Properties of sub-matrices of Sylvester matrices and triangular toeplitz matrices

Yousong Luo, Robin Hill and Uwe Schwerdtfeger
School of Mathematical and Geospatial Sciences, RMIT University, GPO Box 2476V
Melbourne, Vic. 3001, AUSTRALIA
email: yluo@rmit.edu.au, r.hill@rmit.edu.au, u.schwerdtfeger@rmit.edu.au

Abstract

In this note we discover and prove some interesting and important relations among sub-matrices of Sylvester matrices and triangular toeplitz matrices. The main result is Hill's identity discovered by R. D. Hill which has an important application in optimal control problems.

1 Introduction

When studying the optimal state evolution of the dual state in a optimal control problem, R. Hill discovered an interesting relation (see Theorem 1.1) among the sub-matrices of Sylvester matrices and triangular toeplitz matrices, see [2] and [3] for details. If these relations holds then we can formulate the exact pattern how the modified states evolve. In such a sense, the result here is not only an interesting result in linear algebra but also has a direct significant impact in control theory.

We would like also to announce that we have an alternative proof for Theorem 1.1 using the tools given in [1] which is an entirely different approach.

We formulate the problems first. Define the following $m \times m$ lower and upper triangular matrices:

$$
D_{L}:=\left(\begin{array}{ccccc}
d_{1} & 0 & \cdots & \cdots & 0 \\
d_{2} & d_{1} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
d_{m-1} & \ddots & \ddots & \ddots & 0 \\
d_{m} & d_{m-1} & \cdots & d_{2} & d_{1}
\end{array}\right) \quad D_{U}:=\left(\begin{array}{ccccc}
d_{m+1} & d_{m} & \cdots & d_{3} & d_{2} \\
0 & d_{m+1} & d_{m} & \cdots & d_{3} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & d_{m} \\
0 & \cdots & \cdots & 0 & d_{m+1}
\end{array}\right)
$$

$$
N_{L}:=\left(\begin{array}{ccccc}
n_{1} & 0 & \cdots & \cdots & 0 \\
n_{2} & n_{1} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
n_{m-1} & \ddots & \ddots & \ddots & 0 \\
n_{m} & n_{m-1} & \cdots & n_{2} & n_{1}
\end{array}\right) \quad N_{U}:=\left(\begin{array}{ccccc}
n_{m+1} & n_{m} & \cdots & n_{3} & n_{2} \\
0 & n_{m+1} & n_{m} & \cdots & n_{3} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & n_{m} \\
0 & \cdots & \cdots & 0 & n_{m+1}
\end{array}\right)
$$

Consider the Sylvester matrix

$$
S:=\left(\begin{array}{cc}
D_{L} & N_{L} \\
D_{U} & N_{U}
\end{array}\right)
$$

and the lower triangular matrix

$$
D:=\left(\begin{array}{cc}
D_{L} & 0 \\
D_{U} & D_{L}
\end{array}\right)
$$

The entries $d_{1}, d_{2}, \ldots, d_{m}, d_{m+1}$ and $n_{1}, n_{2}, \ldots, n_{m}, n_{m+1}$ are assumed to be nonzero real numbers such that both S and D are invertible. Under such an assumption we define

$$
A:=D^{-1} \quad B:=S^{-1}
$$

If we use A_{T} and B_{T} to denote the matrices consisting of the first m rows of A and B, A_{B} and B_{B} the last m rows of A and B respectively, then we can write

$$
A=\binom{A_{T}}{A_{B}} \quad \text { and } \quad B=\binom{B_{T}}{B_{B}} .
$$

The $m \times m$ sub-matrices of A_{B} consisting of the m consecutive columns of it and starting from the i th column is denoted by A_{i}. There are $m+1$ of them:

$$
\begin{equation*}
A_{1}, A_{2}, \ldots, A_{m}, A_{m+1} \tag{1}
\end{equation*}
$$

Similarly, the sub-matrices of B_{B} consisting of m consecutive columns of it and starting from the i th column is denoted by B_{i} :

$$
\begin{equation*}
B_{1}, B_{2}, \ldots, B_{m}, B_{m+1} \tag{2}
\end{equation*}
$$

Our objective of this paper is to prove these relations, as well as discover and prove some other new relations among those sub-matrices. The main result is the following Hill's identity.

