V (η)
)

= (ξ ⊗ α|η ⊗ α0) (ξ, η ∈ L2(G), α ∈ H),

that is, UV (η) = η ⊗ α0 for all η ∈ H . By Lemma 5.4, as U∗UV = V , it follows that V (η) =
U∗UV (η) = U∗(η ⊗ α0) as required.

We now take slices of U against this vector α0, and find that this constructs the multiplier L,
in the sense of Proposition 4.1.

Theorem 5.10. Let L∗ be a completely positive left multiplier of L1(Ĝ). There is a coisometric
corepresentation (unitary if G is a locally compact quantum group) U of G on H such that L is
induced by U , using α0 ∈ H.
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Proof. Form U as above and form α0 as in the previous proposition. It is immediate that αi =
(ι⊗αα0,fi)(U

∗) for all i. So the multiplier constructed by Proposition 4.1 for α0 is L(x̂) =
∑

i a
∗
i x̂ai,

that is, the original L which we started with.

For locally compact quantum groups G, we could equivalently state this in terms of the universal
dual Cu

0 (Ĝ). Indeed, there is a representation π of Cu
0 (Ĝ) on H associated to U , and then L is

given by left multiplication by the positive functional ωα0,α0
◦ π ∈ Cu

0 (Ĝ)∗.

Theorem 5.11. Let G be a locally compact quantum group. There is an isometric, order preserving
bijection between the completely positive multipliers of L1(Ĝ) and Cu

0 (Ĝ)∗+.

Proof. That we have a bijection is immediate from the above work. If µ ∈ Cu
0 (Ĝ)∗+ is a state, then

suppose that Cu
0 (Ĝ) ⊆ B(H) is the universal representation, so µ = ωα,α for some α ∈ H . Then W

can be identified with a member of B(L2(G) ⊗H), and Proposition 4.2 and Proposition 4.1 show
that left multiplication by µ induces the completely positive multiplier L, where in particular,

L(1) = (ι⊗ ωα,α)(WW∗) = 1〈µ, 1〉 = 1.

So ‖L‖ = 1, and hence our bijection is an isometry.
Finally, if µ ≤ λ in Cu

0 (Ĝ)∗+ then form the associated completely positive multipliers Lµ and
Lλ. Let L be the multiplier formed from λ−µ, so by uniqueness, L = Lλ−Lµ. As L is completely
positive, Lλ ≥ Lµ. The converse is simply a case of reversing the argument. Thus our bijection is
order preserving.

6 From left multipliers to double multipliers

Suppose for the moment that G is a locally compact quantum group. As Cu
0 (Ĝ) has a unitary

antipode R̂u which extends R̂ in the sense that π̂uR̂u = R̂π̂u, it is easy to see that actually
π̂∗
u(L1(Ĝ)) is a two-sided ideal in Cu

0 (Ĝ)∗. Combining this with Theorem 5.10 shows immediately
that any completely positive left multiplier L is the “left half” of a completely positive double
multiplier (L,R). We now explore what this means for unitary corepresentations.

Following [22, Section 3.3.3], we define the contragradient corepresentation as follows. Let
U ∈ B(L2(G)⊗H) be a corepresentation of G. Fix an involution JH on H– so JH is an antilinear
isometry H → H with J2

H the identity. For example, if H has an orthonormal basis (fi), then we
can define JH by JH(

∑
i λifi) =

∑
i λifi. Then we define the contragradient corepresentation U c

by
U c = (Ĵ ⊗ JH)U∗(Ĵ ⊗ JH).

Again, Ĵ is the modular conjugation given by the left Haar weight on L∞(Ĝ), but used here because
R(x) = Ĵx∗Ĵ for x ∈ L∞(G). Notice that then

(ι⊗ ωα,β)(U c) = R
(
(ι⊗ ωJHβ,JHα)(U)

)
,

and using this, it is easy to show that U c is a corepresentation. Indeed, we could use this relation
to define U c, which is essentially the construction in [22] (which avoids having to use that R(·) =
Ĵ(·)∗Ĵ). Clearly U c is unitary if U is, and also (U c)c = U .

