DVORETZKY-KIEFER-WOLFOWITZ INEQUALITIES FOR THE TWO-SAMPLE CASE

FAN WEI AND R. M. DUDLEY

Abstract

The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality says that if F_{n} is an empirical distribution function for variables i.i.d. with a distribution function F, and K_{n} is the Kolmogorov statistic $\sqrt{n} \sup _{x}\left|\left(F_{n}-F\right)(x)\right|$, then there is a finite constant C such that for any $M>0, \operatorname{Pr}\left(K_{n}>M\right) \leq$ $C \exp \left(-2 M^{2}\right)$. Massart proved that one can take $C=2$ (DKWM inequality) which is sharp for F continuous. We consider the analogous KolmogorovSmirnov statistic $K S_{m, n}$ for the two-sample case and show that for $m=n$, the DKW inequality holds with $C=2$ if and only if $n \geq 458$. For $n_{0} \leq n<458$ it holds for some $C>2$ depending on n_{0}.

For $m \neq n$, the DKWM inequality fails for the three pairs (m, n) with $1 \leq m<n \leq 3$. We found by computer search that for $n \geq 4$, the DKWM inequality always holds for $1 \leq m<n \leq 200$, and further that it holds for $n=2 m$ with $101 \leq m \leq 300$. We conjecture that the DKWM inequality holds for pairs $m \leq n$ with the $457+3=460$ exceptions mentioned.

1. Introduction

This paper is a long version, giving many more details, of our shorter paper [16]. Let F_{n} be the empirical distribution function based on an i.i.d. sample from a distribution function F, let

$$
D_{n}:=\sup _{x}\left|\left(F_{n}-F\right)(x)\right|,
$$

and let K_{n} be the Kolmogorov statistic $\sqrt{n} D_{n}$. Dvoretzky, Kiefer, and Wolfowitz in 1956 [7] proved that there is a finite constant C such that for all n and all $M>0$,

$$
\begin{equation*}
\operatorname{Pr}\left(K_{n} \geq M\right) \leq C \exp \left(-2 M^{2}\right) \tag{1}
\end{equation*}
$$

We call this the DKW inequality. Massart in 1990 [12] proved (1) with the sharp constant $C=2$, which we will call the DKWM inequality. In this paper we consider possible extensions of these inequalities to the two-sample case, as follows. For $1 \leq m \leq n$, the null hypothesis H_{0} is that F_{m} and G_{n} are independent empirical distribution functions from a continuous distribution function F, based altogether on $m+n$ samples i.i.d. (F). Consider the Kolmogorov-Smirnov statistics

$$
\begin{equation*}
D_{m, n}=\sup _{x}\left|\left(F_{m}-G_{n}\right)(x)\right|, \quad K S_{m, n}=\sqrt{\frac{m n}{m+n}} D_{m, n} \tag{2}
\end{equation*}
$$

All probabilities to be considered are under H_{0}.
For given m and n let $L=L_{m, n}$ be their least common multiple. Then the possible values of $D_{m, n}$ are included in the set of all k / L for $k=1, \ldots, L$. If $n=m$

[^0]then all these values are possible. The possible values of $K S_{m, n}$ are thus of the form
\[

$$
\begin{equation*}
M=\sqrt{(m n) /(m+n)} k / L_{m, n} \tag{3}
\end{equation*}
$$

\]

We will say that the DKW (resp. DKWM) inequality holds in the two-sample case for given m, n, and C (resp. $C=2$) if for all $M>0$, the following holds:

$$
\begin{equation*}
P_{m, n, M}:=\operatorname{Pr}\left(K S_{m, n} \geq M\right) \leq C \exp \left(-2 M^{2}\right) \tag{4}
\end{equation*}
$$

It is well known that as $m \rightarrow+\infty$ and $n \rightarrow+\infty$, for any $M>0$,

$$
\begin{equation*}
P_{m, n, M} \rightarrow \beta(M):=\operatorname{Pr}\left(\sup _{0 \leq t \leq 1}\left|B_{t}\right|>M\right)=2 \sum_{j=1}^{\infty}(-1)^{j-1} \exp \left(-2 j^{2} M^{2}\right) \tag{5}
\end{equation*}
$$

where B_{t} is the Brownian bridge process.
Remark. For M large enough so that H_{0} can be rejected according to the asymptotic distribution given in (5) at level $\alpha \leq 0.05$, the series in (5) is very close in value to its first term $2 \exp \left(-2 M^{2}\right)$, which is the DKWM bound (when it holds). Take M_{α} such that $2 \exp \left(-2 M_{\alpha}^{2}\right)=\alpha$, then for example we will have $\beta\left(M_{.05}\right) \doteq 0.04999922$, $\beta\left(M_{.01}\right) \doteq 0.009999999$.

Let $r_{\max }=r_{\max }(m, n)$ be the largest ratio $P_{m, n, M} /\left(2 \exp \left(-2 M^{2}\right)\right)$ over all possible values of M for the given m and n. We summarize our main findings in Theorem 1 and Facts 2,3 and 4

1. Theorem. For $m=n$ in the two-sample case:
(a) The DKW inequality always holds with $C=e \doteq 2.71828$.
(b) For $m=n \geq 4$, the smallest n such that H_{0} can be rejected at level 0.05, the DKW inequality holds with $C=2.16863$.
(c) The DKWM inequality holds for all $m=n \geq 458$, i.e., for all $M>0$,

$$
\begin{equation*}
P_{n, n, M}=\operatorname{Pr}\left(K S_{n, n} \geq M\right) \leq 2 e^{-2 M^{2}} \tag{6}
\end{equation*}
$$

(d) For each $m=n<458$, the DKWM inequality fails for some M given by (3).
(e) For each $m=n<458$, the DKW inequality holds for $C=2\left(1+\delta_{n}\right)$ for some $\delta_{n}>0$, where for $12 \leq n \leq 457$,

$$
\begin{equation*}
\delta_{n}<-\frac{0.07}{n}+\frac{40}{n^{2}}-\frac{400}{n^{3}} \tag{7}
\end{equation*}
$$

Remark. The bound on the right side of (7) is larger than $2 \delta_{n}$ for $n=16,40,70$, 440 , and 445 for example, but is less than $1.5 \delta_{n}$ for $125 \leq n \leq 415$. It is less than $1.1 \delta_{n}$ for $n=285,325,345$.

Theorem 1 (a), (b), and (c) are proved in Section 2, Parts (d) and (e), and also parts (a) through (c) for $n<6395$, were found by computation.

