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Abstract

In this note we discover and prove some interesting and important relations

among sub-matrices of Sylvester matrices and triangular toeplitz matrices. The

main result is Hill’s identity discovered by R. D. Hill which has an important ap-

plication in optimal control problems.

1 Introduction

When studying the optimal state evolution of the dual state in a optimal control problem,
R. Hill discovered an interesting relation (see Theorem 1.1) among the sub-matrices of
Sylvester matrices and triangular toeplitz matrices, see [2] and [3] for details. If these
relations holds then we can formulate the exact pattern how the modified states evolve.
In such a sense, the result here is not only an interesting result in linear algebra but also
has a direct significant impact in control theory.

We would like also to announce that we have an alternative proof for Theorem 1.1 using
the tools given in [1] which is an entirely different approach.

We formulate the problems first. Define the following m×m lower and upper triangular
matrices:

DL :=










d1 0 · · · · · · 0
d2 d1 0 · · · 0
...

. . .
. . .

. . .
...

dm−1

. . .
. . .

. . . 0
dm dm−1 · · · d2 d1










DU :=










dm+1 dm · · · d3 d2
0 dm+1 dm · · · d3
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . dm

0 · · · · · · 0 dm+1









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NL :=










n1 0 · · · · · · 0
n2 n1 0 · · · 0
...

. . .
. . .

. . .
...

nm−1

. . .
. . .

. . . 0
nm nm−1 · · · n2 n1










NU :=










nm+1 nm · · · n3 n2

0 nm+1 nm · · · n3

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . nm

0 · · · · · · 0 nm+1










Consider the Sylvester matrix

S :=

(
DL NL

DU NU

)

and the lower triangular matrix

D :=

(
DL 0
DU DL

)

.

The entries d1, d2, . . . , dm, dm+1 and n1, n2, . . . , nm, nm+1 are assumed to be nonzero real
numbers such that both S and D are invertible. Under such an assumption we define

A := D−1 B := S−1.

If we use AT and BT to denote the matrices consisting of the first m rows of A and B,
AB and BB the last m rows of A and B respectively, then we can write

A =

(
AT

AB

)

and B =

(
BT

BB

)

.

The m×m sub-matrices of AB consisting of the m consecutive columns of it and starting
from the ith column is denoted by Ai. There are m+ 1 of them:

A1, A2, . . . , Am, Am+1. (1)

Similarly, the sub-matrices of BB consisting of m consecutive columns of it and starting
from the ith column is denoted by Bi:

B1, B2, . . . , Bm, Bm+1. (2)

Our objective of this paper is to prove these relations, as well as discover and prove some
other new relations among those sub-matrices. The main result is the following Hill’s
identity.

Theorem 1.1 For 1 ≤ i < j ≤ m+ 1 we have

AiBj = AjBi. (3)

The other results are
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Theorem 1.2 Assume that both S and D be invertible. Let Ai and Bj be the sub matrices
defined in (1) and (2). Then, for all i, j = 1, . . .m+ 1, Ai and Bj are invertible and the
following identities hold

Ai
−1Aj = Bi

−1Bj (4)

or equivalently
AjBj

−1 = AiBi
−1. (5)

and

Theorem 1.3 For 1 ≤ i < j ≤ m+ 1 we have

B−1

i Bj = BjB
−1

i . (6)

As we can easily see that Theorem 1.1 is a consequence of the combination of Theorem
1.2 and 1.3.

2 Proofs of the results

Now we introduce an m×3m matrix

T :=

︷ ︸︸ ︷

(−DUDL
−1

∣
∣ Im

∣
∣ −DLDU

−1 )
︸ ︷︷ ︸

(7)

where the symbol | stands for an augmentation bar. This matrix T plays a very important
role in the following argument through out this paper, so we call it “kernel”. The m×2m
sub-matrices of T consisting of the 2m consecutive columns of it and starting from the
ith column is denoted by Ti and we have m+ 1 such matrices:

T1, T2, . . . , Tm, Tm+1.

Obviously T1 = (−DUDL
−1, Im) and Tm+1 = (Im,−DLDU

−1). Also, For each i, j =
1, 2, . . . , m+ 1, the m×m sub-matrices of Ti consisting of the m consecutive columns of
it and starting from the jth column is denoted by Tij .