Let L be a completely positive left multiplier of L1(Ĝ), and form the corepresentation U and
the vector α0 ∈ H , as in the previous sections. Applying Proposition 4.1 to U c, we find that if

L′(x̂) = (ι⊗ ωJH(α0),JH (α0)(U
c(x̂⊗ 1)U c∗) (x̂ ∈ L∞(Ĝ)),
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then L′ is the adjoint of a completely bounded left multiplier on L1(Ĝ), represented by

b = (ι⊗ ωJH(α0),JH(α0))(U
c∗) = R

(
(ι⊗ ωα0,α0

)(U∗)
)
.

An easy calculation (see [4, Section 5]) shows that R̂L′R̂ is a right multiplier, represented by
R(b) = (ι ⊗ ωα0,α0

)(U∗), that is, the same element which L is represented by. So (L, R̂L′R̂) is a
double multiplier.

6.1 Double multiplier implies unitary corepresentation

We shall now reverse the argument of the previous section– we will show that for any G, if (L, T ) is
a completely positive double multiplier, then the corepresentation U constructed for L is a unitary;
the obvious proof strategy is to use the extra information which T provides.

Notice that while Proposition 3.2 shows that all completely bounded multipliers are “repre-
sented”, this fact took a back seat in our arguments, until Proposition 5.9. Here we show how to
use the representing element more directly.

As before, we form the ∗-algebra L1
♯ (G), which is dense in L1(G). Our reference here is [15],

and we note that the elementary properties of L1
♯ (G) can be developed mutatis mutandis for G

coming from manageable multiplicative unitaries.
Recall that the scaling group (τt) is implemented as τt(x) = P itxP−it, where P is a certain

positive injective operator. As R and τt commute for all t, and S = Rτ−i/2, it follows that R
leaves D(S) invariant, and RS = SR. It is then easy to see that R∗ leaves L1

♯ (G) invariant,

and R∗(ω
♯) = R∗(ω)♯ for ω ∈ L1

♯ (G). Given β ∈ D(P−1/2) and ξ ∈ D(P 1/2), we have that for
x ∈ D(S) = D(τ−i/2),

〈x, ωP−1/2β,P 1/2ξ〉 =
(
P 1/2xP−1/2β

∣∣ξ
)

= 〈τ−i/2(x), ωβ,ξ〉 = 〈S(R(x)), ω∗
ξ,β〉 = 〈x,R∗(ω

♯
ξ,β)〉,

and so ωξ,β ∈ L1
♯ (G) with ω♯

ξ,β = R∗(ωP−1/2β,P 1/2ξ).

Proposition 6.1. Let L be a completely bounded left multiplier of L1(Ĝ), represented by a0 ∈
M(C0(G)). For ξ, η ∈ D(P 1/2) and α, β ∈ D(P−1/2), we have that

(
Φ(θξ,η)α

∣∣β
)

= 〈∆(a0), ωα,η ⊗ ω♯∗
ξ,β〉.

Proof. Let ξ0 ∈ L2(G) be a unit vector, let (ei) be an orthonormal basis for L2(G), and let
W (α ⊗ ξ0) =

∑
i αi ⊗ ei and W (β ⊗ ξ0) =

∑
i β

′
i ⊗ ei. For ǫ > 0, we can find a family (βi) in

D(P−1/2) with ∥∥∥W (β ⊗ ξ0) −
∑

i

βi ⊗ ei

∥∥∥ < ǫ.

Using Proposition 3.3, and that Ŵ = ΣW ∗Σ, we see that

(
Φ(θξ,η)α

∣∣β
)

=
(
(ι⊗ L)(W (θξ,η ⊗ 1)W ∗)W (α⊗ ξ0)

∣∣W (β ⊗ ξ0)
)

=
∑

i,j

(
(ωαi,β′

j
⊗ ι)(ι⊗ L)(W (θξ,η ⊗ 1)W ∗)ei

∣∣ej
)

=
∑

i,j

(
L((ωξ,β′

j
⊗ ι)(W )(ωαi,η ⊗ ι)(W ∗))ei

∣∣ej
)
.
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A similar calculation establishes that if

x =
∑

i,j

(
L((ωξ,βj

⊗ ι)(W )(ωαi,η ⊗ ι)(W ∗))ei
∣∣ej

)
,

then ∣∣(Φ(θξ,η)α
∣∣β
)
− x

∣∣ < ǫ‖L‖cb‖α‖‖ξ‖‖η‖.