For $m \neq n$ we have no general or theoretical proofs but report on computed values. The methods of computation are summarized in Subsection 3.2, Detailed results in support of the following three facts are given in Subsection 3.3 and Appendix B.
2. Fact. Let $1 \leq m<n \leq 200$. Then:
(a) For $n \geq 4$, the DKWM inequality holds.
(b) For each (m, n) with $1 \leq m<n \leq 3$, the DKWM inequality fails, in the case of $\operatorname{Pr}\left(D_{m, n} \geq 1\right)$.
(c) For $3 \leq m \leq 100$, the n with $m<n \leq 200$ having largest $r_{\max }$ is always $n=2 m$.
(d) For $102 \leq m \leq 132$ and m even, the largest $r_{\max }$ is always found for $n=3 m / 2$ and is increasing in m.
(e) For $169 \leq m \leq 199$ and $m<n \leq 200$, the largest $r_{\max }$ occurs for $n=m+1$.
(f) For $m=1$ and $4 \leq n \leq 200$, the largest $r_{\max }=0.990606$ occurs for $n=4$ and $d=1$. For $m=2$ and $4 \leq n \leq 200$, the largest $r_{\max }=0.959461$ occurs for $n=4$ and $d=1$.

In light of Fact 2(c) we further found:
3. Fact. For $n=2 m$:
(a) For $3 \leq m \leq 300$, the $D K W M$ inequality holds; $r_{\max }(m, 2 m)$ has relative minima at $m=6,10$, and 16 but is increasing for $m \geq 16$, up to 0.9830 at $m=300$.
(b) The p-values forming the numerators of $r_{\max }$ for $100 \leq m \leq 300$ are largest for $m=103$ where $p \doteq 0.3019$ and smallest at $m=294$ where $p \doteq 0.2189$.
(c) For $101 \leq m \leq 199$, the smallest $r_{\max }$ for $n=2 m$, namely $r_{\max }(101,202) \doteq$ 0.97334, is larger than every $r_{\max }\left(m^{\prime}, n^{\prime}\right)$ for $101 \leq m^{\prime}<n^{\prime} \leq 200$, all of which are less than 0.95 , the largest being $r_{\max }(132,198) \doteq 0.9496$.
(d) For $3 \leq m \leq 300$, $r_{\max }$ is attained at $d_{\max }=k_{\max } / n$ which is decreasing in n when $k_{\max }$ is constant but jumps upward when $k_{\max }$ does; $k_{\max }$ is nondecreasing in m.

The next fact shows that for a wide range of pairs (m, n), but not including any with $n=m$ or $n=2 m$, the correct p-value $P_{m, n, M}$ is substantially less than its upper bound $2 \exp \left(-2 M^{2}\right)$ and in cases of possible significance at the 0.05 level or less, likewise less than the asymptotic p-value $\beta(M)$:
4. Fact. Let $100<m<n \leq 200$. Then:
(a) The ratio $2 \exp \left(-2 M^{2}\right) / P_{m, n, M}$ is always at least 1.05 for all possible values of M in (3). The same is true if the numerator is replaced by the asymptotic probability $\beta(M)$ and $\beta(M) \leq 0.05$.
(b) If in addition $m=101,103,107,109$, or 113 , then part (a) holds with 1.05 replaced by 1.09.

Remark. We found that in some ranges $d_{0}(m, n) \leq D_{m, n} \leq 1 / 2$, too few significant digits of small p-values (less than 10^{-14}) could be computed by the method we used for $0<D_{m, n}<d_{0}(m, n)$. But, one can compute accurately an upper bound for such p-values, which we used to verify Facts 2, 3, and 4 for those ranges. We give details in Section 3 and Appendix B.

We have in the numerator of $r_{\max }$ the p-values of 0.2189 (corresponding to $m=$ 294) or more in Fact 3(b) (Table 8), and similarly p-values of 0.26 or more in Table 6 and 0.27 or more in Table 7. These substantial p-values suggest, although they of course do not prove, that more generally, large $r_{\text {max }}$ do not tend to occur at small p-values.

2. Proof of Theorem 1

B. V. Gnedenko and V. S. Korolyuk in 1952 [9] gave an explicit formula for $P_{n, n, M}$, and M. Dwass (1967) [8] gave another proof. The technique is older: the reflection principle dates back to André [1]. Bachelier in 1901 [2] pp. 189-190] is the earliest reference we could find for the method of repeated reflections, applied to symmetric random walk. He emphasized that the formula there is rigorous ("rigoureusement exacte"). Expositions in several later books we have seen, e.g. in 1939 [4, p. 32], are not so rigorous, assuming a normal approximation and thus treating repeated reflections of Brownian motion. According to J. Blackman [5] p. $515]$ the null distribution of $\sup \left|F_{n}-G_{n}\right|$ had in effect "been treated extensively by Bachelier" in 1912, [3] "in connection with certain gamblers'-ruin problems."

The formula is given in the following proposition.
5. Proposition (Gnedenko and Korolyuk). If $M=k / \sqrt{2 n}$, where $1 \leq k \leq n$ is an integer, then

$$
\operatorname{Pr}\left(K S_{n, n} \geq M\right)=\frac{2}{\binom{2 n}{n}}\left(\sum_{i=1}^{\lfloor n / k\rfloor}(-1)^{i-1}\binom{2 n}{n+i k}\right)
$$

Since the probability $P_{n, n, M}=\operatorname{Pr}\left(K S_{n, n} \geq M\right)$ is clearly not greater than 1 , we just need to consider the M such that

$$
2 e^{-2 M^{2}} \leq 1
$$

i.e., we just need to consider the integer pairs (n, k) where

$$
\begin{equation*}
k \geq \sqrt{n \ln 2} \tag{8}
\end{equation*}
$$

The exact formula for $P_{n, n, M}$ is complicated. Thus we want to determine upper bounds for $P_{n, n, M}$ which are of simpler forms. We prove the main theorem by two steps: we first find two such upper bounds for $P_{n, n, M}$ as in Lemma 6 and 14 and then show (6) holds when $P_{n, n, M}$ is replaced by the two upper bounds for two ranges of pairs (k, n) respectively, as will be stated in Propositions 13 and 16 ,
6. Lemma. An upper bound for $P_{n, n, M}$ can be given by $2\binom{2 n}{n+k} /\binom{2 n}{n}$.

