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Abstract

This paper addresses both necessary and relevant sufégieatnum conditions for a
variational problem defined by a smooth Lagrangian, inva\higher derivatives of
several variable vector valued functions. A general foatiah of first order necessary
extremum conditions for variational problems with (or vath) constraints is given.
Global Legendre second order necessary extremum corgliienprovided as well
as new general explicit formula for second order sufficietiteanum condition which
does not require the notion of conjugate points as in thehlacdficient condition.
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1 Introduction

The calculus of variations encompasses a very broad rangetbfematical applications.
The methods of variational analysis can be applied to amemas variety of physical sys-
tems, whose equilibrium configurations inevitably minimiar maximize a suitable func-
tional which typically represents the potential energyhaf system. The critical functions
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are characterized as solutions to a system of partial difteal equations, known as the
Euler-Lagrange equations associated with the variatipriatiple. Each solution to the
problem specified by the Euler-Lagrange equations subjemppropriate boundary condi-
tions is thus a candidate for extrema of the functional dedithe variational problem. In
many applications, the Euler-Lagrange boundary valuelpmotsuffices to single out the
physically relevant solutions, and one does not need tes e the considerably more
difficult second variation.

In general, the solutions to the Euler-Lagrange boundahlyevaroblem are critical
functions for the functional defining the variational prednl, and hence include all (smooth)
local and global extrema. The determination of which sohgiare genuine minima or max-
ima requires further analysis of the positivity propertshe second variation. Indeed, as
stated in[[8], a complete analysis of the positive definissnef the second variation of
multi-dimensional variational problems is quite complézh and still awaits a completely
satisfactory resolution! This is thus a reason for whictosédcorder conditions of extrema
are customary established only for functional whose Lagjeaninvolves dependent vari-
ables together with at most their first order derivative3[81,[1,9]. The aim of this paper
is to give some satisfactory expressions of the second @xteemum conditions for a
functional whose Lagrangian also depends on the higher det@atives of the dependent
variables.

2 Brief review of known results

2.1 Holonomic constraints

We consider functional of the form
7 (u) = /abF (x,u(x),u'(x)) dx, (2.1)
whereu € 2 (T,RN) , andl =]a,b[. We demand that satisfies a holonomic constraint
g(xu(x)) =0, a<x<h. (2.2)

Theorem 2.1([9]). Suppose that € ¢ (T x Q) , whereQ is an open set ilR?N. Suppose
that ge ¢2 (I x W) , where WC RN and thatdug(x, u) # 0 on the set where(g, u(x)) = 0.
Suppose that & ¢ (T,W) is a local extremum for , subject to the holonomic constraint
in (2.2). Then there is a functioke ¢ (T) such that u is an extremum of the functional

b
(1) = [ [F (xu00.1/ () +A00g0eu0x)] dx @3)
REMARK. The Lagrangian of the functiongl in (2.3) is
G(x,u,u') =F(x,u,u’) +A(X)g(x, u)

and the Euler-Lagrange equations are

d .
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2.2 Nonholonomic constraints

Theorem 2.2([9]). Suppose that Fand d for j = 1,2,---.m belong toc® (T x Q,R),
whereQ € RN and that uc ¢?([a,b],RN) is a local extremum of the functional

b
7 (u) :/ F (%, u(x),u (x)) dx, (2.4)
a
subject to the nonholonomic constraints
gj(X,U(X),U/(X)):O, j:l>2>"'7m-

Suppose that the constraints together with u satisfy thevialg properties.

(1) The matrix _
g’ (x, u, U’)>

Dug(x, u, U/) = < ouk

has rank m fora< x < b;

(2) The only solutions to the system of differential equmetio
: i gl OH] B
le|:<guk_$(gu/k> uj_gu/ka} —0, k_]_’z’,“’N
are P (x) = f2(X) = --- = pm(X) = 0.

Then there exist functiong, Ay, - - - , Ay, defined orja, b] such that u is an extremum for the
functional with Lagrangian

m .
G(x,u,u) = F(xuu)+ 3 Aj(x)g’ (x u,u).
=1

2.3 The Legendre condition

Theorem 2.3(]9]). Suppose that u is a local, weak minimum for the functional

b
F (u) :/ F (%, u(x),u (x)) dx
a
Then N
Z Fuivk (X u(x),U' (x)) E1Ek >0, va<x<b, V& cRW. (2.5)
jl=1
The inequality in[(2.b) is called the Legendre condition. tAs theorem says, it is a

necessary condition far to be a weak minimum. The Legendre condition says that the
matrix

Fu/u/ = (Fulj u/k)
must be positive semi-definite at every point along a minimum
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2.4 The Jacobi conditions
Consider the functional .
7 (W= [ F(xu.u() dx (2.6)
a

whereu = (u!,u?,--- ,u") . Introduce the matrices

Fiw= (Fiw), Fur=Fiw), Few=Fyw),

1 1 d
P= EFu'uH Q= E (Fuu_ &Fuu> .

Definition 2.4. Let

ht = (hug,hig, -, han)
h? = (ha1,haz, -, han)

: (2.7)
h" = (hnla hn2> T ahnn)
be set ofn solutions of the linear equations called the Jacobi system
—E(PH)-FQh:O (2.8)
dx

associated with the functional (2.6), where thh solution satisfies the initial conditions
hk(@) =0, hi(a) =1, K (a) =0, k#i,i,k=12,---,n.

Then the poing, (a+# a), is said to be conjugate to the pomtif the determinant

hll(X) hlz(X) cee hln(X)
h21(X) hzz(X) cee h2n(X)
hnl-(x) hn2(X)  --+ han(X)

vanishes fox = a.

Theorem 2.5(Jacobi necessary conditionl [3])f the extremum u corresponds to a mini-
mum of the functional{2.6), and if the matrix®u(x), U (x)) is positive definite along this
extremum, then the open interjal b[ contains no points conjugate to a

Theorem 2.6(Jacobi sufficient condition [3])Suppose that for some curygvith equation
u=u(x), the functional[(2.6) satisfies the following conditions:

(1) The curveyis an extremum, i.e., satisfies the system of Euler equations

d .
Fui—& v =0, 1=212n;



(2) Alongy the matrix
P(X) = 5P (X, U(X), U ()
is positive definite;
(3) The intervalla,b] contains no points conjugate to the point a

Then the functional(216) has a weak minimum for the cyrve

In this work, we give an answer to the following question: Wda the results of the
four above theorems become when the vector-valued functi:@n(ul,--- ,um) depends
on several variables= (x%,---,x") and/or the Lagrangian of the used functional includes
higher order derivatives af? To our best knowledge of the literature, in this generakbsit
tion, there is not explicit method available to determing khown extremum is a minimum,
a maximum, or a saddle point. To fill this gap and provide aablgt answer to our main
guestion, we establish a regular connection between tlemde@riation of a functional and
an operational square matrix. Therefore, by the well knosgult of the matrix theory, ex-
plicit formula for the necessary and sufficient extremumdittons can be derived without
making use of the notion of conjugate points as in the Jadmmrems. Furthermore, the

matricesk,,, F,y andFyy used in the above Legendre and Jacobi conditions are deduced

as submatrices of a general matrix associated with the da@oation.

