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Abstract

We study variations of the G2 structure on the unit tangent sphere bundle, intro-

duced in [4, 5, 6] and now called gwistor space. We analize the equations of calibration

and cocalibration, as well as those of W3 pure type or nearly-parallel type.
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1 Introduction

In [4, 5, 6] it was shown how a natural G2 structure is associated to the unit tangent sphere

bundle π : SM → M of any given oriented Riemannian 4-manifold M . The techniques are

twistorial so we have chosen to give the name of gwistors to the theory.

One starts by a construction of the octonions over the 3-sphere fibre bundle. The Levi-

Civita connection of the base induces a canonical splitting of the tangent bundle of TM .

Both vertical and horizontal subbundles V,H become isometric to π∗TM with the pull-

back metric. On the space SM = {u ∈ TM : ‖u‖ = 1} each point u becomes the identity
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element, the generator of the real line in O. Then we use the volume form coupled with

u = Uu ∈ V , to induce a cross-product on u⊥ ⊂ V . This gives a quaternionic structure on

V and then, applying the well-known Cayley-Dickson process, we obtain the O-structure

on V ⊕H . The pull-back of TM also inherits a metric connection ∇∗ = π∗∇ and thence

parallel identifications of horizontals and verticals, passing through π∗TM , cf. loc. cit. and

[14]. The manifold SM is endowed with the induced metric from the canonical or Sasaki

metric on TM . Clearly TSM coincides with V1 ⊕ H where V1 = {v ∈ V : 〈u, v〉 = 0} at

each point u. Since u is pointing outwards, our space SM inherits a G2-structure, for which

it receives the name of gwistor space. Recall G2 = AutO. Of course the structure is the

extension of an SO(3) structure. The connection induces a projection ∇∗
. U : TSM → V

with kernel H , where the section U is the tautological vertical vector field.

It is known, by a Theorem of Y. Tashiro, that SM has an almost contact structure in

any dimension of the base. As rigid geometrical objects these are, the contact structure

is bound to be K-contact if and only if M is locally a radius 1 sphere. Then it is also

Sasakian, cf. [7]. The model space is the trivial fibration SO(5)/SO(3).

If we leave aside the Cayley-Dickson process and concentrate on the five invariant 3-

forms which are naturally defined on SM , then we may try to find other interesting G2

structures. This article is devoted to them, the variations of gwistor space, which should

also be called g-natural G2-structures on the unit tangent sphere bundle, in analogy with

the terms used by [1, 2] and many references therein. On the other hand, the terms

deformation or perturbation are also used in similar context by other authors, so we made

an option.

This work was initiated during the author’s sabbatical leave at Philipps Universität,

Marburg, and only later finished in IHES, Paris. He kindly acknowledges the hospitality

of both institutions and expresses his thanks to Ilka Agricola, Thomas Friedrich, Maxim

Kontsevich and Sven Meinhardt for fruitful conversations.

1.1 The basic 3-forms

We start by abbreviating the notation and write SM = G. There is, as we have seen,

an isometry map connecting H with V , which we denote by θ. We extend it by 0 to V .

Therefore the tangent vector field θtU generates a real line bundle, contained in TG. We

now pass to the language of differential forms. We may write a splitting:

T ∗G = Rµ⊕H∗
1 ⊕ V ∗

1 (1)

where µ = (θtU)♭ and H1 = θtV1. This 1-form is the aforementioned contact structure,

satisfying:

µu(v) = 〈u, dπ(v)〉, ∀u ∈ G, v ∈ TG. (2)

The usual pull-back (horizontal) of the volume form of M is also denoted by vol. The ver-

tical pull-back of vol ∈ Ω4(M) coupled with U is denoted by α; then we define analogously
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a 3-form α3 = (θtU)yvol. Of course (we omit the wedge product symbol throughout the

text),

µα3 = vol, volα = VolG . (3)

As shown in [4], it is possible to find an ‘adapted’ direct orthonormal frame e0, e1, . . . , e6
such that

µ = e0, α3 = e123, α = e456. (4)

It is also known that dµ = e41 + e52 + e63, which restricts to a symplectic 2-form on the

vector bundle H1 ⊕ V1.