That is, we may replace (β ′
j) by (βj), at the cost of a small error term.

As (ω ⊗ ι)(W )∗ = (ω♯ ⊗ ι)(W ) for ω ∈ L1
♯ (G), we see that (ωξ,βj

⊗ ι)(W ) = (ω♯
ξ,βj

⊗ ι)(W )∗ =

(ω♯∗
ξ,βj

⊗ ι)(W ∗). This makes sense, as βj ∈ D(P−1/2) and ξ ∈ D(P 1/2). Thus

(ωξ,βj
⊗ ι)(W )(ωαi,η ⊗ ι)(W ∗) = (ω♯∗

ξ,βj
⊗ ι)(W ∗)(ωαi,η ⊗ ι)(W ∗) = (ωαi,ηω

♯∗
ξ,βj

⊗ ι)(W ∗).

Recall that (ι⊗ L)(W ∗) = (a0 ⊗ 1)W ∗, and that (∆ ⊗ ι)(W ∗) = W ∗
23W

∗
13, and so

x =
∑

i,j

(
(ωαi,ηω

♯∗
ξ,βj

⊗ ι)((ι⊗ L)(W ∗))ei
∣∣ej

)

=
∑

i,j

〈(∆(a0) ⊗ 1)W ∗
23W

∗
13, ωαi,η ⊗ ω♯∗

ξ,βj
⊗ ωei,ej〉

=
∑

j

〈(∆(a0) ⊗ 1)W ∗
23, ωα,η ⊗ ω♯∗

ξ,βj
⊗ ωξ0,ej〉.

Let a ∈ D(S)∗, so that
∑

j

〈(a⊗ 1)W ∗, ω♯∗
ξ,βj

⊗ ωξ0,ej〉 =
∑

j

〈aS((ι⊗ ωξ0,ej)(W )), ω♯∗
ξ,βj

〉

=
∑

j

〈S((ι⊗ ωξ0,ej)(W ))∗a∗, ω♯
ξ,βj

〉 =
∑

j

〈(ι⊗ ωξ0,ej)(W )S(a∗)∗, ωξ,βj
〉

=
∑

j

〈W (S(a∗)∗ ⊗ 1), ωξ,βj
⊗ ωξ0,ej〉 =

(
W (S(a∗)∗ ⊗ 1)(ξ ⊗ ξ0)

∣∣∑

j

βj ⊗ ej

)
.

By comparison,
(
W (S(a∗)∗ ⊗ 1)(ξ ⊗ ξ0)

∣∣∑

j

β ′
j ⊗ ej

)
=

(
(S(a∗)∗ ⊗ 1)(ξ ⊗ ξ0)

∣∣W ∗W (β ⊗ ξ0)
)

= 〈S(a∗)∗, ωξ,β〉 = 〈a∗, ω♯
ξ,β〉 = 〈a, ω♯∗

ξ,β〉.

If it so happens that a = (ωα,η ⊗ ι)∆(a0) is in D(S)∗, then we have
∣∣x− 〈a, ω♯∗

ξ,β〉
∣∣ ≤ ǫ‖ξ‖‖S(a∗)‖.

However, observe that for this choice of a,

〈a, ω♯∗
ξ,β〉 = 〈∆(a0), ωα,η ⊗ ω♯∗

ξ,β〉,

and so as ǫ > 0, this gives the required result.
So it remains to show that a = (ωα,η ⊗ ι)∆(a0) ∈ D(S)∗. By [4, Theorem 5.9], we know that

a0 ∈ D(S)∗, and by hypothesis, ωη,α ∈ L1
♯ (G). Thus, for ω ∈ L1

♯ (G),

〈a∗, ω♯〉 = 〈(ωη,α ⊗ ι)∆(a∗0), ω
♯〉 = 〈a∗0, ωη,αω

♯〉 = 〈S(a∗0)
∗, ωω♯

η,α〉 = 〈(ι⊗ ω♯
η,α)∆(S(a∗0)

∗), ω〉.