3 Notations for partial derivatives of functions

ConsiderX, ann-dimensional independent variable space,ldndnm-dimensional depen-
dent variable space. Let= (x!,--- ,x") € X andu= (u},--- ,u™) € U. We define the space
UGS, seNas:

m s
u® = {u(s) LU =& (@uék)> }, (3.1)
=1 \k=0
whereuék) is the
Pk = < n+t_ 1 ) -tuple (3.2)

of all distinct k-order partial derivatives afi. The ng) vector components are recursively
obtained as follows:

) uéo) =ul anduél) = (u)‘(l,u)’@,--- ,u){n) .

i) Assume thaugk) is known.

~ Form the tuplesi, ., (1) :

il _ J J J _ .
u(k+1)(|) - <axlu(k)[|]7 axzu(k)[l]ﬂ’” aaxnu(k)[|]> , =12 » Pis
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Whereugk) [I] is thel-th component of the vectmjék>.

— Construct, by iteration, the tuple#km(l) : ng+1)(1) = U_§k+1>(1) and forl =
~

2,3,---,px, the vectord’ >(I) -is nothing but the tuplej(kH)(I) in which all

(k+1
components already presenﬁéu+1>(i), i=12---,1 -1 are excluded.

— Finally, form the vector

i _ (i i i
Uk = (u(k+1)(1)7u(k+1)(2)7 e 7U(k+1)(pk)> :
As a matter of clarity, let us immediately illustrate thimstruction by the following.

Example 3.1. o Forn=2,x= (x},x?) and we have:

. 0 0 -
uéz)(l) = <ﬁuél)[1]7ﬁuél)m> = (ujleauilxz)7
0@ = (a2 gptiy[2) = (U the)

0, (1) =0, (1) = (uéxl,uj(l)@) T2 = (U)’(le,uéxz> _ (UJZXZ) ,
Uy = (Tl (1),85)(2)) = (Uhs Ul e )
e Forn=3,x= (x!,x?,x3) and the same scheme leads to
u(z) - (uéxly u)j(lxb u)j(lx.’ia uéxb u)j(zx37 U£X3> )

i iy i i i i i i i
u(3) = (u3xl7 u2X1X2’ u2X1X3’ uX12X2’ uX1X2X3’ uX12X3’ U3X2, u2X2X3’ uX22X3’ U3X3> ’
for k =2 andk = 3, respectively.

An elementu®, in the spac&) ), is the

n+s
qS:m(l+ p1+ p2+_|_ps):m< s >-tup|e (33)
defined by
U(s) = (U:(I'O)7U:(I'1)a"’ 7u%s)7u(20)7u(21)7"' 7u(25)’”. ,UE%),UE?_),'” ,U?;)> ’ (34)

We denote byX x U (9, the total space whose coordinates are denotegkly® ), encom-
passing the independent variablesnd the dependent variables with their derivatives up to
orders, globally denoted by(®.

In the sequel, gs-upleu'® is referred to[(314), whereas the integpgsindgs are defined
by (3.2) and[(3.B), respectively.



4 First variation and necessary conditions for local extrena

This section contains two parts. First, we briefly recallfulsdefinitions and properties
used in the sequel. Then, we analyze the variational prom&mconstraints, and give
a general formulation of the first order necessary extremaondition which is rigorously
proved.

4.1 Variational problem without constraints: definitions and main results

Consider a functional of the form
7 (u) = / L (x, u(s)(x)) dx (4.1)
A

whereA is a connected subset ¥ Let Q be an open subset bK®. We assume that the
functionL, usually called the Lagrangian of the functiormal is defined on the open subset
A x Qof X xU® and is continuous in all its+ gs variables so that the variational integral
(4.1) exists. The problem consists in finding conditiong tha functionu must satisfy in
order to be a minimum or maximum of the functiorral requiring thalL € cSt1(A x Q,R).
For the integral in[(4]1) be defined, it is necessary thatuhetfonu € ¢5(A,U), where

(<+m}

In addition, L(x,ut®(x)) must be defined for ak € A. This means thaa(® (x) € Q for all
x € A\. Such a functioru is said to be admissible for the functional

S Pk

cg(ANU) =< pe cS(A\U) sup|yp
(A U) { 1%2

=1 XeN

Definition 4.1. A function u which is admissible for the functiona is a global minimum
for 7, if 7 (u) < 7 (v) for every admissible function

Definition 4.2. A function u which is admissible for the functional is a global maximum
for 7, if 7 (v) < # (u) for every admissible function

A function which is either a global minimum or a global maximus called a global
extremum. To come up with the definition of local extrema fdumctional, we need to
have a measure of distance between two functions.

Definition 4.3. Let@ e ¢3(A,U). We define the 0-norm ap by

lello = z suplg! ()

=1 xeN

and thes-norm of @ by
S P«

m
= Su
fols=3 5 5 suplo

=1 XeEN

Clearly, fors> 0 the numberg@— Y||o and||@— ||s provide quite different measures
of the distance betweapandy. These measures lead to two different definitions of local
minima.



Definition 4.4. A function u which is admissible for the functionat is a weak local
minimum for # if there is ane > 0 such thatr (u) < # (v) for all admissible functions
satisfying||v— ul|s < €. uis a strict weak local minimum i (u) < 7 (v) for all suchv with

V£ U.

Definition 4.5. A function u which is admissible for the functionat is a strong local
minimum for # if there is ane > 0 such thatr (u) < # (v) for all admissible functions
satisfying||v—u||o < €. u is a strict strong local minimum ¥ (u) < # (v) for all suchv
with v # u.

Definition 4.6. A function u which is admissible for the functionat is a weak local
maximum for# if there is ane > 0 such thatr (u) > # (v) for all admissible functions
satisfying||v— ul|s < €. uis a strict weak local maximum if (u) > 7 (v) for all suchv with

V# U

Definition 4.7. A function u which is admissible for the functionat is a strong local
maximum for# if there is ane > 0 such thatr (u) > # (v) for all admissible functions
satisfying||v— ul|o < €. uis a strict strong local maximum if (u) > # (v) for all suchv
with v #£ u.

A function which is either a weak local minimum or a weak locaximum is called a
weak local extremum. A function which is either a strong lonaimum or a strong local
maximum is called a strong local extremum.

Without loss of generality, we can assume that ], ]a’,b'[ with a' < b'.

Definition 4.8. A function ¢ € ¢(A,U) is said to have compact support Anif there is
g > 0 such thatp(x) = 0 for allx= (X2, ---,x") with X' € ]a,a +¢&[ orx € |b'—¢,b'[ for

somei € {1,2,--- ,n}. The set of all functions which are infinitely differentiatded have
compact support ik is denoted by g’ (A,U).

Lemma 4.9. Let f € ¢(A,R). If [, f(x)p(x)dx = 0for all P € ¢y (A,R), then f(x) =0
forall x € A.

Given an admissible function € ¢3(A,U) and anyg e ¢y’ (A,U), there is argg > 0
such that the functiom = u+t@is admissible for allt| < €o. Therefore, the function

D) = 7 (U+te) = /A L(x,u<5>(x)+t<p<5>(x)) dx (4.2)

is a well defined function of for |t| < 5. Throughout this papei stands for such a
number.