The endomorphism θ allows one to find two other 3-forms (see [4] for the invariant

definition):

α1 = e156 + e264 + e345 (5)

and

α2 = e126 + e234 + e315. (6)

One can prove the five 3-forms α, . . . , α3, µdµ correspond to a basis for the space of invari-

ants in Λ3(R ⊕ R3 ⊕ R3) under SO(3), the underlying structure group of G, ie. there are

five irreducible 1-dimensional submodules1.

The natural G2 structure on G to which we have referred is given2 by the 3-form

σ0 = α2 − α+ µdµ. (7)

Its integrability was studied first in the case of the torsion free metric connection on M

and then in the case of metric connections with torsion (which clearly allow the same

construction as the Levi-Civita). We know that the structure is co-calibrated, ie. d∗φ = 0,

if and only if the base M is an Einstein manifold.

1.2 Stability of G2 structures

Let us recall the definition of stable forms from the theory of G2-manifolds, [8, 9].

Let σ denote a linear G2 structure on a 7-dimensional oriented vector space V . A

consequence of the study of the Lie groupG2 = Aut σ ⊂ SO(7) is that it is connected and 14

dimensional; henceforth, that the orbit of σ under GL(7,R) is an open set inside the module

Λ3V ∗. This orbit is denoted Λ3
+ and known as the space of stable G2-structures on V . We

somehow detect the boundaries of such stability by the non-degeneracy of the induced

Euclidean product. Indeed, the inner product is given by the map (v, w) 7→ vyσ∧wyσ∧σ,

required to be a positive multiple of the chosen orientation on the diagonal of V . The given

1The author acknowledges I. Agricola and Th. Friedrich for this computation.
2Actually the structure was given first by the opposite, −σ0, but we take the opportunity here to

change. The reason is that it gives the right canonical representation theory without changing the canonical

orientation of G; namely the G2-modules Λ2

7,Λ
2

14, which appear from opposite highest weights in [4].
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σ satisfies this condition by assumption. Letting σ vary, we have a GL(7,R)-equivariant

map

V ⊗ V ⊗ Λ3V ∗ −→ Λ7V ∗.

Then of course Λ3
+ is the reunion of two open orbits under the subgroup GL+(7,R), iden-

tified 1-1 by a − sign as it is easy to see. Moreover, the orientation in V induced by the

first map itself is preserved in each of these orbits.

Now we return to gwistor space G → M and admit a variation of the ‘canonical’

structure σ0. We let f0, . . . , f4 be scalar functions on G and define

σ = f0α + f1α1 + f2α2 + f3α3 + f4µdµ. (8)

Clearly, at least for sufficiently close values to the preferred, we obtain new G2-structures.

For the fixed orientation VolG = e0···6, induced by the Sasaki structure on TM and the

vector field U , we have that on any two vectors v, w:

vyσ ∧ wyσ ∧ σ = 6〈v, w〉σVolσ = 6〈v, w〉σ0
mVolG . (9)

This identity defines the scalar function m > 0, already assumed to be positive—as we may

without loss of regularity or significant generality.

Detailed computations of the metric matrix on the adapted frame yield

[〈ei, ej〉σ] = t




f 2
4

x z

x z

x z

z y

z y

z y




(10)

where

t =
f4
m
, x = f 2

2 − f1f3, y = f 2
1 − f0f2, z = f1f2 − f0f3. (11)

Notice σ0 corresponds to the identity 17. Computing determinants, the metric is positive-

definite if f4 > 0, x > 0 and xy − z2 > 0. This proves the following result.

Theorem 1.1. If a set of scalar functions f0, . . . , f4 induces a G2 structure on G, then it

satisfies f4 > 0, f 2
2 − f1f3 > 0 and

3f0f1f2f3 − f0f
3
2 − f 2

0 f
2
3 − f3f

3
1 > 0. (12)

Remarks. 1. The homogeneous fourth degree polynomial is irreducible and has no critical

values in the domain. 2. The metrics obtained are all natural metrics in the sense of [1, 2]

and other references therein.
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Now, by Gram-Schmidt process on the new metric, we obtain the direct orthonormal frame,

i = 1, 2, 3,

ẽ0 =
1

f4
√
t
e0, ẽi =

1√
tx

ei, ẽi+3 =

√
x

th
(ei+3 −

z

x
ei), (13)

where h = xy − z2, the polynomial in (12). A dual co-frame is then

ẽ0 = f4
√
te0, ẽi =

√
txei + z

√
t

x
ei+3, ẽi+3 =

√
th

x
ei+3. (14)

We obtain also the useful formulas

e0 =
1

f4
√
t
ẽ0, ei =

1√
txh

(
√
hẽi − zẽi+3), ei+3 =

√
x

th
ẽi+3. (15)

Indeed the frame (13) is direct, ie. ẽ0123456 is a positive multiple of the chosen orientation.