Proof. This is clear from Proposition [5] since the summands alternate in signs and decrease in magnitude. Therefore we must have

$$
\sum_{i=2}^{\lfloor n / k\rfloor}(-1)^{i-1}\binom{2 n}{n+i k} \leq 0
$$

As a consequence of Lemma (6) to prove (6) for a pair (n, k), it will suffice to show that

$$
\begin{equation*}
2\binom{2 n}{n+k} /\binom{2 n}{n}<2 \exp \left(-k^{2} / n\right) \tag{9}
\end{equation*}
$$

We first define some auxiliary functions.
7. Notation. For all $n, k \in \mathbb{R}$ such that $1 \leq k \leq n$, define

$$
P H(n, k):=\ln \binom{2 n}{n+k}-\ln \binom{2 n}{n}+\frac{k^{2}}{n}
$$

where for $n_{1} \geq n_{2}$,

$$
\binom{n_{1}}{n_{2}}=\frac{\Gamma\left(n_{1}+1\right)}{\Gamma\left(n_{1}-n_{2}+1\right) \Gamma\left(n_{2}+1\right)}
$$

and $\Gamma(x)$ is the Gamma function, defined for $x>0$ by

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

It satisfies the well-known recurrence $\Gamma(x+1) \equiv x \Gamma(x)$.
It is clear that $P H(n, k) \leq 0$ if and only if (9) holds.
8. Notation. For all $n, k \in \mathbb{R}$ such that $1 \leq k \leq n$, define

$$
\begin{align*}
D P H(n, k) & :=P H(n, k)-P H(n, k-1) \\
& =\ln \left(\frac{n-k+1}{n+k}\right)+\frac{2 k-1}{n} . \tag{10}
\end{align*}
$$

9. Lemma. When $n \geq 19, \operatorname{DPH}(n, k)$ is decreasing in k when $k \geq \sqrt{n \ln 2}$.

Proof. Clearly $D P H(n, k)$ is differentiable with respect to k on the domain $n, k \in \mathbb{R}$ such that $n>0$ and $0<k<n+1 / 2$, with partial derivative given by

$$
\begin{equation*}
\frac{\partial}{\partial k} D P H(n, k)=\frac{-2 k^{2}+2 k+n}{n\left(-k^{2}+k+n^{2}+n\right)} . \tag{11}
\end{equation*}
$$

It is easy to check that the denominator is positive on the given domain. Thus (11) is greater than 0 if and only if $-2 k^{2}+2 k+n>0$, which is equivalent to

$$
\frac{1}{2}(1-\sqrt{2 n+1})<k<\frac{1}{2}(1+\sqrt{2 n+1}) .
$$

Since we have that when $n \geq 19$,

$$
\sqrt{n \ln 2}>\frac{1}{2}(1+\sqrt{2 n+1})
$$

$\operatorname{DPH}(n, k)$ is decreasing in k whenever $n \geq 19$.
10. Lemma. (a) For $0<\alpha<2 / \sqrt{\ln 2}$ and all $n \geq 1$,

$$
\begin{equation*}
n-\alpha \sqrt{n} \sqrt{\ln 2}+1>0 \tag{12}
\end{equation*}
$$

(b) For $\sqrt{3 /(2 \ln 2)}<\alpha<2 / \sqrt{\ln 2}$ and n large enough,

$$
\frac{d}{d n} D P H(n, \alpha \sqrt{n \ln 2})>0
$$

(c) For $n \geq 3, D P H(n, \sqrt{3 n})$ is increasing in n.
(d) $\operatorname{DPH}(n, \sqrt{3 n}) \rightarrow 0$ as $n \rightarrow \infty$.
(e) For all $n \geq 3$, $D P H(n, \sqrt{3 n})<0$.

Proof. Part (a) holds because the left side of (12), as a quadratic in \sqrt{n}, has the leading term $n=\sqrt{n}^{2}>0$ and discriminant $\Delta=\alpha^{2} \ln 2-4<0$ under the assumption.

For part (b), by plugging $k=\alpha \sqrt{n \ln 2}$ into $\operatorname{DPH}(n, k)$, we have

$$
\begin{equation*}
D P H(n, \alpha \sqrt{n \ln 2})=\frac{2 \alpha \sqrt{n \ln 2}-1}{n}+\ln \left(\frac{-\alpha \sqrt{n \ln 2}+n+1}{\alpha \sqrt{n \ln 2}+n}\right) \tag{13}
\end{equation*}
$$

which is well-defined by part (a). It is differentiable with respect to n with derivative given by

$$
\begin{align*}
& \frac{d}{d n} D P H(n, \alpha \sqrt{n \ln 2}) \\
= & \frac{n\left(2 \alpha^{3} \ln ^{\frac{3}{2}}(2)-3 \alpha \sqrt{\ln 2}\right)+\sqrt{n}\left(2-4 \alpha^{2} \ln 2\right)+2 \alpha \sqrt{\ln 2}}{2 n^{2}(\alpha \sqrt{\ln 2}+\sqrt{n})(-\alpha \sqrt{n} \sqrt{\ln 2}+n+1)} . \tag{14}
\end{align*}
$$

By part (a), the denominator

$$
2 n^{2}(\alpha \sqrt{\ln 2}+\sqrt{n})(-\alpha \sqrt{n} \sqrt{\ln 2}+n+1)
$$

is positive. The numerator will be positive for n large enough, since the coefficient of its leading term,

$$
2 \alpha^{3} \ln ^{3 / 2}(2)-3 \alpha \sqrt{\ln 2}
$$

is positive by the assumption $\alpha>\sqrt{3 /(2 \ln 2)}$ in this part. So part (b) is proved.
For part (c), when $\alpha=\sqrt{3} / \sqrt{\ln 2}$, we have

$$
\frac{d}{d n} D P H(n, \sqrt{3 n})=\frac{3 \sqrt{3} n-10 \sqrt{n}+2 \sqrt{3}}{2(\sqrt{n}+\sqrt{3})(n-\sqrt{3} \sqrt{n}+1) n^{2}} .
$$

This is clearly positive when $3 \sqrt{3} n-10 \sqrt{n}+2 \sqrt{3} \geq 0$, which always holds when $n \geq 3$. This proves part (c).