Assume now thati € ¢3(A,U) is a local extremum of . We may as well assume that
uis a local minimum. We have(t) = # (u+t@) > 7 (u) = ®(0) for |t| < &g, i.e. Ois a
local minimum for®. Suppose that € c1(A x Q,R) implying that® is also continuously
differentiable and we must have

@'(0) =0. (4.3)
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We can calculat@’ by differentiating [[4.2) with respect taunder the integral sign. Doing
so and using the chain rule we get

o) = Sruitg

= dt/ xu )+t ())dx

= / (X) +t@¥(x ())dx

DR A i),
- //\J—lk—Oth(pék)[h](X) au()[h] o @4
In particular at = 0 we get
DS oL (x,u¥ (x))
_ /A glk;hzlcpgk)[h](x) o dx (4.5)

(k)

Definition 4.10. The first variation ofF in a neighborhood dfi in the directiongis defined
by
OF (U+tg@) = P'(t). (4.6)

In particular, the first variation of atu in the directiongis expressed by

OF (u,@) = ¥'(0). 4.7)

Notice that the first variation at is defined in Definitio_4.10 whethar is a lo-
cal extremum or not. However, if is a local extremum off , then by [4.8) and[(417),
o7 (u,@) = 0. We have proved the following first order necessary conditiora local ex-
tremum of# .

Proposition 4.11. Suppose that k& ¢ (/\ x Q,R), and that ue ¢3(A,U) is a local ex-
tremum for the functiona¥ (u) = [, L (x,u®(x)) dx Then

dF (u,) =0 (4.8)
forall e cg (AU).

The condition in[(4.B) is called the weak form of the Eulegtange equations. A
functionu which satisfies[(418) is called the weak extremungof
Now assume that the Lagrangiane cS1(A x Q,R), andu € ¢25(A,U). Using the
divergence theorem t(o succ)essively integrate by parth (48 all derivative actions o/
aL(x,ul® (x)

are now moved mte—T and taking into account thai € o (A, R), we get

B m [ s K Pk OL(X,U(S)(X)) .
7“@A§(%(”ZXmewf]@m“ @9)

(k)



If uis a weak local extremum, theln (4.9) is equal to O foxgadl c5’(A,U). In particular if
we takep= e, wherey € c{ (A, R) andé€ is thel-th vector of the canonical basis &f",
then we get

B B s 2oL (x,u¥ (x))
0=257 (uyé) = /A (kzo(l) h;<7au'(k)[h] . [h | w(x)dx

forall g € ¢’ (A,R). By Lemmd 4.9, we see that

S B (oL (x,ul® (x)) )
—1)k —=" ) [h=0
kZO( ) h;( oujyy [Nl (k)[ |

forallxe Aandl =1,2,--- ;m. Thus, we have proved the following theorem.

Theorem 4.12. Suppose that £ cS™(A x Q,R), and ue ¢25(A,U) is a local extremum
for the functionalr (u) = [, L(x,ul® (x))dx Then

P (oL (x,u®(x)) )
(1)K <7 h =0 (4.10)
"; 2 )

h=1 augk) [h]

forallxe Aand j=1,2,--- . m.

The equationd (4.10) are called the Euler-Lagrange eqsatié solution to the Euler-
Lagrange equations is called an extremum for the functignal

4.2 Variational problem with constraints: main results

We want to find extrema for the functional

F(u) = / L (x, u(sl)(x)> dx (4.11)
A
subject to constraints of the form
F <x, u(52>(x)> —0 j=12--..n (4.12)
for all x € A. Let Q; be open subsets &f(S), i = 1, 2 such that_ is defined onA x Q4

andF; is defined om\ x Q,. Constraints of type (4.12) are called holonomic constsaiint
s, = 0, and nonholonomic constraintssf > 1. In this subsection, we examine these types
of constrained variational problems.

Form=n1, i.e. the number of equations in the system formed by the min&t is
equal to the number of unknowns, we exploit the fact that suslgstem appears for the
Euler-Lagrange equations of some variational problem8][& prove our next result.
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Theorem 4.13. Suppose that k ¢1(A x Qq,R), Fj € c2(A x Qz,R) and that the
function ue C@S(A,U), s=maxs,S), verifies the constraints (4.112) and is a local ex-
tremum for the functionalf defined by[(4.11). If a functioh(x) = (A}(x),--- ,AM(x))
defined om\ is solution of the system

Sz pk (a [Sa A ()R (% U ()]

k
Z(_l) Z auj [h]

) =0 j=12---,m (4.13)
k=0 h=1 (K) )

then u is a local extremum for the functional whose Lagrangga
m
G(xu¥x)) =L(xux))+$ANXR (x,u®(x). (4.14)
(11209) =L (xu®09) + 3 N0 (xf=00)
Proof. Consider the variational problem whose Lagrangian is define
m
G (x, u® (x),v(x)) =L (x, u(sl)(x)> +5 V(0F (x, u(SZ)(x)) , (4.15)
=1

wherev(x) = (V}(x),--- ,v"(x)) is viewed as dependent variable. The Euler-Lagrange equa-
tions of this variational problem are

PJ _ S (_1)k Pk <0G/ (X;ju(js) (T])av(x)) ) [h] — O, (416)
s P (aG' (x,u®(x),v(X)) )
=S5 (-1 : h] =0, 4.17
Qj k:O( ) hzl ( ank) h . [h] (4.17)

j=1,2,---,m. Taking into accoun{(4.15), the expression®pandQ; give

Pi=Pj1+Pj2 Qj=0Qj1+Qj2

Pk (s1)
(k)

where

o = 6ugk) [h]

& k & (a [2{11 VI (X)FI (X> U(SZ)(X))} ) [h];
(k)

Pia=> (-1

2 e OUék> [h]
g (o)
o Y oL} u—x) hl;
O kZo( ) th( vy ] (k)[ |

ey a[zrllv'<x>ﬁ(x,u<sz><x>)]>
R Z( gy [ o

h=1 (

TheP; 1 are expressions defining the Euler-Lagrange equationsofathational prob-
lem (4.11). ThusPj; = 0 sinceu is a local extremum for the functional . According
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to the relations[(4.13), the expressid?s vanish wherv(x) = A(x). The expression®j 1
vanish since the Lagrangiandoes depend neither @mor on its derivatives.
Forj=12,---,m Qj2 =F; (x, u(52>(x)) and therefore vanish since the functian
satisfies the constraints (4112).
Finally, the Euler-Lagrange equatioris (4.16)-(4.17) armmatically verified if and
only if v(x) = A(X). This proves that is also a local extremum for the functional whose
Lagrangian i5' (x,u® (x),A(x)) = G (x,u®(x)) . O

Form' < m, we redefine the problem in the following manner: Find theaxt for the
functional

7 (u,0) = /A L (%), 8 (x)) dx (4.18)

subject to the constraints
F (x, u<52>(x),a<52>(x)) —0  j=12,--,m (4.19)

for all x € A, whereli(x) = (T}(x),---,0™(x)) € U, U being anm-dimensional space. Let
Q; be open subsets 6f($) andQ; be open subsets &fS), i = 1, 2 such that. is defined
on A x Q1 x Q; andF; is defined om\ x Q, x Q,. Here, the number of equations in the
system formed by the constraints is lower than the numbenkrfiowns, i.e. the constraints
form an under-determined system. Such a system appearefiuter-Lagrange equations
of some variational problemsl[2]. We then prove the follagviesult.