Theorem 1.1 For $1 \leq i<j \leq m+1$ we have

$$
\begin{equation*}
A_{i} B_{j}=A_{j} B_{i} \tag{3}
\end{equation*}
$$

The other results are

Theorem 1.2 Assume that both S and D be invertible. Let A_{i} and B_{j} be the sub matrices defined in (1) and (2). Then, for all $i, j=1, \ldots m+1, A_{i}$ and B_{j} are invertible and the following identities hold

$$
\begin{equation*}
A_{i}{ }^{-1} A_{j}=B_{i}{ }^{-1} B_{j} \tag{4}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
A_{j} B_{j}^{-1}=A_{i} B_{i}^{-1} \tag{5}
\end{equation*}
$$

and
Theorem 1.3 For $1 \leq i<j \leq m+1$ we have

$$
\begin{equation*}
B_{i}^{-1} B_{j}=B_{j} B_{i}^{-1} . \tag{6}
\end{equation*}
$$

As we can easily see that Theorem 1.1 is a consequence of the combination of Theorem 1.2 and 1.3 .

2 Proofs of the results

Now we introduce an $m \times 3 m$ matrix

$$
\begin{equation*}
T:=(\underbrace{-D_{U} D_{L}^{-1}|\overbrace{I_{m}}|-D_{L} D_{U}^{-1}}) \tag{7}
\end{equation*}
$$

where the symbol \mid stands for an augmentation bar. This matrix T plays a very important role in the following argument through out this paper, so we call it "kernel". The $m \times 2 m$ sub-matrices of T consisting of the $2 m$ consecutive columns of it and starting from the i th column is denoted by T_{i} and we have $m+1$ such matrices:

$$
T_{1}, T_{2}, \ldots, T_{m}, T_{m+1}
$$

Obviously $T_{1}=\left(-D_{U} D_{L}^{-1}, I_{m}\right)$ and $T_{m+1}=\left(I_{m},-D_{L} D_{U}^{-1}\right)$. Also, For each $i, j=$ $1,2, \ldots, m+1$, the $m \times m$ sub-matrices of T_{i} consisting of the m consecutive columns of it and starting from the j th column is denoted by $T_{i j}$.
Lemma 2.1 If $K=\left(\begin{array}{cc}D_{L} & 0 \\ D_{U} & D_{L} \\ 0 & D_{U}\end{array}\right)$, then

$$
\begin{equation*}
T K=0 . \tag{8}
\end{equation*}
$$

If $D_{l}=\binom{D_{L}}{D_{U}}$, then for $i=1,2, \ldots, m+1$ we have

$$
\begin{equation*}
T_{i} D_{l}=0 . \tag{9}
\end{equation*}
$$

Proof Obviously

$$
\begin{aligned}
T K & =\left(\begin{array}{lll}
-D_{U} D_{L}^{-1} & I_{m} & -D_{L} D_{U}^{-1}
\end{array}\right)\left(\begin{array}{cc}
D_{L} & 0 \\
D_{U} & D_{L} \\
0 & D_{U}
\end{array}\right) \\
& =\left(\begin{array}{lll}
-D_{U} D_{L}^{-1} D_{L}+D_{U} & D_{L}-D_{L} D_{U}^{-1} D_{U}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0
\end{array}\right) .
\end{aligned}
$$

This immediately implies, by considering the first m columns and the last m columns of TK, that

$$
\begin{equation*}
T_{1} D_{l}=0 \quad \text { and } \quad T_{m+1} D_{l}=0 \tag{10}
\end{equation*}
$$

For $1<i<m+1$ let K_{i} be the m consecutive columns of K starting from the i th column. Then K_{i} is in the form

$$
K_{i}=\left(\begin{array}{c}
O_{i} \\
D_{l} \\
O_{m-i}
\end{array}\right)
$$

where O_{i} is an $i \times m$ zero matrix and O_{i} is an $(m-1) i \times m$ zero matrix. Therefore