For part (d), plugging $\alpha=\sqrt{3 / \ln 2}$ into (13), we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \operatorname{DPH}(n, \sqrt{3 n}) \\
= & \lim _{n \rightarrow \infty}\left(\frac{2 \sqrt{3 n}-1}{n}+\ln \left(\frac{n-\sqrt{3 n}+1}{n+\sqrt{3 n}}\right)\right) \\
= & 0
\end{aligned}
$$

proving part (d). Part (e) then follows from parts (c) and (d).
11. Lemma. For $n \geq 1$,

$$
D P H(n, \sqrt{n \ln 2})>0
$$

Proof. By (14) for $\alpha<2 / \sqrt{\ln 2}$, in this case $\alpha=1$, we have that

$$
\frac{d}{d n} D P H(n, \sqrt{n \ln 2})=\frac{n\left(2 \ln ^{3 / 2}(2)-3 \sqrt{\ln 2}\right)+\sqrt{n}(2-4 \ln 2)+2 \sqrt{\ln 2}}{2 n^{2}(\sqrt{n}+\sqrt{\ln 2})(n-\sqrt{n} \sqrt{\ln 2}+1)} .
$$

The denominator is always positive for $n \geq 1$ by (12). The numerator as a quadratic in \sqrt{n} has leading coefficient $2 \ln ^{3 / 2}(2)-3 \sqrt{\ln 2}<0$. This quadratic also has a negative discriminant, so the numerator is always negative when $n \geq 1$.

Similarly, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \operatorname{DPH}(n, \sqrt{n \ln 2}) \\
= & \lim _{n \rightarrow \infty}\left(\frac{2 \sqrt{n \ln 2}-1}{n}+\ln \left(\frac{n-\sqrt{n \ln 2}+1}{n+\sqrt{n \ln 2}}\right)\right) \\
= & 0
\end{aligned}
$$

DVORETZKY-KIEFER-WOLFOWITZ INEQUALITIES FOR THE TWO-SAMPLE CASE 7
Therefore $\operatorname{DPH}(n, \sqrt{n \ln 2})>0$ for all $n \geq 1$.

Summarizing Lemmas 9 10, and 11, we have the following corollary:
12. Corollary. For any fixed $n \geq 19, \operatorname{DPH}(n, k)$ is decreasing in k when $k \geq$ $\sqrt{n \ln 2}$. Furthermore,

$$
D P H(n, \sqrt{n \ln 2})>0, D P H(n, \sqrt{3 n})<0
$$

13. Proposition. The inequality (6) holds for all integers n, k such that $n \geq 108$ and $\sqrt{3 n} \leq k \leq n$.

Proof. By Lemma6, the probability $P_{n, n, M}$ is bounded above by $2\binom{2 n}{n+k} /\binom{2 n}{n}$. We here prove this proposition by showing that (9) holds for all integers n, k such that $\sqrt{3 n} \leq k \leq n$ and $n \geq 108$.

To prove (9) is equivalent to proving

$$
\begin{equation*}
\ln \binom{2 n}{n+k}-\ln \binom{2 n}{n}+\frac{k^{2}}{n}<0 \tag{15}
\end{equation*}
$$

for $k=t \sqrt{n}$ where $t \geq \sqrt{3}$, by Notation 7 .
Rewriting (15), we need to show that for $k \geq \sqrt{3 n}$,

$$
\begin{equation*}
\ln \left(\frac{n!n!}{(n+k)!(n-k)!}\right)+\frac{k^{2}}{n}<0 \tag{16}
\end{equation*}
$$

We will use Stirling's formula with error bounds. Recall that one form of such bounds 13 states that

$$
\sqrt{2 \pi} \exp \left(\frac{1}{12 s}-\frac{1}{360 s^{3}}-s\right) s^{s+1 / 2} \leq s!\leq \sqrt{2 \pi} \exp \left(\frac{1}{12 s}-s\right) s^{s+1 / 2}
$$

for any positive integer s. We plug the bounds for s ! into $\frac{n!n!}{(n+k)!(n-k)!}$, getting

$$
\frac{n!n!}{(n+k)!(n-k)!} \leq \frac{n^{2 n+1}(n+k)^{-n-k-\frac{1}{2}}(n-k)^{k-n-\frac{1}{2}} \exp \left(\frac{1}{6 n}\right)}{\exp \left(\frac{1}{12}\left[\frac{1}{n+k}+\frac{1}{n-k}\right]-\frac{1}{360}\left[\frac{1}{(n+k)^{3}}+\frac{1}{(n-k)^{3}}\right]\right)}
$$

By taking logarithms of both sides of the preceding inequality, we have
LHS of (16) $\leq \frac{k^{2}}{n}+\frac{1}{6 n}-\frac{1}{12}\left(\frac{1}{n+k}+\frac{1}{n-k}\right)+\frac{1}{360}\left(\frac{1}{(n+k)^{3}}+\frac{1}{(n-k)^{3}}\right)$

$$
\begin{equation*}
-\left(n+k+\frac{1}{2}\right) \ln \left(1+\frac{k}{n}\right)-\left(n-k+\frac{1}{2}\right) \ln \left(1-\frac{k}{n}\right) \tag{17}
\end{equation*}
$$

Plugging $k=t \sqrt{n}$ into the RHS of (17), we can write the result as $I_{1}+I_{2}+I_{3}$, where

$$
\begin{aligned}
I_{1}= & -n\left(\left(1-\frac{t}{\sqrt{n}}\right) \ln \left(1-\frac{t}{\sqrt{n}}\right)+\left(\frac{t}{\sqrt{n}}+1\right) \ln \left(\frac{t}{\sqrt{n}}+1\right)\right) \\
I_{2}= & -\frac{1}{2}\left(\ln \left(1-\frac{t}{\sqrt{n}}\right)+\ln \left(\frac{t}{\sqrt{n}}+1\right)\right) \\
I_{3}= & -\frac{1}{12(n-\sqrt{n} t)}-\frac{1}{12(\sqrt{n} t+n)}+\frac{1}{360(n-\sqrt{n} t)^{3}}+\frac{1}{360(\sqrt{n} t+n)^{3}} \\
& +\frac{1}{6 n}+t^{2}
\end{aligned}
$$

Then we want to prove that for n large enough,

$$
\begin{equation*}
I_{1}+I_{2}+I_{3}<0 \tag{18}
\end{equation*}
$$

Then as a consequence, (16) will hold.
By Corollary 12 and the fact that $P H(n, k)$ is decreasing in k for n, k integers and $k \geq t \sqrt{n}$ where $t \geq \sqrt{3}$, if we can show that (18) holds for the smallest integer k such that $\sqrt{3 n} \leq k \leq n$, then (15) will hold for all integers $\sqrt{3 n} \leq k \leq n$. Notice that if k is the smallest integer not smaller than $\sqrt{3 n}$, then $\sqrt{3 n} \leq k<\sqrt{3 n}+1$. It is equivalent to say that $\sqrt{3} \leq t \leq(\sqrt{3 n}+1) / \sqrt{n}$, and the RHS is smaller than 2 for all $n \geq 14$. So our goal now is to prove (18) holds for all $n \geq 108$, as assumed in the proposition, and $\sqrt{3} \leq t<2$.

