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ON OVERTWISTED, RIGHT-VEERING OPEN BOOKS

PAOLO LISCA

Abstract. We exhibit infinitely many overtwisted, right–veering, non–
destabilizable open books, thus providing infinitely many counterexam-
ples to a conjecture of Honda–Kazez–Matić. The page of all our open
books is a four–holed sphere and the underlying 3–manifolds are lens
spaces.

1. Introduction

The purpose of this note is to construct infinitely many counterexamples
to a conjecture of Honda, Kazez and Matić from [12]. For the basic notions
of contact topology not recalled below we refer the reader to [4, 6].

Let S be a compact, oriented surface with boundary and Map(S, ∂S)
the group of orientation–preserving diffeomorphisms of S which restrict
to ∂S as the identity, up to isotopies fixing ∂S pointwise. An open book

(a.k.a. an abstract open book) is a pair (S,Φ) where S is a surface as above
and Φ ∈ Map(S, ∂S). Giroux [8] introduced a fundamental operation of
stabilization (S,Φ) → (S′,Φ′) on open books, and proved the existence of
a 1–1 correspondence between the set of open books modulo stabilization
and the set of contact 3–manifolds modulo isomorphism (see e.g. [5] for de-
tails). Honda, Kazez and Matić [11] showed that a contact 3–manifold is
tight if and only if it corresponds to an equivalence class of open books
(S,Φ) all of whose monodromies Φ are right–veering (in the sense of [11,
Section 2]). In [9, 11] it is also showed that every open book can be made
right–veering after a sequence of stabilizations. In [12], Honda, Kazez and
Matić proved that, when S is a holed torus, the contact structure corre-
sponding to (S,Φ) is tight if and only if Φ is right–veering, and conjectured
that a non–destabilizable right–veering open book corresponds to a tight
contact 3–manifold. The Honda–Kazez–Matić conjecture was recently dis-
proved by Lekili [13], who produced a counterexample (S,Φ) with S equal
to a four–holed sphere and whose underlying 3–manifold is the Poincaré
homology sphere.

We shall now describe our examples. Denote by δγ ∈ Map(S, ∂S) the
class of a positive Dehn twist along a simple closed curve γ ⊂ S.
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Theorem 1.1. Let S be an oriented four–holed sphere, and a, b, c, d, e the

simple closed curves on S shown in Figure 1. Let h, k ≥ 1 be integers.

a b

c d

e

Figure 1. The four–holed sphere S

Define

Φh,k := δhaδbδcδdδ
−k−1
e ∈ Map(S, ∂S).

Then,

• The underlying 3–manifold Y(S,Φh,k) is the lens space

L((h+ 1)(2k − 1) + 2, (h + 1)k + 1);

• the associated contact structure ξ(S,Φh,k) is overtwisted;

• Φh,k is right–veering;

• (S,Φh,k) is not destabilizable.

Warning: in the above statement we adopt the convention that the lens
space L(p, q) is oriented 3–manifold obtained by performing a rational surgery
along an unknot in S3 with coefficient −p/q.

We prove Theorem 1.1 in Section 2. The proof can be outlined as follows.
In Proposition 2.1 we use elementary arguments to determine a contact
surgery presentation for the contact 3–manifold (Y(S,Φh,k), ξ(S,Φh,k)), and in
Corollary 2.2 we apply Proposition 2.1 and a few Kirby calculus moves to
identify the underlying 3–manifold Y(S,Φh,k). In Proposition 2.3 we appeal

to calculations from [13] to deduce that the contact Ozsváth–Szabó invari-
ant of ξ(S,Φh,k) vanishes, and we conclude from the fact that Y(S,Φh,k) is a
lens space that ξ(S,Φh,k) must be overtwisted. We show that Φh,k is right–

veering in Lemma 2.4 by observing that this result follows directly from [2,
Theorem 4.3], but can also be deduced imitating the proof of [13, Theo-
rem 1.2], i.e. applying [11, Corollary 3.4]. Finally, we use results from [1, 13]
to conclude that (S,Φh,k) is not destabilizable.

Acknowledgements: I wish to thank Yanki Lekili for pointing out to
me his paper [13]. The present work is part of the author’s activities within
CAST, a Research Network Program of the European Science Foundation.
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2. Proof of Theorem 1.1

Recall that every contact structure has a contact surgery presentation [3].
We refer the reader to [3] for the basic properties of contact surgeries, and
to [14] for the use of the ‘front notation’ in contact surgery presentations,
in particular for the meaning of Figure 2 below.

Proposition 2.1. For h, k ≥ 1, the contact structure ξ(S,Φh,k) has the con-

tact surgery presentation given by Figure 2.

1

k+1

− 1

h

Figure 2. Contact surgery presentation for ξ(S,Φh,k), h, k ≥ 1.

Proof. Figure 3(a) represents an open book (A, f), where A is an annulus
and f is a positive Dehn twist along the core of A. The associated con-
tact 3–manifold is the standard contact 3–sphere (S3, ξst), the annulus A
can be viewed as the page of an open book decomposition of S3, and the
curve κ in the picture can be made Legendrian via an isotopy of the contact
structure, in such a way that the contact framing on κ coincides with the
framing induced on it by the page (see e.g. [5, Figure 11]). The knot κ is the
unique Legendrian unknot in (S3, ξst) having Thurston–Bennequin invariant
tb(κ) = −1 and rotation number rot(κ) = 0. A suitable choice of orienta-
tion for κ uniquely specifies its negative oriented Legendrian stabilization
κ−, which satisfies tb(κ−) = −2 and rot(κ−) = −1. As shown in [5], κ− can
be realized as sitting on the page of a Giroux stabilization (A′, f ′) of (A, f).
This is illustrated in Figure 3(b), assuming the orientation on κ was taken
to be “counterclockwise” in Figure 3(a). Finally, Figure 3(c) shows an open
book (S, f ′′) obtained by Giroux stabilizing (A′, f ′) and containing both κ−
and (κ−)− in S (κ− was also given the “counterclockwise” orientation in
Figure 3(b)). Clearly (S, f ′′) still corresponds to (S3, ξst), and it is well–
known that κ−, (κ−)− are the two Legendrian knots illustrated in Figure 2
(when oriented “clockwise” in that picture). By definition, Φh,k is obtained
by pre–composing f ′′ with k + 1 negative Dehn twists along parallel copies
of κ− and h positive Dehn twists along parallel copies of (κ−)−. Moreover,
if m 6= 0 is an integer, 1