This is enough to show that a∗ ∈ D(S) with S(a∗) = (ι ⊗ ω♯
η,α)∆(S(a∗0)

∗), see for example [3,
Appendix A.2.].

18



Lemma 6.2. Let L, L′ be completely positive multipliers of L1(Ĝ), represented by a0 and R(a0)
respectively, and use these to define Φ and Φ′. Let H and H ′ be the Hilbert spaces formed as in
Section 5, using Φ and Φ′. Then, for α, β ∈ D(P−1/2) and ξ, η ∈ D(P 1/2),

(
η ⊗ α

∣∣ξ ⊗ β
)
H

=
(
P−1/2β ⊗ P 1/2ξ

∣∣P−1/2α⊗ P 1/2η
)
H′
.

Proof. By the definition of Φ and Φ′, and using the previous proposition,

(
η ⊗ α

∣∣ξ ⊗ β
)
H

=
(
Φ(θξ,η)α

∣∣β
)

= 〈∆(a0), ωα,η ⊗ ω♯∗
ξ,β〉 = 〈∆(R(a0)), R∗(ω

♯∗
ξ,β) ⊗ R∗(ωα,η)〉

= 〈∆(R(a0)), ω
∗
P−1/2β,P 1/2ξ ⊗ ω♯∗

P−1/2α,P 1/2η
〉

=
(
P−1/2β ⊗ P 1/2ξ

∣∣P−1/2α⊗ P 1/2η
)
H′
,

where we used that ∆R = σ(R⊗R)∆, and that R∗(ωα,η) = R∗(ωη,α)∗ = (ω♯

P−1/2α,P 1/2η
)∗.

Lemma 6.3. Let (L, T ) be a completely bounded double multiplier of L1(G), with L completely
positive. Then T is completely positive.

Proof. We shall prove that L′ = R̂T R̂ is completely positive; in fact, we show that Φ′, formed
from L′, is completely positive. Positive elements of Mn(B0(L

2(G))) are sums of matrices of the
form (a∗iaj)

n
i,j=1 where (ai)

n
i=1 ⊆ B0(L

2(G)). By density, we may suppose that

ai =

m∑

k=1

θηi,k ,ξi,k ,

for some (ηi,k) ⊆ L2(G) and (ξi,k) ⊆ D(P 1/2). Then, for (ηi)
n
i=1 ⊆ D(P−1/2), by (the proof of) the

previous lemma,

∑

i,j

(
Φ′(a∗i aj)ηj

∣∣ηi
)

=
∑

i,j,k,l

(
ηj,l

∣∣ηi,k
)(

Φ′(θξi,k ,ξj,l)ηj
∣∣ηi

)

=
∑

i,j,k,l

(
P−1/2ηj ⊗ P 1/2ξj,l ⊗ ηj,l

∣∣P−1/2ηi ⊗ P 1/2ξi,k ⊗ ηi,k
)
H⊗L2(G)

≥ 0.

By the density of D(P−1/2) in L2(G), this shows that (Φ′(a∗iaj)) ≥ 0 in Mn(B(L2(G))), and so Φ′,
and hence also L′, is completely positive.

We now come to the main result of this section.

Theorem 6.4. For any G, a completely positive left multiplier L is given by a unitary corepre-
sentation if and only if L is the left part of a completely bounded double multiplier.

Proof. We need only prove that if L is the left part of a double multiplier, then the U we constructed
before is actually unitary. Form Φ and H for L, and using the previous lemma, find L′ completely
positive, and form Φ′ and H ′. Then there is an anti-linear unitary J0 : H ′ → H which satisfies

J0

(
ξ ⊗ α

)
= P−1/2α⊗ P 1/2ξ (ξ ∈ D(P 1/2), α ∈ D(P−1/2)).