Theorem 4.14. Suppose that ke ¢%1(A x Q; x Q1,R), Fj € %A x Qp x Q2,R)
and that the function(u,d) € ¢2(A,U) x c25(A,U), s = maxs;,s), verifies the con-
straints [4.19) and is a local extremum for the functiomatefined by[(4.18). If a function

()\(x),)\(x)) defined om\ with
AX) = (AY(X),--- ,AM(x)) andA(x) = (Xl(x),'-- ,Xm(x)) , is solution to the system

s Pk (0 [ZImzl (7\' + zl:mzlxg R ()(7 u@z%ﬂ@z))}

—1)k : h| = 0; 4.20
Zo( ) th 6uék> [h] (k)[ ] ( )
s  (alsm. (AlLsm u®) ()

Zﬁ—l)k% ( 25 +Zl_i-J>H(XU ") h=0  (4.21)
K= H=1 o [h

j=1,2,---,m j=1,2,---,M, then (u,u) is a local extremum for the functional whose
Lagrangian is

G(X, U(S)(X),U(S) (X)) - g (}\l(x)—i-g



Proof. Consider the variational problem whose Lagrangian is défiye

G (x, u®, v, \7)

I=1 =1

+ L (x, u® (x), 0(51)(x)) ,

(4.23)

wherev(x) = (V}(x),--,v"(x)), andV(x) = (V}(x),---,V™(x)) are viewed as dependent
variables. The Euler-Lagrange equations of this varialipnoblem are

s
P =
k=0

Mo

Q=

k=0

S

Sj~

(1S

h=1

o (aG’ (U (), 05 <x>,v<x>,V<x>>> "
K

P [ 9G (x,u®(x), U (x), v(x), V(X))
1)k h
k;( )hZ( )(k)[]

3§ (S 000y
(k)

h=1 aUék> [h]

ot I

]
av(k)

Rj= i(—nk > <ae' (x U909, 0 <X)’V(X)’V(X))> h=0;
K= h=1 (k)

[N

= oV, [h]

(4.24)

(4.25)

(4.26)

(4.27)

j=12---,m j=1,2,---,M Taking into account{4.23), the expressionngfQJr, R

ande~ are given by

Pi=Pj1+P2 Qr=0Qs;+Qjy
Ri=Rj1+Rj2 $=5,+S;,
where
g (M)
Pla=3 (-1 < - hl;
i1 k; th aul, “
w  on(o[smy (V43P V)R (U, )] |
Pj,zzkzo(—l) hzl o [h);
) ) ("> g
s1 P [ AL (x,uls)(x),uls)
Q“kal)kth( : e (X))) I
= = U(k)[h]
(k)
s p (O3, (V+3™ V)R (xu®),u®)
Qo= Y (-1 2 "Z) | [hl;
—0 h=1 au(k) [h] "
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K=o =1 avg ol
% o (0[5 (V+30 ¥R (xu), )]
S2= 2 ;i U
- - i I (k)

TheP; 1 andQ are nothing but the Euler-Lagrange equations of the variatiproblem
(4.18). Hencel?J 1= 0andQ;, = 0 since(u,l) is a local extremum for the functional.
According to the relatlonﬂZ_TEO) arld (4.21), the expressiy » andQy, vanish when

(V00,9(0) = (A, M) -
The expressionR; ; and Sjil vanish since the Lagrangidndoes depend neither an
andv nor on their derivatives.
For j=1,2,---,m and j = 1,2,---,M, we haveR;, = Fj (x,u®)(x),u®(x)) and
S = =", R (x u® ( ),U<52)(x)) which therefore vanish since the functiarsatisfies the
constramts[(ﬂQ)
Finally, the Euler-Lagrange equatioris_(4.24)-(4.27) aromatically verified if and

only if (v(x),V(x)) = (A(x),X(X)). This proves thau is also a local extremum for the

functional whose Lagrangian &’ (x, u® (x),u® (x),)\(x)j\(x)) = G (x,u®(x),u®(x)).
]

5 Second variation and conditions for local extrema: main re
sults

This section contains relevant results which are new to est knowledge of the literature.
We investigate the second variation of a functional as wetha necessary and sufficient
conditions that a function should satisfy to be either a mum or a maximum.

Consider a variational problem of the forim (4.1) with the taagyianL € ¢?(A x Q,R).
Define anm x mblock matrixA of second order partial derivatives loby:

A= [A”/} (5.1)

1<, ’<m

with All" being again as x s block matrix defined by
= ]

o<k kK<s’
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whereAtj({'é is apk X pr Matrix defined by

a’L
L B (5.2)
oulyy (AU [N] | onep,
1< <py
Note that the matriXA is obviously symmetric by construction.

Example 5.1. Let us construct the matri&il’ for particular values of the integemsands.
If s=1, then
i’ Al
Al — | Ao Ao
ii il
A An

In this case, we have for=1, x=x!:

A(j)j/: %L i’ _ oL
0 = Gua* 01 G
I o I L
10 ™ aufou’” T11 T auiaul’
thus
2L 2L
L L
jj' _ duloul 6U16U>J< .
AT = L L !

oL L
aukoul’  gukaul

Forn=2,x= (x},x?) :

R
0 ™ auigul”’ 17\ ouod;, auad, |
%L L L
Ajj' _ auilaui’ Ajj/ _ auilauill auilaui'z
10 — 2L ) 11 — 92L d2L ’
— oL oL
ou, 0u’ aulou;  auaul,
thus
2L 8L %L
. il . il
duioul’ Bulauil 6u16u1x2
ii 2 2L 2L
i’ 0°L oL 0L
AL = aul, aui’ aulou’;  aul aul,
2L 2L 2L
ou’. oul’ 9 j F) i’ F) j 9 i’
xd Upedly  OU,0U,
If s=2, then

L NN TN
AT = | Al AL AL

In this case, we have for=1, x=x!:

A(j)j': L A(j)j’: L " AL
0™ ouou"”’ L7 duiad’ 27 auiaul’

Al oL 1N L i oL
= : =L =9

10 7 aulou’” "L T aylaul T 12T auleul
i _ L i’ L i _ oA

Ay = —F— = = Y=
20 7 aulou’ T T2 T gyl aul T 22 T aulaul’
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thus

L oL oL
i il R il . il
oulou’™  guigul  auigul,
All’ L %L %L .
- : AL =
ouou’  aulouk  auleul, |
2L %L %L
aul_aul’ i ol i o)
Uy, 0u 0Us, Oux 0U, 0up,
Forn=2,x=(x},x%):
. . 2 2
N N e e
0 ™ suigui”’ 1 guio;  auioul, |
Aéj’ 2L oL oL
o . il . il . il
2 ouu ;  quiou, ,  ouidu, ’
2L %L %L
. T anl’ - i g i a
i’ ou , aul i du,0u;  du,0u,
At = 2L » A= 02L” 02L” :
oul; oul’ auizaui/l 6ui26ui/2
%L L %L
i’ aul 6uj, aul auj/ aul 6uj,
A:JI.JZ — X(:;ZLZX:L x%zl_xlx2 X(:;ZLZXZ ,
; i F 7 ; i
6u>1<26u12><1 aulxzauilx2 6u>1<26u12><2
L L %L
i j i’ j i’
ou, ,0ul’ ou jouly  oul;oul,
All’ 0%L Al i 2L
_= 7 _= i i i i
20 aulxlﬁzaw v 21 aulxlézauil ou, Houl ’
0L 0L 0“L
; - _ - . .,
ou, ,0ul Buéxzauil BUJZXZBUJXZ
L %L L
T 3 T 3 T a0l
0u2x16u2><1 6u2x16ux1x2 6u2x16u2x2
Aj il 2L 2L 2
j i’ j i’ i i’
22 ouy )§OUZX1 ouy H0U; o, Ouy gauzﬁ ’
L 0%L L
aul auj, aul auj, aul 6uj/
222" 2L 227 " x1x2 227 2x2
thus
2 2 2 2 2
2L PL_ P L L 0°L
auioul’ oulau;  guiaul, ououl ;  Quiod, , ouiou),
9L L 2L L 2L 2L
I i’ i Al i3 i i P i i
auslzaul du >gzau . 0u >gzauxz aux(;gu2><1 6ux1(;2u><1x2 aux(;gu2><2
L - i’ i Li’ i Li’ j LJ’ j I-J" j Li’
Al — du 10U 6u§26UX1 aungux2 t?uﬁ(zauz)(l du zguxl ) 6ux26;12xz
- 2
aula I¢;uj’ t?uja It;uj, auja I(;uj/ aujat;_uj/ aul 6|:Jj, 6ujat;_uj,
2312 2>SL2L x1 2>:912L X2 2><32L2><3L 2><162 L><1><2 2x3 2L2x2
L
I 7 F ; i ; i ; i F 7
ou; ,0ul au'xl ,0uly 6u>J<1 26u'x2 6u>J<1 2¢3u'2x1 6u>J<1X26u'X1X2 au'xl 26u12x2
%L 2L L 2L 32 2L
i ., . — . - _ — _ — . —
| du,,0ul ou) ,oul,  oul Houl, oul,0u ,  oul,oul ,  oul,oul,