By Taylor's expansion of $(1+x) \ln (1+x)+(1-x) \ln (1-x)$ around $x=0$, we find an upper bound for I_{1}, given by

$$
\begin{align*}
I_{1} & =-n\left(\sum_{i=1}^{\infty} \frac{t^{2 i}}{n^{i} i(2 i-1)}\right) \tag{19}\\
& <-t^{2}-\frac{t^{4}}{6 n}-\frac{t^{6}}{15 n^{2}}-\frac{t^{8}}{28 n^{3}}
\end{align*}
$$

For I_{2}, by using Taylor's expansion again, we have

$$
\begin{align*}
I_{2}=-\frac{1}{2}\left(\ln \left(1-\frac{t^{2}}{n}\right)\right) & =\sum_{j=1}^{\infty} \frac{1}{2 j}\left(\frac{t^{2}}{n}\right)^{j} \tag{20}\\
& \leq \frac{t^{2}}{2 n}+\frac{t^{4}}{4 n^{2}}+\frac{1}{2} R_{3}
\end{align*}
$$

where $R_{3}=\sum_{j=3}^{\infty} \frac{1}{j}\left(\frac{t^{2}}{n}\right)^{j}<\frac{1}{3} \sum_{j=3}^{\infty}\left(\frac{t^{2}}{n}\right)^{j}=t^{6} /\left[3 n^{3}\left(1-\frac{t^{2}}{n}\right)\right]$.
We only need to show (18) holds for all $\sqrt{3} \leq t<2$, and thus want to bound $t^{6} /\left[3 n^{3}\left(1-\frac{t^{2}}{n}\right)\right]$ by a sharp upper bound. This means we want $\frac{t}{\sqrt{n}}$ to be small. We have $n \geq 64$, which implies $\frac{t}{\sqrt{n}}<\frac{1}{4}$. Then we have an upper bound for R_{3} :

$$
R_{3} \leq \frac{1}{3} \frac{t^{6}}{\left(15 n^{3} / 16\right)}
$$

It follows that

$$
\begin{equation*}
I_{2} \leq \frac{t^{2}}{2 n}+\frac{t^{4}}{4 n^{2}}+\frac{8 t^{6}}{45 n^{3}} \tag{21}
\end{equation*}
$$

We now bound I_{3} by studying two summands separately. For the first part of I_{3}, we have

$$
\begin{aligned}
-\frac{1}{12(n-\sqrt{n} t)}-\frac{1}{12(\sqrt{n} t+n)} & =-\frac{1}{12 n}\left(\frac{1}{1-t / \sqrt{n}}+\frac{1}{1+t / \sqrt{n}}\right) \\
& =-\frac{1}{6 n}\left(1+\left(\frac{t}{\sqrt{n}}\right)^{2}+\left(\frac{t}{\sqrt{n}}\right)^{4}+\ldots\right) \\
& <-\frac{1}{6 n}-\frac{t^{2}}{6 n^{2}}
\end{aligned}
$$

For the second part of I_{3}, we have that when $t / \sqrt{n} \leq 1 / 4$,

$$
\begin{aligned}
\frac{1}{(\sqrt{n} t+n)^{3}}+\frac{1}{(n-\sqrt{n} t)^{3}} & =\frac{1}{n^{3}}\left(\frac{1}{(1+t / \sqrt{n})^{3}}+\frac{1}{(1-t / \sqrt{n})^{3}}\right) \\
& <\frac{1}{n^{3}}\left(\frac{1}{(5 / 4)^{3}}+\frac{1}{(3 / 4)^{3}}\right) \\
& <3 / n^{3}
\end{aligned}
$$

Therefore we have

$$
I_{3}<-\frac{t^{2}}{6 n^{2}}+\frac{3}{n^{3}}+t^{2}
$$

Summing I_{1} through I_{3}, we have

$$
\begin{align*}
I_{1}+I_{2}+I_{3} & <t^{2}-\frac{t^{8}}{28 n^{3}}-\frac{t^{6}}{15 n^{2}}-\frac{t^{4}}{6 n}-t^{2}+\frac{t^{2}}{2 n}+\frac{t^{4}}{4 n^{2}}+\frac{8 t^{6}}{45 n^{3}}-\frac{t^{2}}{6 n^{2}}+\frac{3}{n^{3}} \\
\text { 2) } & <\frac{1}{n}\left(\frac{t^{2}}{2}-\frac{t^{4}}{6}\right)+\frac{1}{n^{2}}\left(-\frac{t^{2}}{6}+\frac{t^{4}}{4}-\frac{t^{6}}{15}\right)+\frac{1}{n^{3}}\left(3-\frac{t^{8}}{28}+\frac{8 t^{6}}{45}\right) \tag{22}
\end{align*}
$$

when $\frac{t}{\sqrt{n}}<\frac{1}{4}$, i.e., $n \geq 16 t^{2}$.
We now want to show that $I_{1}+I_{2}+I_{3}<0$ for all $n \geq 108$ and $\sqrt{3} \leq t<2$. We will consider the coefficients of $\frac{1}{n}, \frac{1}{n^{2}}, \frac{1}{n^{3}}$ in (22). The coefficient of $\frac{1}{n}$ is $\frac{t^{2}}{2}-\frac{t^{4}}{6}$, which is decreasing in t when $\sqrt{3} \leq t<2$; thus by plugging in $t=\sqrt{3}$, we have

$$
\frac{t^{2}}{2}-\frac{t^{4}}{6} \leq 0
$$

The coefficient of $\frac{1}{n^{2}}$ is $-\frac{t^{6}}{15}+\frac{t^{4}}{4}-\frac{t^{2}}{6}$, which is also decreasing in t when $\sqrt{3} \leq t<2$. Thus by plugging in $t=\sqrt{3}$, we have

$$
-\frac{t^{6}}{15}+\frac{t^{4}}{4}-\frac{t^{2}}{6} \leq-\frac{1}{20}
$$

The coefficient of $\frac{1}{n^{3}}$ is $-\frac{t^{8}}{28}+\frac{8 t^{6}}{45}+3$. By calculation, we have that when $\sqrt{3} \leq t<2$,

$$
-\frac{t^{8}}{28}+\frac{8 t^{6}}{45}+3<5.4
$$

Thus when $n \geq 108>64$ and $\sqrt{3} \leq t<2$, we have

$$
\begin{equation*}
I_{1}+I_{2}+I_{3}<\frac{5.4}{n^{3}}-\frac{1}{20 n^{2}} \tag{23}
\end{equation*}
$$