Then the map R0 : B(H) → B(H ′); x 7→ J∗
0xJ0 is an anti-∗-isomorphism.
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Let (fi) be an orthonormal basis for H , so (J0fi) is an orthonormal basis for H ′. We then
define families (ai) and (bi) by V (α) =

∑
i ai(α)⊗ fi and V ′(α) =

∑
i bi(α)⊗ J0fi. As before, this

means that ξ ⊗ α =
∑

i〈ai, ωα,ξ〉fi in H , and similarly for H ′. By Lemma 6.2,

∑

i

〈a∗i , ωξ,α〉J0fi = J0

(∑

i

〈ai, ωα,ξ〉fi

)
= J0(ξ ⊗ α) = P−1/2α⊗ P 1/2ξ

=
∑

i

〈bi, ωP 1/2ξ,P−1/2α〉J0fi =
∑

i

〈bi, R∗(ω
♯∗
ξ,α)〉J0fi.

Form the coisometric corepresentations U and U ′ associated to L and L′, respectively. Let
X = (R ⊗ R0)((U

′)∗) ∈ L∞(G)⊗B(H). Then XX∗ = (R ⊗ R0)(U
′(U ′)∗) = 1, so X is also

coisometric. Let ξ, η ∈ L2(G) be such that ωη,ξ ∈ L1
♯ (G), and set R∗(ωξ,η) =

∑
k ωξk,ηk and

ω♯∗
η,ξ =

∑
k ωξ′k,η

′

k
, the sums converging absolutely. Let α =

∑
i〈ai, ω1〉fi, β =

∑
i〈ai, ω2〉fi in H ,

with ω∗
2 ∈ L1

♯ (G). Then

(
X(ξ ⊗ α)

∣∣η ⊗ β
)

=
∑

k

(
(U ′)∗(ξk ⊗ J0β)

∣∣ηk ⊗ J0α
)

=
∑

k,i,j

(
(U ′)∗(ξk ⊗ 〈bi, R∗(ω

∗♯∗
2 )〉J0fi)

∣∣ηk ⊗ 〈a∗i , ω
∗
1〉J0fi)

)

=
∑

k,i

(
(R∗(ω

∗♯∗
2 ) ⊗ ι)∆(bi)ξk

∣∣ηk
)
〈ai, ω1〉

=
∑

k,i

〈bi, R∗(ω
∗♯∗
2 )ωξk,ηk〉〈ai, ω1〉

=
∑

k,i

〈ai, ω2R∗(ωηk,ξk)♯∗〉〈ai, ω1〉 =
∑

i

〈ai, ω2ω
♯∗
η,ξ〉〈ai, ω1〉

=
∑

i,k

〈ai, ω2ωξ′k,η
′

k
〉〈ai, ω1〉 =

∑

k

(
η′k ⊗ α

∣∣U∗
(
ξ′k ⊗ β

))
.

By density, it follows that for any α, β ∈ H ,

〈(ι⊗ ωα,β)(X), ωξ,η〉 =
∑

k

〈(ι⊗ ωα,β)(U), ωη′k,ξ
′

k
〉 = 〈(ι⊗ ωα,β)(U), ω∗♯

ξ,η〉

= 〈S((ι⊗ ωα,β)(U)), ωξ,η〉 = 〈(ι⊗ ωα,β)(U∗), ωξ,η〉,

where here we used Proposition 5.7. Thus X = U∗, and so U is unitary, as required.

In the light of this result, we could phrase the results of Section 5.2 as saying that for a
locally compact quantum group G, a completely positive left multiplier is always the left part of a
double multiplier. It would be interesting to know if the same is true for completely bounded left
multipliers.

7 Weak∗-continuity of the Junge, Neufang, Ruan repre-

sentation

As explained in Section 3 above, [13] shows that for a locally compact quantum group G, there
is a bijection between the completely bounded left multipliers of L1(Ĝ), say M l

cb(L
1(Ĝ)), and
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CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))). In [11], it is shown that this map is weak∗-weak∗ continuous, at least when

Ĝ has the left co-AP property, see [11, Corollary 4.10] (and [11, Theorem 4.7] for the version for
right multipliers). In this final section of the paper, we show that this weak∗-continuity result is
true for all G.