Immediately we find

m = f4h
1

3 . (16)

1.3 Exterior derivatives for σ preserving the Sasaki metric

Let σ be a variation of σ0.

Proposition 1.1. The metric induced by σ coincides with the Sasaki metric on G if and

only if

f 2
0 + f 2

1 = 1, f2 = −f0, f3 = −f1, f4 = 1. (17)

The orbit under SO(7) of 3-forms which can be written in the form (8) is a circle S1.

Proof. By hypothesis, we have tf 2
4 = tx = ty = 1 and z = 0. Hence f 3

4 = f4x = f4y = m

and h = xy = f 4
4 . By (16) we get all these equal to 1, except z. Now solving the system (11)

we deduce the equivalence in the first part of the result. The second follows from the orbit

of σ0 = α2−α+µdµ intersected with our set of 3-forms, observed through typical methods.

Indeed already U(3) ⊂ SO(7) acts as a real group on the vector space E = H1 ⊕ V1, which

has a natural complex structure, and fixing e0. We notice

(e1 +
√
−1e4)(e2 +

√
−1e5)(e3 +

√
−1e6) = α3 − α1 +

√
−1(α2 − α) =: η ∈ Λ3E(1,0)∗

As SU(3) ⊂ G2 we only have to consider maps g = eis1E for s ∈ R (restricted to E).

Immediately we see such g fixes the 3-form µdµ = e041+052+063. Finally g · η = g3η. Letting

g be such that g3 = f0 +
√
−1f1 ∈ S1 we find that the real map g solves

g · σ0 = −f0α− f1α1 + f0α2 + f1α3 + µdµ.

The invariant statement follows (relevant due to SO(7)/G2 being 7-dimensional). �

For the following computations we apply formulas which have been deduced in [4, 5, 6].

We start by the particular case found above, when the Sasaki metric is preserved. The

manifold M is assumed connected.
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Theorem 1.2. Let σ = −f0α− f1α1 + f0α2 + f1α3 + µdµ with (f0, f1) : G → S1 smooth.

1. Always dσ 6= 0.

2. If (f0, f1) 6= (±1, 0), then d ∗ σ = 0 if and only if the functions f0, f1 are constant and

the Riemannian base M has constant sectional curvature.

3. If (f0, f1) = (±1, 0), then d ∗ σ = 0 if and only if M is Einstein.

The proof follows by recalling the list of derivatives of the fundamental 3-forms in (31),

which were deduced in [4, Proposition 2.3]. Result (1) is the particular case of Theorem 1.3.

For (2) we may easily compute d∗σ. If it is to vanish, then we deduce a curvature equation

R0123 = 0, which implies constant sectional curvature on the base, and that f0df0 = −f1df1
is a multiple of µ, which implies (f0, f1) constant. Finally, if the base metric has constant

sectional curvature k, then (see below) RUα = −kµα1, and we find this is the solution

required in case f1 6= 0.

The Theorem shows that the original gwistor space structure we found, the preferred σ0,

has greater interest than the other on the circle (of course besides its antipodal, a duality

which we shall not explore here).

We shall now see a result concerning the type of dσ with respect to theG2-decomposition

of Λ4T ∗G, following the description by [10] reproduced in several good references.

Proposition 1.2. The gwistor space (G, σ) of a constant sectional curvature k manifold

with σ given as before, with f0, f1 constant, is of pure type W3 if and only if k = −2.

Proof. Our always invoked Riemann tensor gives Rijpq = k(δqi δ
p
j − δpi δ

q
j ) for constant sec-

tional curvature metrics. By definitions in (32,33) below, we have RUα = −kµα1, RUα1 =

−2kµα2. Now, we know d ∗ σ = 0 and thence dσ = λ ∗ σ + ∗τ3, with τ3 the so called W3

part characterized by τ3σ = τ3∗σ = 0. The condition λ = 0 ∈ R resumes to (dσ)σ = 0 by a

simple duality argument. Computing from the formulas and repeatedly using f 2
0 + f 2

1 = 1,

we find k = −2. �

The following formula is used in the proof:

dσ = µ
(
−3f1α + f0(k + 2)α1 + f1(2k + 1)α2 − 3f0kα3

)
+ (dµ)2. (18)

The Proposition recovers, in particular, the result in [4, Corollary 3.1] for the preferred

σ0 = α2 − α + µdµ on hyperbolic space of curvature −2. However, the result now is

independent of the pair (f0, f1) ∈ S1, just as the result ‖dσ‖2 = 48.