Let us recall the following formulation of the Taylor's theeon with the remainder,

useful in the sequel.
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Theorem 5.2([9]). Suppose that € c?(I,R), ac |, where | is an open interval. Then

2

fatt) = f(a)+ (@t + (@)

e(a,t)t?
2+(7) )

where

1
e(at) = / [f"(a+ot)— f"(a)] (1-0)do.
0
We can apply this theorem to rewriie (4.2) as
F (U+t@) = d(t) = d(0) + @' (0)t + %thn”(O) +e(0,)t?, (5.3)

where .
e(0,t) — /0 [@"(ot) — ®"(0)] (1 0)do. (5.4)

As already show®(0) = # (u) and by definitior®’(0) = &7 (u, ®). The quantityd”(t)
can be found by differentiating (4.4) under the integrahsagd using the chain rule:

m P . s)
o) = %//\ 5 (pék)[h](x)aL( () +t99x)

== aU( mul
B ms ko d (oL (xu®(x) +tg¥(x))
= 22,2, 0 dt< ot )
m s P Pe (7 _|_tq)(5)
= [N [
/A,-.,Z_lk.g_o%h_l"’“)[ oo oul, [h]oul, [
= [ #P0A(xu00 +1¢9(0) T¢Y (0 (5.5)
A
where the notatiof (-) denotes the transpose ©f. In particular at = 0, we get
., s P P a°L (XU )
®"(0) = 7
( ) //\j.zlkgoh 1hZ (pj )au(k)[h]au( )[h]
— [ #9mA x,us<x>) T (x)dx (56)

We then arrive at the following formulation.

Definition 5.3. The second variation of the functiongl in the neighborhood aifl in the
direction@is defined by

& (u+tee) = (). (5.7)

In particular, the second variation @f atu in the directiongis given by

8% (u, ) = 9”(0). (5.8)
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The Taylor expansior _(5.3) can be now re-expressed as
1
D) = F(u+tQ) = 7 (u)+tdF (u,(p)+§t2627 (u, )
1
+ tz/o (8% (u+ ot @ @) — 87 (u,9)] (1- o)do. (5.9)

Let us also recall the following two results which are impaittto prove the main results of
this work.

Lemma 5.4([9]). Suppose that A (a;) is an Nx N matrix, and sef||A||| = , /zi’\"jzlaﬁ.
Then (|| - || denotes the Euclidean noril)

1. v-w < ||v||||w]|| for all v and w inRN.
2. |AV < |||A|||Iv]| for all vin RN,
3. [v-AwW < [[|Al[| |v]l/|w] for all v and w inRN.

Definition 5.5 (Positive semi-definite)A symmetric matrixA € RN is called positive semi-
definite ifv- Av> 0 for all v e RN.

Definition 5.6 (Positive definite) A symmetric matrixA € RN is called positive definite if
v-Av> 0 for allve RN\ {0}.

Lemma 5.7 ([9]). Suppose that A is a positive definitexAN matrix. Then there is a
constant k> 0 such that vAv > k||v||? for all vin RN.

There results the following.
Lemma 5.8. Suppose that k c?(A x Q,R), and ue ¢S(A,U) is admissible forr . Then
for anye > 0, there isd > 0 such that

S Pk

cODl<5[S5y

Bl % [h](x)‘2dxz g/,\ H‘P(S)(x)szx

for all € cg’(A,U) and|t| < gg such that

(i) u+tois admissible forr ,

(i) [t]|o]]|¢"®(x)|| < dforallx e Aand0< o< 1.
Here,|| - || denotes the Euclidean norm Iifs.

Proof. Using [5.5) and[(5]6), we see that
1
0t = [ (1-0)[&7 (utotpe -5 (ue)do

= [a-0) [ 90 [A(xu" 0 +otg?x)
A (x, u® (x)) ] T@® (x)dxdo.
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Each entry of the matriA is a second derivative of the functidnwith respect to the
coordinates Q.

Let € > 0. Since all the second derivatives lofwith respect to the variables R are
continuous, then the matri& is continuous and there exisds> 0 such that, for allp €

c5(nU),
| (W90 +t0d¥00) ~u¥00|| = o] | (]| < 8= lIBOo, )] <
for all x € A, |t| < & and 0< ¢ < 1, where
B(x,0,t) = A (x, u® (x) + ot (x)) A (x, ue (x)) .

Therefore, using the continuity of the bilinear form indddzy the matrixA (see the third
property of Lemmas5l4), we obtain the required result:

m s Pk
le(0,t)] < 8/01(1—0)d0/ Z Z Z

N [(Z1k=oh=1

@l ox

(5SS [donoofax = [ o900
< - X)| dx = —/ @ (x
2 AJZlkZthl ) 2J/n
Here,|| - | denotes the Euclidean normlifs since@® (x) € R% for all x € A. O

Theorem 5.9. Suppose that £ c?(A x Q,R), and ue ¢$(A,U) is admissible forr .
1. If uis a weak local minimum for , then for allo € ¢3(A,U), we have

3% (u,@ =0 and &7 (u,g) > 0. (5.10)
2. Ifuis a weak local extremum far and there is a constant ¥ O such that

6%%w@zkAHdWdex (5.11)

for all p€ cg’(A,U), then u is a strict weak local minimum.

Proof. For the first part of Theorem 5.9, the assumption thiata weak local minimum for
¥ implies thatt = 0 is a local minimum for the functio®(t) = # (u+t@). Consequently,
0= d'(0) = &7 (u,). The Taylor expansion (5.3) @b gives

@(t)

%q’(o) +2¢€(0,1)

P'(0) =2

which leads to

ogmyggﬁggzd@ﬁﬂ%w@

since lim_,0 €(0,t) = 0 and®(t) > ®(0) for all t # 0.