$$
\begin{equation*}
T_{i} D_{l}=T K_{i}=0 \tag{11}
\end{equation*}
$$

Proof of Theorem 1.2 We define

$$
\begin{equation*}
D_{r}:=\binom{0}{D_{L}} \tag{12}
\end{equation*}
$$

and hence

$$
D=\left(\begin{array}{ll}
D_{l} & D_{r}
\end{array}\right)
$$

By Lemma (2.1), $T_{i} D_{l}=0$. Then, for $i, j=1, \ldots, m+1$, we have

$$
T_{i}=T_{i} D A=T_{i}\left(\begin{array}{ll}
D_{l} & D_{r}
\end{array}\right) A=\left(\begin{array}{ll}
0 & T_{i} D_{r} \tag{13}
\end{array}\right)\binom{A_{T}}{A_{B}}=T_{i} D_{r} A_{B}
$$

which implies

$$
T_{i j}=T_{i} D_{r} A_{j}
$$

From the definition of T we can see that $T_{m-i+2, i}=I$. Then we have

$$
I=T_{m-j+2} D_{r} A_{j}
$$

that is A_{j} is invertible and

$$
\begin{equation*}
A_{j}^{-1}=T_{m-j+2} D_{r} \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
T_{i} D_{r}=\left(A_{m-i+2}\right)^{-1} \tag{15}
\end{equation*}
$$

By substituting (15) into (13) we obtain

$$
\begin{equation*}
T_{i}=\left(A_{m-i+2}\right)^{-1} A_{B} \quad \text { or } \quad A_{i}{ }^{-1} A_{B}=T_{m-i+2} . \tag{16}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
A_{i}{ }^{-1} A_{j}=T_{m-i+2, j} \tag{17}
\end{equation*}
$$

On the other hand we perform the same process to B as follows. We define

$$
\begin{equation*}
N:=\binom{N_{L}}{N_{U}} \tag{18}
\end{equation*}
$$

By Lemma (2.1) we have, for $i, j=1, \ldots, m+1$,

$$
T_{i}=T_{i} S B=T_{i}\left(\begin{array}{cc}
D_{l} & N
\end{array}\right) B=\left(\begin{array}{ll}
0 & T_{i} N \tag{19}
\end{array}\right)\binom{B_{T}}{B_{B}}=T_{i} N B_{B}
$$

which implies

$$
T_{i j}=T_{i} N B_{j} .
$$

From the definition of T we know that $T_{m-i+2, i}=I$. Then we have

$$
I=T_{m-j+2} N B_{j},
$$

that is

$$
\begin{equation*}
T_{m-j+2} N=B_{j}^{-1} \tag{20}
\end{equation*}
$$

or

$$
\begin{equation*}
T_{i} N=\left(B_{m-i+2}\right)^{-1} . \tag{21}
\end{equation*}
$$

By substituting (21) into (19) we obtain

$$
\begin{equation*}
T_{i}=\left(B_{m-i+2}\right)^{-1} B_{B} \quad \text { or } \quad B_{i}^{-1} B_{B}=T_{m-i+2} . \tag{22}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
B_{i}^{-1} B_{j}=T_{m-i+2, j} . \tag{23}
\end{equation*}
$$

Equations (17) and (23) show that

$$
A_{i}{ }^{-1} A_{j}=B_{i}^{-1} B_{j}
$$

for each $i, j=1,2, \ldots, m+1$. This completes the proof.
Corollary 2.2 We define

$$
M:=\left(\begin{array}{ll}
M_{1} & M_{2}
\end{array}\right)=\left(\begin{array}{cc}
N_{L} & 0 \tag{24}\\
N_{U} & N_{L} \\
0 & N_{U}
\end{array}\right)
$$

Let $H=T M$ and H_{i} be the sub-matrix of H consisting the m consecutive columns of H starting from the ith column. Then

$$
H_{i}=\left(B_{m-i+2}\right)^{-1} \quad \text { or } \quad H_{m-i+2}=B_{i}^{-1}
$$

Proof Consider

$$
H=T M=T\left(\begin{array}{cc}
N_{L} & 0 \tag{25}\\
N_{U} & N_{L} \\
0 & N_{U}
\end{array}\right)=\left(\begin{array}{cc}
T_{1} N & T_{m+1} N
\end{array}\right)
$$

This gives immediately

$$
\begin{equation*}
H_{1}=T_{1} N \quad \text { and } \quad H_{m+1}=T_{m+1} N . \tag{26}
\end{equation*}
$$