Therefore if we can show that for some n,

$$
\begin{equation*}
\frac{5.4}{n^{3}}-\frac{1}{20 n^{2}} \leq 0 \tag{24}
\end{equation*}
$$

then $I_{1}+I_{2}+I_{3}<0$ for those n. Solving (24), we obtain $n \geq 108$.
Remark. The coefficient of $\frac{1}{n}$ in (22) is the same as the coefficient of $\frac{1}{n}$ in the Taylor expansion of $I_{1}+I_{2}+I_{3}$. So when the leading coefficient $\frac{t^{2}}{2}-\frac{t^{4}}{6}$ is positive, i.e., $t<\sqrt{3}$, the upper bound $2\binom{2 n}{n+k} /\binom{2 n}{n}$ from Lemma 6 will tend to be larger than $e^{-k^{2} / n}$.

Now we want to show that (6) holds for all integer pairs $(n, t \sqrt{n})$ with $\sqrt{\ln 2}<$ $t<\sqrt{3}$ and n greater than some fixed value. By the argument in the remark, we need to choose another upper bound for $P_{n, n, M}$.
14. Lemma. We have $P_{n, n, M} \leq \frac{2\binom{2 n}{n+k}-\binom{2 n}{n+2 k}}{\binom{2 n}{n}}$, where $M=k / \sqrt{2 n}$, $k=$ $1, \ldots, n$.

Proof. Let A be the event that $\sup \sqrt{n}\left(F_{n}-G_{n}\right) \geq M$ and B the event that $\inf \sqrt{n}\left(F_{n}-G_{n}\right) \leq-M$. We want an upper bound for $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+$ $\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$. Let S_{j} be the value after j steps of a simple, symmetric random walk on the integers starting at 0 . Then

$$
\operatorname{Pr}\left(S_{2 n}=2 m\right)=\frac{1}{4^{n}}\binom{2 n}{n+m}
$$

for $m=-n,-n+1, \cdots, n-1, n$. By a well-known reflection principle we have nice exact expressions for $\operatorname{Pr}(A)$ and $\operatorname{Pr}(B)$,

$$
\operatorname{Pr}(A)=\operatorname{Pr}(B)=\frac{\operatorname{Pr}\left(S_{2 n}=2 k\right)}{\operatorname{Pr}\left(S_{2 n}=0\right)}=\frac{\binom{2 n}{n+k}}{\binom{2 n}{n}}
$$

Therefore we want a lower bound for $\operatorname{Pr}(A \cap B)$. Let C be the event that for some $s<t, \sqrt{n}\left(F_{n}-G_{n}\right)(s) \geq M$ and $\sqrt{n}\left(F_{n}-G_{n}\right)(t) \leq-M$. Then we can exactly evaluate $\operatorname{Pr}(C)$ by two reflections, e.g. [9], specifically,

$$
\operatorname{Pr}(C)=\frac{\operatorname{Pr}\left(S_{2 n}=4 k\right)}{\operatorname{Pr}\left(S_{2 n}=0\right)}=\frac{\binom{2 n}{n+2 k}}{\binom{2 n}{n}},
$$

and $C \subset A \cap B$, so the bound holds.
15. Lemma. Let n, k be positive integers, $n \geq 372$, and $\sqrt{2 n}<k=t \sqrt{n} \leq \sqrt{3 n}$. Then

$$
\binom{2 n}{n+2 k}>\binom{2 n}{n+k} e^{-3 t^{2}-0.05}
$$

Proof. By Stirling's formula with error bounds, we have

$$
\ln \left(\frac{\binom{2 n}{n+2 k}}{\binom{2 n}{n+k}}\right)=\ln \left(\frac{(n+k)!(n-k)!}{(n+2 k)!(n-2 k)!}\right)>\ln \left(A_{n}\right)
$$

where A_{n} is defined as

$$
\frac{(n-k)^{n-k+\frac{1}{2}}(k+n)^{k+n+\frac{1}{2}} \exp \left(\frac{1}{12}\left[\frac{1}{k+n}+\frac{1}{n-k}\right]-\frac{1}{360}\left[\frac{1}{(k+n)^{3}}+\frac{1}{(n-k)^{3}}\right]\right)}{\exp \left(\frac{1}{12(2 k+n)}+\frac{1}{12(n-2 k)}\right)(n-2 k)^{-2 k+n+1 / 2}(2 k+n)^{2 k+n+1 / 2}},
$$

and so

$$
\begin{align*}
\ln \left(A_{n}\right)= & -\frac{1}{12(2 k+n)}-\frac{1}{12(n-2 k)}+\frac{1}{12(n-k)}+\frac{1}{12(k+n)} \\
& -\frac{1}{360(n-k)^{3}}-\frac{1}{360(k+n)^{3}}-\left(-2 k+n+\frac{1}{2}\right) \ln (n-2 k) \\
& +\left(-k+n+\frac{1}{2}\right) \ln (n-k)+\left(k+n+\frac{1}{2}\right) \ln (k+n) \\
& -\left(2 k+n+\frac{1}{2}\right) \ln (2 k+n) \\
= & I_{4}+I_{5}, \tag{25}
\end{align*}
$$

where

$$
\begin{aligned}
I_{4}= & -\left(-2 k+n+\frac{1}{2}\right) \ln (n-2 k)+\left(-k+n+\frac{1}{2}\right) \ln (n-k) \\
& +\left(k+n+\frac{1}{2}\right) \ln (k+n)-\left(2 k+n+\frac{1}{2}\right) \ln (2 k+n) \\
I_{5}= & \frac{1}{12(n-k)}+\frac{1}{12(k+n)}-\frac{1}{12(2 k+n)}-\frac{1}{12(n-2 k)} \\
& -\frac{1}{360(n-k)^{3}}-\frac{1}{360(k+n)^{3}} .
\end{aligned}
$$