19



For the second part, we suppose thatcS(A,U ) is admissible forr . Letge ¢5’(A,U)
so thatv = u+t@for somet € R such thatt| < &,. Then

F V)= 7 (U0 = 7 (U) +157 (@) + 5P87 (U +e(0.D),

where )
e(0,t) = /0 (52 (u+ ot g.q) — 37 (u,g)] (1 o)do.

By assumptiony is a weak extremum, s (u, @) = 0. By Lemmd5.8, there is > 0 such

that
el < [ o9

provided|t|[o] || @ (x)|| < € for all x e A and 0< ¢ < 1. Therefore, using(5.11), ifv—
ulls = |t] ||@lls < € we have

T f<u>+§62f (10)~2e0.)

z kffucp de—k—*/u
- [ oo

If v£ u, i.e. @ # 0, then the integral on the right hand side is strictly posijted we have
¥ (V) > ¥ (u). Thereforeu is a strict weak local minimum. O

Theorem 5.10. LetA be a bounded connected subset oBXippose that k£ c2(A x Q,R),
and ue ¢$(A,U) is admissible forr . If u is a weak local extremum for and

&7 (U@ >0 (5.12)
forall g€ cg’(A,U), then u is a weak local minimum.

Proof. Let€ > 0. Suppose that € ¢3(A,U) is admissible forr . Let@e ¢§(A,U) so that
v =u+t@for somet € R such thait| < &. Then

7 (V) =7 (u+te) =7 (u) +td7 (u,) + %tzézf (u,@) +12e(0,1),

where .
e(O,t):/0 [0%F (u+otg.@) — d*F (u,9)] (1—0)da.

By assumptionu is a weak extremum, st (u,®) = 0. By Lemmd5.8, there is > 0 such
that

0] < [ 6200 des Smesn) oi2
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provided|t||o]||@® (x)|| < € for all x € A and 0< o < 1. Therefore, using(5.12), ifv—
ulls = [t]||@l|s < € with @+ 0, we have

FO) > )+ S8 (0,9 — e

>

2

€.0 2
> T(U)—Et mesgA) || ¢ll5

~

7 (u)— gsz megA).

Thus,
F(v) > F(u)—lim F g2 mes{/\)] =7 (u).
0|2
We havey (v) > 7 (u). Thereforeu is a weak local minimum. O

In part (1) of Theorerh 5]9, the fact that the second variatimist be nonnegative is a
necessary condition farto be a local minimum.

5.1 Legendre necessary conditions

According to Theorem 519, ifis a weak local minimum for the functional, thend®s (u, @) >
Oforallpe cg (A,U). Here we find some natural and nontrivial consequences ottmat
dition.

Construct nonzero function by jgp=1andforl =1,2,--- s

0 —o<y< -1
Pi(y)=4 1-ysigny) -1<y<+1

0 +1<y< +oo
if | is odd, and
0 —o<y< -1
Py)=¢ 1-y -1<y<+1
0 +1<y < oo
if | is even.

Itis clear thatp, € ¢* (R\ {—1,1},R) and satisfyy (y) = O for all y with |y| > 1, i.e.

Y € ¢g (R\{—1,1},R). Furthermorey, € ¢ (R,R) with g (—1) = @ (1) = 0. We also
have

W)y [U(y) € {=11,0,+1'} vyeR (5.13)

thatis(gn) ;) [1] is constant oR. Thus,
(W [Uy)=0 VyeR,v>1 (5.14)

Let xo = (X3,-+,X§) € A\. SinceA is an open subset ak", there isro > 0 such that

B(Xo,ro) = {X € R" : [|x—Xo|| <ro} CA. Let& = (&},--- &™) e RMand O0< € < vl
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Set@ (x) = (@H(X),- -, @™(X)) - Xpx.ro) (X) Wherexgy, ro) is the characteristic function of
the setB(xp,ro) and

on Xi _XiO
x) =& Ty ( > . (5.15)
i; 2
Clearly, the support ofy is a compact contained iA. We have for allk € N andh =
17 27 I pk
_ _ i(h) _yd(h)
j _gjal-k X X0
(‘H >(k> [h](x) = &'&~" (W) ) [1] ( . ) (5.16)
for somei(h) € {1,2,--- ,n}. Using [5.18) and (5.14), we see that
((gj)m e {~&1L,0,+&11} Vh=12-.,p (5.17)
and forv > 1
j — -
()., =0 vh=12. py.. (5.18)

Therefore, ifuis a weak local minimum for the functiongal, we have forall =0,1,2,--- ,s
0< 37 (@) =l1+l2+ls, (5.19)

where

S IOk pk’

m
I — / > 3
X— X0\|<f0” —1kK=T+1h= 1h’

' : 02L( )
J j oL X U)o
<(ﬂ ><k> e ((” )<k'> Il )au< >[h]au >[h] (520
=[S S (d), oo (af), M g )
HX—XoHSrom/:lngzl ) (I au( (hou é)[h]
m 1-1 Pk P
° /X "0”<r0121k—0k’2+1h 1hz
i azL(xu X))
J | OoLXurXx))
() 4 00 (o), 1100 aul, Il ] d (5.22)

Of course, ifl = 0 there is not the integras. If s= 01; andl3 do not exist. By[(5.18), we
see that; = 0. Using [5.15) and (5.16) in_(5.21), we have

m o n 2 (s)
I, — / Z gigl hz M
[[x=xoll<ro j =1 h, :1aué|)[h]au()[h/]

it _,d(h () _ (i)
x (W) (1] (%) (W) [1] (%) dx (5.23)
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If we setx = X+ €y thendx = €"dy and using[(5.13)l, satisfies

mo o[ & 2L (xo+ey,u®(x+ey))
I, < €"(I1)? gl . dy. 5.24
2 <&l /|y|<1“2 S (hhzl augl)[h]au( (] g 524

In a similar way,l3 becomes

m p 2%
I3 = 25”82'*("“‘/)/ Z Z ) LIJ| ( )
Iyl<1jf=1 K=0K=K+1h=1h=

0°L (xo+ £y, u® (xo+ ey)) g
aul, [laul,, (1]

Substituting[(5.24) and (5.25) intb (5119), we have

x (W) ey [1] (yi(h,)> (5.25)

P %L (%0 +eY, <s>(xO+ey))d

2
0 < Z e {“) fyenn2, o} Inouf ]

) U)

-1 pk Py

v (k+k/)/y|<1k Ok'Z lIJ| (Yi(h)>

+1h=1K=

X

(W) ey (1] (yj(h,)>

0°L (X0 + €Y, u<s’(><o+8y)) q ] . (5.26)

aul, [laul,, (1]

We havee? ~(<+K) _, 0 ase — 0 since inl3, 2| — (k+K) > 1.
Therefore, as — 0, the second term i (5.26) vanishes and it remains

P aZL (X07 u(s) (XO))
g - . d 5.27
szlEE (h.hzl ouly, [hlauy, [1Y] /|y|§1 Y (5.27)

from which we deduce

< 2 azL (XO7 U(S) (XO)) I
TSP ggl > 0. 5.28
j.JZ:l (h.hzl Ougl)[h]au‘ h] (5.28)

ol
Sincexp € A and& € R™ are arbitrary, we have proved the following theorem

Theorem 5.11. Suppose that k& c?(A x Q,R), and T is a weak local minimum fo .
Then for all xc Aand& = (&%,--- &™) € R™,

m 321 (w4 .
Z (i a"(xu(x))) ggl>0  1=012---,s (5.29)
3 10uf [houl) 1]

i.e. for all xe A, the square matrices,jA (x,u¥(x)),1=0,1,2,--- s, are positive semi-
definite.
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The inequalities in(5.29) are called the general forms gfdreire conditions. They de-
fine by Theoreri 5.11 new necessary conditiongifiorbe a weak local minimum of . We

say that the function satisfies the strict Legendre conditions if the matri(s#/s(x, u®(x)),
|=0,1,2,---,s, are positive definite, uniformly for ak € A.