1.4 Exterior derivatives for σ in the general case

Suppose (f0, . . . , f4) : G → R5 is a vectorial function satisfying the conditions in Theorem

1.1. We study the possibly G2-structure on G → M

σ = f0α + f1α1 + f2α2 + f3α3 + f4µdµ. (19)
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From the formulas in (15) we deduce

µ =
1

f4t
1

2

µ̃, dµ =
1

th
1

2

d̃µ, α =
x

3

2

(th)
3

2

α̃, (20)

α1 =
x

1

2

t
3

2h

(
α̃1 −

z

h
1

2

α̃
)
, α2 =

1

x
1

2 (th)
3

2

(hα̃2 − 2h
1

2 zα̃1 + 3z2α̃), (21)

α3 =
1

(txh)
3

2

(
h

3

2 α̃3 − hzα̃2 + h
1

2 z2α̃1 − z3α̃
)
. (22)

The forms with a tilde are defined algebraically using the orthonormal basis for σ, formally

introduced on the respective µ, dµ, α, . . . , α3 (it is the SO(3) structure of the tangent sphere

bundle revealing itself). In particular, we may use the so called first structure equations

from [4] but with a tilde. We also need the inversed formulas of the above:

µ̃dµ = f4t
3

2h
1

2µdµ, α̃ =
(th)

3

2

x
3

2

α, (23)

α̃1 =
ht

3

2

x
3

2

(
xα1 + 3zα

)
, α̃2 =

h
1

2 t
3

2

x
3

2

(
x2α2 + 2xzα1 + 3z2α

)
, (24)

α̃3 =
t
3

2

x
3

2

(
x3α3 + x2zα2 + xz2α1 + z3α

)
. (25)

Using the ‘first structure equations’ in [4, Proposition 2.1], but for the Hodge operator of

the metric and orientation induced by σ, and writing back in terms of the usual frame, we

obtain:

∗σ (µdµ) =
t
1

2h
1

2

2f4
(dµ)2, (26)

∗σ α =
f4t

1

2

h
3

2

µ
(
x3α3 + x2zα2 + xz2α1 + z3α

)
, (27)

∗σ α1 = −f4t
1

2

xh
3

2

µ
(
3x3zα3 + x2(h+ 3z2)α2 + x(2hz + 3z3)α1 + (3hz2 + 3z4)α

)
, (28)

∗σα2 =
f4t

1

2

x2h
3

2

µ
(
3x3z2α3+x2(2hz+3z3)α2+x(h2+4hz2+3z4)α1+(3h2z+6hz3+3z5)α

)
, (29)

∗σα3 = − f4t
1

2

x3h
3

2

µ
(
x3z3α3 + x2(hz2 + z4)α2+

+x(h2z + 2hz3 + z5)α1 + (h3 + 3h2z2 + 3hz4 + z6)α
)
.

(30)

Now we recall the formulas from [4, Proposition 2.3]:

dα = RUα, dα1 = 3µα+RUα1, dα2 = 2µα1 − rvol, dα3 = µα2 (31)
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where RUα,RUα1 are linearly independent forms depending on the curvature of M , and

r = r(u, u) is a function on G (of course R and r are the usual Riemannian and Ricci

curvature tensors). Concretely, cf. [4, formulas 25 and 26],

RUα =
∑

0≤i<j≤3

Rij01e
ij56 +Rij02e

ij64 +Rij03e
ij45, (32)

RUα1 =
∑

0≤i<j≤3

Rij01(e
ij26 + eij53) +Rij02(e

ij61 + eij34) +Rij03(e
ij15 + eij42). (33)

In particular µRUα1 = −ρvol where ρ =
∑3

i=1 r(ei, e0)e
i+3.

Theorem 1.3. For any functions f0, . . . , f4, we have dσ 6= 0.