Firstly, we recall from [11] the proof that M l
cb(L

1(Ĝ)) is a dual space. Proposition 3.2 shows

that we have a map Λ : M l
cb(L

1(Ĝ)) → L∞(G) (actually, this maps into M(C0(G)), but this is
unimportant here). Then [11, Proposition 3.4] shows that if we denote by X the image of Λ,
equipped with the norm coming from M l

cb(L
1(Ĝ)), then the closed unit ball of X is weak∗-closed

in L∞(G). Indeed, giving M l
cb(L

1(Ĝ)) its canonical operator space structure, the closed unit ball
of Mn(X) is weak∗-closed in Mn(L∞(G)). Using this, [11, Theorem 3.5] shows that if we let
Ql

cb(L
1(Ĝ)) be the closure in M l

cb(L
1(Ĝ))∗ of the image of L1(G) under the adjoint of Λ, then

Ql
cb(L

1(Ĝ))∗ is completely isometrically isomorphic to M l
cb(L

1(Ĝ)).
In [5, Section 8] we independently gave an analogous construction of a weak∗-topology on the

space of double multipliers. In fact, the first part of the proof of [5, Proposition 8.11] already works
for merely left multipliers, and then one can apply the abstract result which is [5, Proposition 8.12]
to construct Ql

cb(L
1(Ĝ)). In [5] we found a very “Banach algebraic” way to construct preduals for

double multiplier algebras (see [5, Theorem 7.7] for example), but it seems that at several crucial
points, it really is necessary to work with double multipliers. It would be interesting to know how
to adapt these ideas to one-sided multipliers.

For us, the important point is that if (Lα) is a bounded net in M l
cb(L

1(Ĝ)), then (Lα) is

weak∗-null with respect to Ql
cb(L

1(Ĝ)) if and only if (Λ(Lα)) is weak∗-null in L∞(G).

We next consider the space CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))). Firstly, we consider the larger space CBσ(B(L2(G)))

which can be identified with CB(B0(L
2(G)),B(L2(G))). This in turn is the dual space of B0(L

2(G))⊗̂B(L2(G))∗,
the operator space projective tensor product of the compact operators B0(L

2(G)) with the trace-

class operators B(L2(G))∗. By restriction, we have a weak∗-topology on CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))).

Again, for us the important point is that a bounded net (Φα) in CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))) is weak∗-null

if and only if (Φα(θ)) is a weak∗-null net in B(L2(G)), for each θ ∈ B0(L
2(G)). All this is explained

in [11, Section 4] and the references therein.
The following improves [11, Theorem 4.7] (which is stated for right multipliers) in that we need

make no approximation property type assumptions.

Theorem 7.1. For any G, the mapM l
cb(L

1(Ĝ)) → CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))) is weak∗-weak∗-continuous.

If G is a locally compact quantum group, this correspondence is a weak∗-weak∗-continuous homeo-
morphism.

Proof. Denote by φ the map M l
cb(L

1(Ĝ)) → CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))). To show that φ is weak∗-

continuous, it suffices to show that if (Li) is a bounded, weak∗-null net in M l
cb(L

1(Ĝ)), then the
corresponding bounded net, say (Φi), in CBσ(B(L2(G))) is weak∗-null. When G is a locally compact
quantum group, we know from [13] that φ is a completely isometric isomorphism, and then if φ is
weak∗-continuous, it is automatically a weak∗-weak∗-continuous homeomorphism. This is perhaps
not well-known (in the operator space setting) but see [5, Lemma 10.1] for example.

We fix a bounded weak∗-null net (Li) of left multipliers, with corresponding net (Φi). For each
i let Li be represented by ai ∈ L∞(G). That (Li) is weak∗-null means that (ai) is weak∗-null. As
(Li ⊗ ι)(Ŵ )Ŵ ∗ = (1 ⊗ ai) for each i, we see that (ai) is a bounded net. By Proposition 6.1, we
have that

(Φi(θξ,η)α|β) = 〈ai, ωα,ηω
♯∗
ξ,β〉 (ξ, η ∈ D(P 1/2), α, β ∈ D(P−1/2)).
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As D(P 1/2) and D(P−1/2) are dense in L2(G), we immediately see that

lim
i
〈Φi(θ), ω〉 = 0

for a dense collection of θ ∈ B0(L
2(G)) and ω ∈ B(L2(G))∗. As (Φi) is a bounded net, this is

enough to show that (Φi) is weak∗-null, as required.
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