Equations (21) then implies $H_{1}=\left(B_{m+1}\right)^{-1}$ and $H_{m+1}=B_{1}{ }^{-1}$. For $1<i<m+1$ let M_{i} be the sub-matrix of M consisting the m consecutive columns of M starting from the i th column. Then M_{i} is in the form

$$
M_{i}=\left(\begin{array}{c}
O_{i} \\
N \\
O_{m-i}
\end{array}\right)
$$

where O_{i} is an $i \times m$ zero matrix and O_{i} is an $(m-1) i \times m$ zero matrix. Therefore

$$
\begin{equation*}
H_{i}=T M_{i}=T_{i} N . \tag{27}
\end{equation*}
$$

Again, equations (21) shows $H_{i}=\left(B_{m-i+2}\right)^{-1}$.
QED
Remark 2.3 This theorem reveals two remarkable features of A_{i} 's and B_{i} 's. First, equation (5) demonstrates the invariance of $A_{i} B_{i}^{-1}$ with respect to i. More precisely we have

$$
A_{i} B_{i}^{-1}=A_{B} N .
$$

Secondly, equation (4) shows that $B_{i}{ }^{-1} B_{j}$ is independent of n_{h} 's which are the elements defining S. This is quite significant as B_{i} 's are sub-matrices of B, which is the inverse of S and therefore depends on n_{h} 's.

Remark 2.4 The proof of this theorem also demonstrates an interesting feature of those A_{i} 's and B_{i} 's. By the definition of T we can see that, for $i, j=1,2, \ldots, m+1$ and $1 \leq k \leq \max \{m-i+1, j\}$ we have

$$
T_{i+k, j-k}=T_{i, j} .
$$

This, together with (17) and (23), shows that

$$
\begin{equation*}
A_{i}^{-1} A_{j}=\left(A_{i+k}\right)^{-1} A_{j+k} \quad \text { and } \quad B_{i}^{-1} B_{j}=\left(B_{i+k}\right)^{-1} B_{j+k} \tag{28}
\end{equation*}
$$

for such k 's that the right hand sides of the above equations are defined. For example,

$$
B_{1}^{-1} B_{2}=B_{2}^{-1} B_{3}=\cdots=B_{m}^{-1} B_{m+1} .
$$

Proof of Theorem 1.3 It is well known that B can be represented by

$$
B=\left(\begin{array}{cc}
N_{U} B_{z} & -N_{L} B_{z} \tag{29}\\
-D_{U} B_{z} & D_{L} B_{z}
\end{array}\right)
$$

where $B_{z}=B_{T}(D, N)^{-1}$ where $B_{T}(D, N)$ is the Bezoutian matrix generated by D and N in the following manner:

$$
\begin{equation*}
B_{T}(D, N)=D_{L} N_{U}-N_{L} D_{U}=N_{U} D_{L}-D_{U} N_{L} \tag{30}
\end{equation*}
$$

For detailed properties of Bezoutian matrices we refer to the comprehensive article [1]. Using this representation we have $B_{1}=-D_{U} B_{z}$ and $B_{m+1}=D_{L} B_{z}$.

Now, by Corollary 2.2, we have

$$
\begin{aligned}
B_{1} H & =B_{1}\left(\begin{array}{ll}
\left(B_{m+1}\right)^{-1} & B_{1}^{-1}
\end{array}\right)=\left(\begin{array}{ll}
B_{1}\left(B_{m+1}\right)^{-1} & I
\end{array}\right) \\
& =\left(\begin{array}{ll}
-D_{U} B_{z}\left(B_{z}^{-1} D_{L}^{-1}\right) & I
\end{array}\right)=\left(\begin{array}{ll}
-D_{U} D_{L} & I
\end{array}\right) \\
& =T_{1}
\end{aligned}
$$

and hence

$$
B_{1} B_{i}^{-1}=B_{1} H_{m-i+2}=T_{1, m-i+2}
$$

This, together with equation (22), implies

$$
B_{1} B_{i}^{-1}=\left(B_{m+1}\right)^{-1} B_{m-i+2}
$$

Putting $k=m-i+1$ in (28) gives

$$
B_{i}^{-1} B_{1}=\left(B_{i+k}\right)^{-1} B_{1+k}=\left(B_{m+1}\right)^{-1} B_{m-i+2}
$$