5.2 Relevant sufficient conditions

Part (2) of Theorem 519 gives us a sufficient condition for macfion to be a minimum.
However, the conditions involving the second variations @mot easy to satisfy. So, the
results of this subsection are useful as they imply the ¢mmd(5.11).

Theorem 5.12. Suppose that k£ ¢?(A x Q,R), and u is a weak local extremum fer. If
the matrix A(x,u'® (x)) defined by[(5]1) is positive definite for allex\, then u is a strict
weak local minimum.

Proof. By (5.6), (5.8) and Lemmia 5.7, for aple c5’ (A,U) we have

2
&7 (1.0 = [ $IXA(xu¥x) T¢I ax= k [ ¢ dx
7AN N
for somek > 0. By part (2) of Theorerh 59y is a strict weak minimum for . O

Theorem 5.13. Let/A be a bounded connected subset oBXippose that k£ c2(A x Q,R),
and u is a weak local extremum fgr. If the matrix A(x,u®® (x)) defined by[(5]1) is semi-
positive definite for all x A, then u is a weak local minimum.

Proof. By hypothesis, the functiod (x; ) = ¢ (x) A (x,u® (x)) T¢/¥ (x) is continuous and
positive onA for all € ¢5’(A,U). Therefore, by[(5J6) and (8.8), for afic c5’(A,U), we
have

&5 (U,¢) = /A G A(xu¥(x)) TgF(x)dx> 0

Thus, by Theorem 5.1@is a weak minimum forr . O

The second variation of is given by
2 m

6 f u7 = /
(U,9) N 2_

ILr=

Y @Ak (x 1) Tl (dx

m S . .. . S . .. .

_ T AT

- //\jj’z—lkzo (pék) K (p(k)+2k/zo(p(k) € Fe I
T K2k

= 142y, (5.30)

where the matrices), (x,u®(x)) are defined by{5]2) and

S

m S
|1:/ o Al'TQl dx (5.31)
A“Zﬂk; Ak Pl
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m s s
2= /A > > O A By dx (5.32)
j k=0

Integrall, can be rewritten as

m|s m s .,
I, = / o AiTg 42 o AI'Tq | dx
p 2| 2T A g T2 D A g

i'#]

= h+2), (5.33)
Iy = / E i(pgk) T @ A (5.34)
N (Z1K=0
=[S @ AlTg dx (5.35)
2= [ 2 2 2 YAk 9 '
]=1i"=1k=0

Thus, the second variation can be written as
OF (U@ =11+2l = +2%+2l, = +2(F+1). (5.36)
We can now prove the following new sufficient condition.
Theorem 5.14. Suppose that £ ¢?(A x Q,R), and u is a weak local extrema for. If
(i) J2+1,>0,and

(ii) the square matrices 11%‘%% (x,u¥(x)) are positive definite for all A, i.e., satisfy the
strict Legendre conditions,

then u is a strict weak local minimum far.
Proof. We have shown that
2F (U, @) = I +2(d+12), (5.37)

whereJ;, J; andl; are defined by (5.34) (5.B5) arid (5.32), respectively. Bydd®n (i),
using the Lemm@aH5l7, there exist constalf(t& 0 such that

m s . .
ho 2 /,\ > G @ ' 9 A

cx//\g S % ((pgk)[h](x))zdx: cx//\”cp(s>(x)H2d><, (5.38)

J]=1k=0h=1

Y

where 0< a = min{alj(, 1<j<mO0<k< s} . By condition (i) and the inequality (5.88),
the second variatiof _(5.87) satisfies forqtt c;’ (A,U) the inequality

&y (o) 2o [ |60 ax (5.39)

Consequently, by the second part of Theorem %i8,a weak minimum forr . O
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Corollary 5.15. Suppose that k£ c?(A x Q,R), u is a weak extremum for . If

(a) forallk+ K, the bilinear forms defined diiP« x RP by the matrices A/ (x,u®¥(x))
are positive for all xc A\, and

(b) the square matrices% (x, ul® (x)) are positive definite for all x A,
then u is a strict weak local minimum fgr.
Proof. It suffices to show that condition (i) in Theorém 5.14 is dats We have

m m
Jz—/

Jl] =1
i'#

S | (h,H]T@, [N]dx>0 5.40
kZJhZ(pJ Akk (PJ X ( )

since by condition (b) the integrand is always positive;
S S Pk Pk'

|2—/ zlkzjk/ K AL 0. W] T 1] d (5.41)

oh 1h’

since by condition (a) the integrand is always positive.réfeeJ, + 1, > 0. O

6 Applications

To conclude this work, let us analyze some applications.

Example 6.1. Consider the problem of finding extremum paint u(x) with x € [a, b], of

the functionalf defined by
b
:/ 1/ 1+ ux(x)2dx
a

The Lagrangian of this functional is

L (x,u(1)> =\/1+12.

The extremum must satisfy the Euler-Lagrange equation
oL _d (oL
ou dx\dux/

u
—X =0
(14 u?)?

The general solution of this equation ugx) = c;x+ ¢z, wherec; andc, are constants

determined by the given end point constraints.
Determine the matriXA associated to the second variation of this problem.

| Ao Ao
A_|:A10 A11:|

which gives
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where

92L 9%L 92L
Aoo= G0 =0 Por= g0 =0 A=5i5=0
0L 1

A1 = = .

1 5u,0uy (1+u)2()%
Thus,
0 0
A= 0 1 . .
(1+ud)2

Itis clear that the matriyA is positive semi-definite. Therefore, the found functigrsolu-
tion to the Euler-Lagrange equation, is a minimum point ftinctionaly .

Note here that the Legendre necessary conditions are wviisfiisd. IndeedAgo > 0 and
A1 >0.

Example 6.2. Consider the problem of finding extremum point u(x) with x € [a, b], of
the functionalf defined by

F(u) = /ab u(x)4/ 1+ ux(x)2dx.

The Lagrangian of this functional is

L (x, u(l)) =uy/1+4u2.

The extremum must satisfy the Euler-Lagrange equation
oL_d (o) _,
ou dx\oux/

1+ U2 — Uty
e S 5
(14 u2)?

which gives
=0.

The general solution of this equatiorni&) = ¢; cosh(%@) , wherec; andc, are constants

determined by the given end conditions.
Determine the matriXA associated with the second variation of this problem.

A { Ao Aoi }
Ao Arp |’
where
9%L 92L Uy 92L Uy
= — = = = A = =
Aoo ouou for duduy 1+’ 07 duou T 1t w2’
9°L u
A1l

Nl

- auxaux - (1—|—U)2<)
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Thus,

0 e
o Vg
A= Uy u

VITE (1)
It is clear that the matri is neither positive semi-definite nor negative semi-deifiite.,
—A is not positive semi-definite). Hence, the found functiansolution to the Euler-
Lagrange equation, is neither a minimum point nor a maximamtpo the functional
¥ . Therefore, we can conclude that this functiois an instable equilibrium point.