Proof. Indeed, since (dµ)αi = 0, ∀i = 0, 1, 2, 3, α0 = α, a moments thought gives

µ(dµ)dσ = (6f4 + f0(R2301 +R3102 +R1203))VolG = 6f4VolG

by Bianchi identity. However, we saw f4 must be positive. �

From now on we assume the functions f0, . . . , f4 are constant.

A metric almost contact structure is said to be K-contact if the characteristic vector

field is Killing. In the case of the Sasaki metric, (G, µ, θtU) is K-contact if and only if M is

locally isometric to S4 of radius 1, a result due to Y. Tashiro. In general, since our metrics

turn out to be natural metrics, we have the question in the larger setting solved in [1].

Another feature of gwistor theory is that never a G2-structure varying from the usual

is preserved by the vector field θtU (known both as the geodesic spray or the geodesic flow

vector field, cf. [13, 14]). Indeed, computations for constant fi have shown that LθtUσ 6= 0.

Returning to the Hodge duals, then we have by simple reasons

d(∗σ(µdµ)) = 0,

d(∗σα) = −f4t
1

2

h
3

2

µ
(
xz2RUα1 + z3RUα

)
,

d(∗σα1) =
f4t

1

2

xh
3

2

µ
(
x(2hz + 3z3)RUα1 + (3hz2 + 3z4)RUα

)
,

d(∗σα2) = − f4t
1

2

x2h
3

2

µ
(
x(h2 + 4hz2 + 3z4)RUα1 + (3h2z + 6hz3 + 3z5)RUα

)
,

d(∗σα3) =
f4t

1

2

x3h
3

2

µ
(
x(h2z + 2hz3 + z5)RUα1 + (h3 + 3h2z2 + 3hz4 + z6)RUα

)
.

(34)

Hence the vanishing of the two polynomials

− f0x
3z2 + f1x

2(2hz + 3z3)− f2x(h
2 + 4hz2 + 3z4) + f3(h

2z + 2hz3 + z5), (35)

f0x
3z3 − f1x

2(3hz2 + 3z4) + f2x(3h
2z + 6hz3 + 3z5)− f3(h

3 + 3h2z2 + 3hz4 + z6) (36)
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is a sufficient condition for the vanishing of d(∗σσ). Multiplying the first by z, adding to

the second and factoring out a h(> 0) from the result, we obtain:

− f1x
2z2 + 2f2xhz + 2f2z

3x− f3h
2 − 2f3hz

2 − f3z
4. (37)

Finally recurring to some computer algebra software, we are able to find two independent

expressions in the original parameters f0, . . . , f3:

− f0
(
f 2
1 − f0f2

) (
−f 2

2 + f1f3
)2

(= (35)), (38)

(f 2
2 − f1f3)

3
(
−2f0f

3
1 f

3
2 + 3f 2

0 f1f
4
2 − f 6

1 f3 + 6f0f
4
1 f2f3 − 6f 2

0 f
2
1 f

2
2 f3

−2f 3
0 f

3
2 f3 − 3f 2

0 f
3
1 f

2
3 + 6f 3

0 f1f2f
2
3 − f 4

0 f
3
3

)
(= (36)).

(39)

Notice they are homogeneous, as expected, and notice the factor y = f 2
1 − f0f2 in the

second polynomial and the common factor x = f 2
2 − f1f3, which must both be positive.

From equivalence we get the simple expression

(f 3
1 − 2f0f1f2 + f 2

0 f3)(f
2
2 − f1f3)

3 (= (37)). (40)

Theorem 1.4. A 3-form σ as above, with f0, . . . , f4 constant, satisfies d ∗σ σ = 0 if and

only if any of the following occurs:

(i) the polynomial (39) vanishes and M is Einstein.

(ii) M has constant sectional curvature.

Proof. Notice first that, if f0 = 0, then neither f1 or f3 can vanish (otherwise we would get

y = 0 or h = 0 from definition). So the two main polynomials cannot vanish simultaneously,

as we see directly, or from the implied equation (40).

Now, if the polynomial (39) vanishes, then we may conclude f0 6= 0, ie. the first poly-

nomial (38) does not vanish. So the cocalibration equation is equivalent to the vanishing

of µRUα1 = −ρvol, which happens if and only if M is Einstein. On the contrary, if the

polynomial does not vanish, then the equation is on metrics such that µRUα = 0; equiva-

lently, R1201 = R2301 = 0, etc. This is the same as M having constant sectional curvature.