Using again (19) and (20), we have for $|x|<1$,

$$
\begin{aligned}
x^{2}+\frac{x^{4}}{6} & <(1-x) \ln (1-x)+(x+1) \ln (x+1) \\
& <x^{2}+\frac{x^{4}}{6}+\frac{1}{15} \sum_{i=3}^{\infty} x^{2 i}=x^{2}+\frac{x^{4}}{6}+\frac{x^{6}}{15\left(1-x^{2}\right)}
\end{aligned}
$$

and also

$$
\begin{aligned}
-x^{2} & >\ln (1-x)+\ln (x+1) \\
& >-x^{2}-\frac{1}{2} \sum_{i=2}^{\infty} x^{2 i}=-x^{2}-\frac{1}{2} \frac{x^{4}}{\left(1-x^{2}\right)}
\end{aligned}
$$

So by plugging in $k=t \sqrt{n}$, we have that for $\frac{t}{\sqrt{n}}<\frac{1}{4}$,

$$
\begin{aligned}
I_{4}= & n\left(\left(1-\frac{k}{n}\right) \ln \left(1-\frac{k}{n}\right)+\left(\frac{k}{n}+1\right) \ln \left(\frac{k}{n}+1\right)\right) \\
& +\frac{1}{2}\left(\ln \left(1-\frac{k}{n}\right)+\ln \left(\frac{k}{n}+1\right)\right) \\
& -n\left(\left(1-\frac{2 k}{n}\right) \ln \left(1-\frac{2 k}{n}\right)+\left(\frac{2 k}{n}+1\right) \ln \left(\frac{2 k}{n}+1\right)\right) \\
& -\frac{1}{2}\left(\ln \left(1-\frac{2 k}{n}\right)+\ln \left(\frac{2 k}{n}+1\right)\right) \\
> & n\left(\left(\frac{t}{\sqrt{n}}\right)^{2}+\frac{1}{6}\left(\frac{t}{\sqrt{n}}\right)^{4}\right)-\frac{1}{2}\left(\left(\frac{t}{\sqrt{n}}\right)^{2}+\frac{8}{15}\left(\frac{t}{\sqrt{n}}\right)^{4}\right) \\
& -n\left(\left(\frac{2 t}{\sqrt{n}}\right)^{2}+\frac{1}{6}\left(\frac{2 t}{\sqrt{n}}\right)^{4}+\frac{4}{45}\left(\frac{2 t}{\sqrt{n}}\right)^{6}\right)+\frac{1}{2}\left(\frac{2 t}{\sqrt{n}}\right)^{2} \\
= & t^{2}+\frac{t^{4}}{6 n}-\frac{t^{2}}{2 n}-\frac{4 t^{4}}{15 n^{2}}-4 t^{2}-\frac{8 t^{4}}{3 n}-\frac{256 t^{6}}{45 n^{2}}+\frac{2 t^{2}}{n} \\
= & -\frac{1}{n^{2}}\left(\frac{256 t^{6}}{45}+\frac{4 t^{4}}{15}\right)+\frac{1}{n}\left(\frac{3 t^{2}}{2}-\frac{5 t^{4}}{2}\right)-3 t^{2} .
\end{aligned}
$$

Now we proceed to find a lower bound for I_{5}. For all $k \leq n / 8$, in other words $t:=k / \sqrt{n}$ such that $8 t \leq \sqrt{n}$,

$$
\begin{aligned}
I_{5}= & \frac{1}{12}\left(\frac{1}{n-k}+\frac{1}{k+n}-\frac{1}{(2 k+n)}-\frac{1}{(n-2 k)}\right) \\
& -\frac{1}{360}\left(\frac{1}{(k+n)^{3}}+\frac{1}{(n-k)^{3}}\right) \\
= & \frac{1}{12}\left(\frac{1}{\sqrt{n} t+n}+\frac{1}{n-\sqrt{n} t}-\frac{1}{2 \sqrt{n} t+n}-\frac{1}{n-2 \sqrt{n} t}\right) \\
& -\frac{1}{360}\left(\frac{1}{(\sqrt{n} t+n)^{3}}+\frac{1}{(n-\sqrt{n} t)^{3}}\right) \\
= & \frac{1}{6\left(n-t^{2}\right)}-\frac{1}{6\left(n-4 t^{2}\right)}-\frac{n+3 t^{2}}{180 n\left(n-t^{2}\right)^{3}} \\
> & \frac{1}{6 n}-\frac{1}{3 n}-\frac{n+3 t^{2}}{90 n^{4}} \\
= & -\frac{1}{6 n}-\frac{1}{90 n^{3}}-\frac{t^{2}}{30 n^{4}} .
\end{aligned}
$$

Since $t \leq \sqrt{3}$, we know that as long as $n \geq 192$, the condition $8 t \leq \sqrt{n}$ will hold.
Adding our lower bounds for I_{4} and I_{5}, we have that when $n \geq 192$ and $\sqrt{\ln 2} \leq$ $t \leq \sqrt{3}$,

$$
\begin{align*}
I_{4}+I_{5} & >-\frac{t^{2}}{30 n^{4}}-\frac{1}{90 n^{3}}-\frac{1}{n^{2}}\left(\frac{256 t^{6}}{45}+\frac{4}{15} t^{4}\right)-\frac{1}{n}\left(\frac{5 t^{4}}{2}-\frac{3 t^{2}}{2}+\frac{1}{6}\right)-3 t^{2} \\
& >-3 t^{2}-\gamma \tag{26}
\end{align*}
$$

for some γ. When $\gamma=0.05$, we want to show that for n large enough, (26) always holds. In other words, we need

$$
\begin{equation*}
0.05>\frac{t^{2}}{30 n^{4}}+\frac{1}{90 n^{3}}+\frac{1}{n^{2}}\left(\frac{256 t^{6}}{45}+\frac{4}{15} t^{4}\right)+\frac{1}{n}\left(\frac{5 t^{4}}{2}-\frac{3 t^{2}}{2}+\frac{1}{6}\right) \tag{27}
\end{equation*}
$$

Notice that when $\sqrt{\ln 2}<t<\sqrt{3}$, the coefficient $\frac{5 t^{4}}{2}-\frac{3 t^{2}}{2}+\frac{1}{6}$ is positive and is increasing in t; the RHS of (27) is increasing in t and decreasing in n. Thus we just need to make sure the inequality holds for $t=\sqrt{3}$. Therefore we need

$$
\begin{equation*}
0.05>\frac{1}{10 n^{4}}+\frac{1}{90 n^{3}}+\frac{156}{n^{2}}+\frac{109}{6 n} \tag{28}
\end{equation*}
$$