Lemma 2.1 If K =





DL 0
DU DL

0 DU



, then

TK = 0. (8)

If Dl =

(
DL

DU

)

, then for i = 1, 2, . . . , m+ 1 we have

TiDl = 0. (9)
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Proof Obviously

TK =
(
−DUDL

−1 Im −DLDU
−1

)





DL 0
DU DL

0 DU





=
(
−DUDL

−1DL +DU DL −DLDU
−1DU

)
=

(
0 0

)
.

This immediately implies, by considering the first m columns and the last m columns of
TK, that

T1Dl = 0 and Tm+1Dl = 0. (10)

For 1 < i < m+1 let Ki be the m consecutive columns of K starting from the ith column.
Then Ki is in the form

Ki =





Oi

Dl

Om−i





where Oi is an i×m zero matrix and Oi is an (m− 1)i×m zero matrix. Therefore

TiDl = TKi = 0. (11)

QED

Proof of Theorem 1.2 We define

Dr :=

(
0
DL

)

(12)

and hence
D =

(
Dl Dr

)
.

By Lemma (2.1), TiDl = 0. Then, for i, j = 1, . . . , m+ 1, we have

Ti = TiDA = Ti

(
Dl Dr

)
A =

(
0 TiDr

)
(

AT

AB

)

= TiDrAB (13)

which implies
Tij = TiDrAj .

From the definition of T we can see that Tm−i+2,i = I. Then we have

I = Tm−j+2DrAj ,

that is Aj is invertible and
Aj

−1 = Tm−j+2Dr (14)

or
TiDr = (Am−i+2)

−1
. (15)
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By substituting (15) into (13) we obtain

Ti = (Am−i+2)
−1
AB or Ai

−1AB = Tm−i+2. (16)

This implies that
Ai

−1Aj = Tm−i+2,j . (17)

On the other hand we perform the same process to B as follows. We define

N :=

(
NL

NU

)

. (18)

By Lemma (2.1) we have, for i, j = 1, . . . , m+ 1,

Ti = TiSB = Ti

(
Dl N

)
B =

(
0 TiN

)
(

BT

BB

)

= TiNBB (19)

which implies
Tij = TiNBj .

From the definition of T we know that Tm−i+2,i = I. Then we have

I = Tm−j+2NBj ,

that is
Tm−j+2N = Bj

−1 (20)

or
TiN = (Bm−i+2)

−1
. (21)

By substituting (21) into (19) we obtain

Ti = (Bm−i+2)
−1
BB or Bi

−1BB = Tm−i+2. (22)

This implies that
Bi

−1Bj = Tm−i+2,j . (23)

Equations (17) and (23) show that

Ai
−1Aj = Bi

−1Bj

for each i, j = 1, 2, . . . , m+ 1. This completes the proof. QED

Corollary 2.2 We define

M :=
(
M1 M2

)
=





NL 0
NU NL

0 NU



 . (24)

Let H = TM and Hi be the sub-matrix of H consisting the m consecutive columns of H
starting from the ith column. Then

Hi = (Bm−i+2)
−1 or Hm−i+2 = Bi

−1.
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Proof Consider

H = TM = T





NL 0
NU NL

0 NU



 =
(
T1N Tm+1N

)
. (25)

This gives immediately

H1 = T1N and Hm+1 = Tm+1N. (26)

Equations (21) then implies H1 = (Bm+1)
−1 and Hm+1 = B1

−1. For 1 < i < m+1 let Mi

be the sub-matrix of M consisting the m consecutive columns of M starting from the ith
column. Then Mi is in the form

Mi =





Oi

N

Om−i





where Oi is an i×m zero matrix and Oi is an (m− 1)i×m zero matrix. Therefore

Hi = TMi = TiN. (27)

Again, equations (21) shows Hi = (Bm−i+2)
−1. QED

Remark 2.3 This theorem reveals two remarkable features of Ai’s and Bi’s. First, equa-
tion (5) demonstrates the invariance of AiBi

−1 with respect to i. More precisely we have

AiBi
−1 = ABN.