Therefore $B_{1} B_{i}^{-1}=B_{i}^{-1} B_{1}$ for each $i=1,2, \ldots, m+1$.
Similarly

$$
\begin{aligned}
& B_{m+1} H=B_{m+1}\left(\left(B_{m+1}\right)^{-1} \quad B_{1}^{-1}\right)=\left(\begin{array}{ll}
I & B_{m+1} B_{1}^{-1}
\end{array}\right) \\
& =\left(\begin{array}{ll}
I & D_{L} B_{z}\left(-B_{z}^{-1} D_{U}^{-1}\right)
\end{array}\right)=\left(\begin{array}{ll}
I & -D_{L} D_{U}^{-1}
\end{array}\right) \\
& =T_{m+1} \text {. }
\end{aligned}
$$

This, together with equation (22), proves

$$
B_{m+1} B_{i}^{-1}=T_{m+1, m+2-i}=B_{1}^{-1} B_{m+2-i}
$$

Equation (28) with $k=i-1$ gives

$$
B_{1}^{-1} B_{m+2-i}=\left(B_{1+i-1}\right)^{-1} B_{m+2-i+i-1}=B_{i}^{-1} B_{m+1}
$$

and hence $B_{m+1} B_{i}^{-1}=B_{i}^{-1} B_{m+1}$ for each $i=1,2, \ldots, m+1$. This is equivalent to

$$
\begin{equation*}
B_{i}\left(B_{m+1}\right)^{-1}=\left(B_{m+1}\right)^{-1} B_{i} \tag{31}
\end{equation*}
$$

Now for $1<i<m+1$, by equation (23)

$$
\begin{aligned}
B_{i} H & =B_{i}\left(\begin{array}{ll}
\left(B_{m+1}\right)^{-1} & B_{1}^{-1}
\end{array}\right)=\left(\begin{array}{ll}
B_{i}\left(B_{m+1}\right)^{-1} & B_{i} B_{1}^{-1}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\left(B_{m+1}\right)^{-1} B_{i} & B_{1}^{-1} B_{i}
\end{array}\right) \\
& =\left(\begin{array}{ll}
T_{1, i} & T_{m+1, i}
\end{array}\right)
\end{aligned}
$$

Let t_{j} denote the j th column of T. The observation

$$
\begin{equation*}
T=(t_{1}, \ldots, t_{i-1}, \overbrace{\underbrace{t_{i}, \ldots, t_{m+i-1}}_{T_{i}}, \overbrace{t_{m+i}, \ldots, t_{2 m+i-1}}^{T_{1, i}}}^{T_{m+1, i}}, t_{2 m+i}, \ldots, t_{3 m}) \tag{32}
\end{equation*}
$$

shows that

$$
\left(\begin{array}{cc}
T_{1, i} & T_{m+1, i}
\end{array}\right)=T_{i}
$$

and hence

$$
\begin{equation*}
B_{i} H=T_{i} . \tag{33}
\end{equation*}
$$

From this we obtain $B_{j} B_{i}^{-1}=B_{i}^{-1} B_{j}$.
Corollary 2.5 For $i, j=1,2, \ldots, m+1$ we have

$$
\begin{equation*}
B_{i} B_{j}=B_{j} B_{i} \tag{34}
\end{equation*}
$$

and, for all l such that both B_{i+l} and B_{j-l} are meaningful,

$$
\begin{equation*}
B_{i} B_{j}=B_{i+l} B_{j-l} . \tag{35}
\end{equation*}
$$

Proof The second equation follows from (28) by putting $k=i-j+l$:

$$
B_{j-l} B_{j}^{-1}=B_{j}^{-1} B_{j-l}=\left(B_{j+k}\right)^{-1} B_{j-l+k}=\left(B_{i+l}\right)^{-1} B_{i}
$$

References

[1] Georg Heinig and Karla Rost, Introduction to Bezoutians, Advances and Applications, Vol. 199, 25 - 118, (2010)
[2] Robin Hill, Uwe Schwerdtfeger and Michael Baake, Dynamic programming and duality applied to an optimal control problem, Proceeding of Australian Control Conference, to appear, (2011)
[3] Robin D. Hill, Dual periodicity in l_{1}-norm minimisation problems, Systems \& Control Letters, 57, 489-496, (2008)