In particular, being Einstein. �

For example, if f0 = 0, then we are certainly bound to the second case.

Noteworthy is the case when f1f2 = f0f3 (or z = 0), which generalizes Proposition 1.2.

A question put to the author by colleagues was: if we could always find, invariant of the

metric on M , a natural G2 structure which would be co-closed. The answer is no, because

the two polynomials do not vanish altogether.

We thus stress the relevance of G2 cocalibration goes much beyond the known cases and

examples.
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1.5 Nearly-parallel G2-structures

Nearly-parallel G2-structures on 7-dimensional manifolds are defined by δσ = 0 and dσ =

c ∗σ σ for some constant c. Clearly, if c 6= 0, the condition is simply the latter equation.

We consider a variation of the G2 structure on G, as in (19). In order to find a nearly-

parallel structure σ, we may assume already it is cocalibrated (c 6= 0). We notice the Hodge

∗ operator is homogeneous of degree 1/3 on 3-forms seen as a map σ  ∗σ (the simplest

way to see this is by (26), but from the definition will also do). Hence if we find a solution

to the above in our subspace of σ ∈ Λ3
+, we find a line of solutions: d(sσ) = c

s
1

3

∗sσ sσ,

s ∈ R+.

We restrict here to the case z = f1f2 − f0f3 = 0, the less ‘prohibitive’ condition.

Theorem 1.5. Under the previous condition, the only metric on an oriented Riemannian 4-

manifold M for which a (G, σ) is nearly-parallel is the constant sectional curvature 1 metric.

Then there are two classes of solutions, represented by the following two G2-structures:

σ± = ±
√
2

2
(α2 − α + α3 − α1) +

√
3

2
µdµ, (41)

both satisfying dσ =
√
6 ∗σ σ.

Proof. Since we assume z = 0 and this is maintained on the line R+σ, there exists a positive

multiple of σ such that (f0, f1) is in the unit circle. Then we easily deduce x = y = 1 and

f2 = −f0, f3 = −f1. Hence h = 1 = t and m = f4, cf. (16).

From formulas (26...30) and the hypothesis of σ being nearly-parallel, we see the 4-form

dσ is again SO(3)-invariant. Then we easily deduce the curvature restriction: it must be

of the constant kind. The equation dσ = c ∗σ σ is solved using those same formulas, with

z = 0 proving a major advantage. Looking at components, we find a system (k is the

sectional curvature) 



c = 2f4
f0f1 − kf 2

0 = 0

2f0f1k + f0f1 − 3f 2
1 = 0

3f1 − 2f0f
2
4 = 0

2f0 + kf0 − 2f0f
2
4 = 0

.

This yields f0 = f1, which occurs twice in the circle; and k = 1, f4 =
√

3/2, c =
√
6. The

given 3-forms satisfy the equation and are genuine G2-structures. �

Notice the metric on G is the same on both solutions. Now we recall the classification

of nearly-parallel G2 structures in [11]. The ones we got correspond to the Stiefel manifold

V5,2 = SO(5)/SO(3) in their Table 2, which is of course the unit tangent sphere bundle of

S4. The G2 is constructed as a U(1)-bundle over the complex quadric G5,2, the Grassman-

nian of 2-planes, with a Kähler-Einstein metric. The resulting nearly parallel G2 is said to

be Einstein-Sasakian for some homogeneous SO(5)-invariant metric. We have thus found
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just some more details of this case. It is also most interesting to see that our result gives a

metric coinciding precisely with the Einstein metric on V5,2 deduced in [2, Theorem 4]. It

has Riemannian scalar curvature 63
4
, by a formula there.
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[3] I. Agricola, The Srńı lectures on non-integrable geometries with torsion, Archi. Math-

ematicum (Brno), Tomus 42 (2006), Suppl., 5–84.

[4] R. Albuquerque, On the G2 bundle of a Riemannian 4-manifold, J. Geom. Phys. 60

(2010), 924–939.

[5] R. Albuquerque and I. Salavessa, The G2 sphere of a 4-manifold, Monatsh. Math. 158,

Issue 4 (2009), 335–348.

[6] R. Albuquerque and I. Salavessa, Erratum to: The G2 sphere of a 4-manifold, Monatsh.

Math. 160, Issue 1 (2010), 109–110.

[7] D. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in
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