Example 6.3. Let A be a connected subset Bf. Consider the problem of finding the
function (u',u?), whereu! = ut (x},x?) ,u? = u? (x},x?) with (x},x?) € A, which is an
extremum of the functionat defined by

7 (ut,u?) :/L(xl,xz,ul(1> (x,x2) ,u?® (xl,xz)) dxtdy,
A

where the Lagrangiah is

1
L= ()" () () ()™ (2) " ()" 5 (0 — e — )

Extremum of the functiona¢f must satisfy the Euler-Lagrange equations
oo o) o (o) g
out oxt\oul ) ox\oul, |

o o (o) o (o)
oz oxt\ouwd ) ox\ou; |

which give the system
1
2U1 + Euz - ZU%XI + U):I(']_Xz - ZU%XZ — O

1
2U2 + éul — ZUSX]' —|— U)2<1X2 - 2U§X2 — 0

The general solution to this system is

_ Byl _ V52 V51 V5,2
ut(x1,%%) = cse ZX 42X +ceZX +cge?

_ﬁxl _@XZ @XI @XZ

- (cle 2% L coe 2 X 40302 X 4 che2 )

_ V3,1 _V3y2 V3,1 V3,2
W (X)) = e 2% 402X cge? X tege
i

,ﬁxl 7ﬁxz £5X1
+ Cs€& 27 -Cg€& 27 +C7€2" +Cge2",

where the constants are determined by the given boundary conditions.
Determine the matrixA associated with the second variation of the functignal

|:All A12:|

A A21 A22
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with All" defined by

Al — : 01
] ]
Ao A
We have: X )
AL 0-L _o A= 0-L 1
07 guloul — 7 90T gulgw 2
2 2
21 0L _ 1 P2 0-L _
07 guoul 20 "0 guuz 7
ML 7 0 [0’ 7 _
11 | ouhout | 12| ouhow |
Ap= o =lo | A= 32, =
oul,oul - ou’,ou? -
=) X - - X -
[ _9%L T 0 [ _9%L T _
21 au216u1 o 22 au216u2 o
A= 3L =lol Afo= B2 =
ou?,aut - ouZ,0u? -
=) X - - X -
11 [ oA AL _ 12 [ oA PL
Aot = [ ouloul;  ouloul, | = [ 00 ] , A= oulou?,  aulau’,
X X X X
21 9°L 2L . 2 9°L 2L
Ao1 = [ ouwoul, ouwroul, | — [ 00 ] , Aot = ouwPou?,  0urou’,
X X X X
[ _ L PL T _ _
Al2 ooz, oauhor, | |0 O
11— 02L 0L “ 1o o}l
Loz  auLauZ - -
L X X X X
[ _ oA 2L ] _ -
A2L_ oZouy  auoun, | 00
11 9%L 0%L 0O 0|’
i 6u§26ui1 6u§26ui2 i - -
[ _ 9% 2L ] _ 11
11 ouloul  ouloul, 2 —3
A1 = 2L 0’L | -1 92 |
| duhoul,  oul0ul, | L2 -
[ _ oL 2L T - o 11
22 | owdouwr  aZou, | -5
AL = 2L 2L - -1 2 |
i auizauil auizauiz i L2 -
which give
3 00 2 0 O
A2=10 0 0|=A" A'=|0 2 -1
000 0 -3 2
and hence ) )
2 0 O % 0O O
0 2 -3 2 0 O
A_|0 -2 2 0 0 O
|2 0o 0 2 0 O
0o 0 0 0 2 -3
|0 0 0 0 -3 2 |




It is easy to see that the matrioegg, k= 0,1, are all semi-positive definite. This implies
that the Legendre necessary conditions for minimum pomtsatisfied. Furthermore, the
matrix A is positive definite. Thus, we can well conclude that the tbsolution (u,u?) to
the Euler-Lagrange equations is effectively a minimum pfmnthe functionals .

Example 6.4. Let A be a connected subsetlgf. Consider the problem of finding a func-
tion u = u(x},x?) with (x!,x?) € A, which is an extremum of the functional defined

by
7 (u) = //\L (xl,xz,u(z) (xl,xz)) dxtdx®
whose Lagrangiah is
L = CHug+ul+Wa+Ua,+Use
— % (Uyt Uy2 + Unya Uyty2 + Upya Upy2 + Uyay2Uny2 ) . (6.1)

The extremum must satisfy the Euler-Lagrange equation
o - & _0 (oL 0 (o) 0 0 (oL
©ou oxt\odug/ 0x2\due/)  oxtoxl \ Qun

L, 00 (o 00 o 62
oxL 0x2 \ duy,e 0X2 0X2 \ QU2 ’

which gives the equation
2U— 2Up + Uytye — 2Uoy2 + 2Ug1 — Ugyaye + Uoyioe — Uyazye + 2Ugye = 0.

The general solution to this equation is

1 yat
u(d @) = e {clcos<§x1>+czsln<§xl>}
@xl 1 1 . 1 1
+ e2% |cgcos( =x' | +casin( Sx
2 2
7ﬁX2 1 2 . l 2
+ e 2% |cscos| ox° | +cgsin( =X
2 2
Y2 1o (1o
+ €27 creos| X ) +cgsin( 5x )

where the constants are determined by the boundary conditions.
Determine the matrixA associated with the second variationyof

Aco Aor Ao
A= | Ao A1 Ap |,
Ay Acr Ax
where
aZL 62L 62L 62L
Ao = dudu =2 Aoz= [ dUdu,y UL,  OUAU,, ]: [0 0 O],
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%L 0
_ | dugou | _ _ [ & 02L _
Ar0= GXZ_L]_[()}’ AOl_[auauxl 6u6uxz}_[o O]»
du,0u
2L 0
%L %L au,, 10u
1 o)
o ou, 10U, 1 ou, 10U, o 2 ) o 0L o
A= et ﬂ]—[_; R e
6UX26UX1 6UX26UXZ 2 0°L 0
du, 20U
2L 2L 2L
ou 16u 1 ou 10U 1.2 ou 16u 2 0 O O
Ao = XL, U 2X XL X XL, D 2X —
12 oL 2L 2L 000/
auxzaual auxzauxlxz auX26u2X2
%L 2L
auzéauxl aUZXéasz O O
_ 2L 2L _
A21 - aUX]_ 20U, 1 o0u 1.00U o - O O ?
XX XX P
2L 2L 00
0 UZXz 0 UX]_ 6U2X2 asz
%L 2L 2L " "
6u2x16u2X1 6u2x16uxlx2 6u2x16u2x2 2 -3 -3
Aoy — %L 2L 2L _| 1t o _1
22 — BUX1X26U2X1 Buxlxzauxlxz BUX1X26U2X2 - % 1 2
0L 9°L 9°L -5 =3
6U2X26U2X1 6u2x26uxlx2 6u2x26u2x2
Thus,
(2 O 0 0 0 07
0 2 -3 0 0 O
A_| 0 -3 2 0 0 o0
~lo o o 2 -1 -2
1 1
0.0 0 -3 2 -3
o 0 0o -4 -1 2|

It is easy to see that the matric&g, k = 0,1, 2 are all semi-positive definite. This implies
that the Legendre necessary conditions for minimum pommtsatisfied. Furthermore, the
matrix A is positive definite. Thus, we can well conclude that the fbsalutionu to the
Euler-Lagrange equations is effectively a minimum poimttf@ functionaly .
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