m
–contact surgery along any Legendrian knot λ is

equivalent to m
|m|–contact surgeries along |m| Legendrian push–offs of λ [3].
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Since page and contact framings coincide and by e.g. [5, Theorem 5.7] posi-
tive (negative, respectively) Dehn twists correspond to −1–contact surgeries
(+1–contact surgeries, respectively), it is easy to check that the resulting
contact structure is given by the contact surgery presentation of Figure 2.

�

   (a) (b) (c)
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Figure 3. Determination of the contact surgery presentation.

Corollary 2.2. For h, k ≥ 1, the oriented 3–manifold underlying the open

book (S,Φh,k) is the lens space L((h+ 1)(2k − 1) + 2, (h + 1)k + 1).

Proof. Using the fact that the two Legendrian unknots illustrated in Figure 2
have Thurston–Bennequin invariants −2 and −3, it is easy to check that the
topological surgery underlying Figure 2 is given by the first (upper left)
picture of Figure 4. Two +1–blowups and two inverse slam–dunks give

−2

−2 + 1

k+1
−3− 1

h
−k − 1 0

1

1 −1

h

−2−k − 1−1
h

−2−k − 1−2−2−2

h
︷ ︸︸ ︷

Figure 4. Determination of the underlying 3–manifold.

the second picture, while the third picture is obtained from the second one
by sliding the −1–framed knot over the 0–framed knot and then applying



ON OVERTWISTED, RIGHT-VEERING OPEN BOOKS 5

two +1–blow–downs. The last picture is obtained simply converting the
h–framed unknot in the third picture into the string of −2–framed unknots
via a sequence of −1–blowups and a final +1–blowdown. The last picture
shows that the underlying 3–manifold Y(S,Φh,k) is obtained by performing a

rational surgery on an unknot in S3 with coefficient −p/q, where

p

q
= 2−

1

k + 1−
1

2−
1

. . . −
1

2

=
(h+ 1)(2k − 1) + 2

(h+ 1)k + 1
.

Therefore, according to our conventions Y(S,Φh,k) can be identified with the

lens space L((h+ 1)(2k − 1) + 2, (h + 1)k + 1). �

Proposition 2.3. For h, k ≥ 1, the contact structure ξ(S,Φh,k) is overtwisted.

Proof. By [7, 10] a contact structure on a lens space is either overtwisted or
Stein fillable. Moreover, Stein fillable contact structures have non–zero con-
tact Ozsváth–Szabó invariant [15]. Finally, [13, Theorem 1.3] immediately
implies that the contact invariant of (S,Φh,k) vanishes, therefore ξ(S,Φh,k)

must be overtwisted. �

Lemma 2.4. For h, k ≥ 1, the diffeomorphism class

Φh,k = δhaδbδcδdδ
−k−1
e ∈ Map(S, ∂S)

is right–veering.

Proof. The lemma follows immediately from the statement of [2, Theo-
rem 4.3]. Alternatively, one can imitate the proof of [13, Theorem 1.2].
Indeed, applying [11, Corollary 3.4] to the monodromy Φ1 = δ−k−1

e and a
properly embedded arc γcd ⊂ S disjoint from the curve e and connecting
the components ∂c and ∂d of ∂S parallel to the curves c and d shows that
Φ2 = δdδ

−k−1
e is right–veering with respect to ∂d. Another application of

the corollary to Φ2 and γcd shows that Φ3 = δcδdδ
−k−1
e is right–veering with

respect to ∂c. Moreover, since δc is right–veering with respect to ∂c and
the composition of right–veering diffeomorphisms is still right–veering [11],
Φ3 is right–veering with respect to ∂d as well. Appying the corollary in the
same way to Φ3 and an arc connecting the components of ∂S parallel to the
curves a and b yields the statement of the lemma. �

Proof of Theorem 1.1. Corollary 2.2, Proposition 2.3 and Lemma 2.4 estab-
lish the first three portions of the statement. We are only left to show that
(S,Φh,k) is not destabilizable for every h, k ≥ 1. If (S,Φh,k) were desta-
bilizable, it would be a stabilization of an open book (S′,Φ′), with S′ a
three–holed sphere and Φ′ = τa11 τa22 τa33 , where ai ∈ Z and τi is a positive
Dehn twist along a simple closed curve parallel to the i–th boundary com-
ponents of S′, i = 1, 2, 3. By [1, Theorem 1.2], ξ(S,Φh,k) is tight if and only
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if ai ≥ 0, i = 1, 2, 3. Therefore, by Proposition 2.3 at least one of these
exponents must be strictly negative. But the proof of [13, Theorem 1.2]
shows that when one of the ai’s is negative, any stabilization of (S′,Φ′)
to an open book with page a four–holed sphere is not right–veering. This
would contradict Lemma 2.4, therefore we conclude that (S,Φh,k) cannot be
destabilizable. �
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