Secondly, equation (4) shows that Bi
−1Bj is independent of nh’s which are the elements

defining S. This is quite significant as Bi’s are sub-matrices of B, which is the inverse of
S and therefore depends on nh’s.

Remark 2.4 The proof of this theorem also demonstrates an interesting feature of those
Ai’s and Bi’s. By the definition of T we can see that, for i, j = 1, 2, . . . , m + 1 and
1 ≤ k ≤ max{m− i+ 1, j} we have

Ti+k,j−k = Ti,j.

This, together with (17) and (23), shows that

Ai
−1Aj = (Ai+k)

−1
Aj+k and Bi

−1Bj = (Bi+k)
−1
Bj+k (28)

for such k’s that the right hand sides of the above equations are defined. For example,

B1
−1B2 = B2

−1B3 = · · · = Bm
−1Bm+1.
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Proof of Theorem 1.3 It is well known that B can be represented by

B =

(
NUBz −NLBz

−DUBz DLBz

)

(29)

where Bz = BT (D,N)−1 where BT (D,N) is the Bezoutian matrix generated by D and
N in the following manner:

BT (D,N) = DLNU −NLDU = NUDL −DUNL. (30)

For detailed properties of Bezoutian matrices we refer to the comprehensive article [1].
Using this representation we have B1 = −DUBz and Bm+1 = DLBz.

Now, by Corollary 2.2, we have

B1H = B1

(

(Bm+1)
−1

B1
−1

)
=

(

B1(Bm+1)
−1

I
)

=
(
−DUBz(Bz

−1DL
−1) I

)
=

(
−DUDL I

)

= T1

and hence
B1Bi

−1 = B1Hm−i+2 = T1,m−i+2.

This, together with equation (22), implies

B1Bi
−1 = (Bm+1)

−1
Bm−i+2.

Putting k = m− i+ 1 in (28) gives

Bi
−1B1 = (Bi+k)

−1
B1+k = (Bm+1)

−1
Bm−i+2.

Therefore B1B
−1

i = B−1

i B1 for each i = 1, 2, . . . , m+ 1.

Similarly

Bm+1H = Bm+1

(
(Bm+1)

−1
B1

−1
)
=

(
I Bm+1B1

−1
)

=
(
I DLBz(−Bz

−1DU
−1)

)
=

(
I −DLDU

−1
)

= Tm+1.

This, together with equation (22), proves

Bm+1Bi
−1 = Tm+1,m+2−i = B1

−1Bm+2−i.

Equation (28) with k = i− 1 gives

B1
−1Bm+2−i = (B1+i−1)

−1
Bm+2−i+i−1 = Bi

−1Bm+1,
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and hence Bm+1B
−1

i = B−1

i Bm+1 for each i = 1, 2, . . . , m+ 1. This is equivalent to

Bi(Bm+1)
−1 = (Bm+1)

−1
Bi. (31)

Now for 1 < i < m+ 1, by equation (23)

BiH = Bi

(

(Bm+1)
−1

B1
−1

)
=

(

Bi(Bm+1)
−1

BiB1
−1

)

=
(
(Bm+1)

−1
Bi B1

−1Bi

)

=
(
T1,i Tm+1,i

)
.

Let tj denote the jth column of T . The observation

T = (t1, . . . , ti−1,

T1,i

︷ ︸︸ ︷

ti, . . . , tm+i−1,

Tm+1,i

︷ ︸︸ ︷

tm+i, . . . , t2m+i−1
︸ ︷︷ ︸

Ti

, t2m+i, . . . , t3m) (32)

shows that
(
T1,i Tm+1,i

)
= Ti,

and hence
BiH = Ti. (33)

From this we obtain BjBi
−1 = Bi

−1Bj . QED

Corollary 2.5 For i, j = 1, 2, . . . , m+ 1 we have

BiBj = BjBi, (34)

and, for all l such that both Bi+l and Bj−l are meaningful,

BiBj = Bi+lBj−l. (35)

Proof The second equation follows from (28) by putting k = i− j + l:

Bj−lBj
−1 = Bj

−1Bj−l = (Bj+k)
−1
Bj−l+k = (Bi+l)

−1
Bi.
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