Solving (28) numerically, we find that it holds for $n \geq 372$.
Therefore, by (25) and (26), we have shown that when $n \geq 372$,

$$
\ln \left[\binom{2 n}{n+2 k} /\binom{2 n}{n+k}\right]>-3 t^{2}-0.05
$$

for $k=t \sqrt{n}$ and $\sqrt{\ln 2}<t<\sqrt{3}$, proving Lemma 15 ,
16. Proposition. Let $k=t \sqrt{n}$, where $\sqrt{\ln 2}<t<\sqrt{3}$, and k, n integers. Then the inequality

$$
\left[2\binom{2 n}{n+k}-\binom{2 n}{n+2 k}\right] /\binom{2 n}{n}<2 \exp \left(-k^{2} / n\right)
$$

holds for $n \geq 6395$.
Proof. By Lemma 15, it will suffice to show that for $n \geq 6395>372$,

$$
\begin{equation*}
\binom{2 n}{n+k}\left(1-e^{-3 t^{2}-0.05} / 2\right) /\binom{2 n}{n}<\exp \left(-k^{2} / n\right) \tag{29}
\end{equation*}
$$

Rewriting (29) by taking logarithms of both sides, we just need to show

$$
\ln \binom{2 n}{n+k}-\ln \binom{2 n}{n}+\frac{k^{2}}{n}+\ln \left(1-e^{-3 t^{2}-0.05} / 2\right)<0
$$

By (16), (17), and (22), we have that

$$
\ln \binom{2 n}{n+k}-\ln \binom{2 n}{n}+\frac{k^{2}}{n}<\frac{3-\frac{t^{8}}{28}+\frac{4 t^{6}}{45}}{n^{3}}+\frac{-\frac{t^{2}}{6}+\frac{t^{4}}{4}-\frac{t^{6}}{15}}{n^{2}}+\frac{\frac{t^{2}}{2}-\frac{t^{4}}{6}}{n}
$$

for $n>16 t^{2}$. So now we just need

$$
\begin{equation*}
\frac{3-\frac{t^{8}}{28}+\frac{4 t^{6}}{45}}{n^{3}}+\frac{-\frac{t^{2}}{6}+\frac{t^{4}}{4}-\frac{t^{6}}{15}}{n^{2}}+\frac{\frac{t^{2}}{2}-\frac{t^{4}}{6}}{n}+\ln \left(1-e^{-3 t^{2}-0.05} / 2\right)<0 \tag{30}
\end{equation*}
$$

When $\sqrt{\ln 2}<t<\sqrt{3}$, the coefficient $\frac{t^{2}}{2}-\frac{t^{4}}{6}>0$. Next, using $t<\sqrt{3}$,

$$
\begin{aligned}
& \frac{1}{n^{3}}\left(3-\frac{t^{8}}{28}+\frac{4 t^{6}}{45}\right)+\frac{1}{n^{2}}\left(-\frac{t^{2}}{6}+\frac{t^{4}}{4}-\frac{t^{6}}{15}\right)+\frac{1}{n}\left(\frac{t^{2}}{2}-\frac{t^{4}}{6}\right) \\
< & \frac{1}{n}\left(\frac{t^{2}}{2}-\frac{t^{4}}{6}\right)+\frac{t^{4}}{4 n^{2}}+\frac{1}{n^{3}}\left(3+\frac{4 t^{6}}{45}\right) \\
< & \frac{1}{n}\left(\frac{t^{2}}{2}-\frac{t^{4}}{6}\right)+\frac{9}{4 n^{2}}+\frac{27}{5 n^{3}}
\end{aligned}
$$

Clearly, the maximum value of $\ln \left(1-e^{-3 t^{2}-0.05} / 2\right)$ for $\sqrt{\ln 2} \leq t \leq \sqrt{3}$ is achieved when $t=\sqrt{3}$. Plugging in $t=\sqrt{3}$ into $\ln \left(1-e^{-3 t^{2}-0.05} / 2\right)$, we have

$$
\ln \left(1-e^{-3 t^{2}-0.05} / 2\right) \leq-0.0000586972
$$

Now we find the maximum value of $\frac{t^{2}}{2}-\frac{t^{4}}{6}$ for $\sqrt{\ln 2} \leq t \leq \sqrt{3}$. The derivative with respect to t is $t-\frac{2 t^{3}}{3}$, which equals zero when $t=\sqrt{1.5}$. This critical point corresponds to the maximum value of $\frac{t^{2}}{2}-\frac{t^{4}}{6}$ for $\sqrt{\ln 2}<t<\sqrt{3}$, and this maximum value is 0.375 .

Accordingly, when $\sqrt{\ln 2}<t<\sqrt{3}$,

$$
\text { LHS of (30) }<-0.0000586972+\frac{9}{4 n^{2}}+\frac{39}{5 n^{3}}+\frac{3}{8 n} .
$$

We just need

$$
\begin{equation*}
-0.0000586972+\frac{9}{4 n^{2}}+\frac{39}{5 n^{3}}+\frac{3}{8 n}<0 \tag{31}
\end{equation*}
$$

The LHS of (31) is decreasing in $n>0$. By numerically solving the inequality in n we have that $n \geq 6395$. Therefore we have proved that when $n>6395$, the original inequality (6) holds for all positive integer pairs (k, n) such that $\sqrt{n \ln 2}<k<\sqrt{3 n}$ and $k \leq n$.

Recall that by (8), the inequality (6) holds for all $k \leq \sqrt{n \ln 2}$. Combining Propositions 13 and 16, we have the following conclusion.
17. Theorem. (a) When $n \geq 6395$, (6) holds for all (n, k) such that $0 \leq k \leq n$.
(b) When $6395>n \geq 372$, (6) holds for all integer pairs (n, k) such that $0 \leq k \leq$ $\sqrt{n \ln 2}$ and $\sqrt{3 n}<k \leq n$.

Then by computer searching for the rest of the integer pairs (n, k), namely, $1 \leq k \leq n$ when $1 \leq n \leq 371$ and $\sqrt{n \ln 2}<k \leq \sqrt{3 n}$ when $372 \leq n<6395$, we are able to find the finitely many counterexamples to the inequality (6), and thus prove Theorem 1 .

3. Treatment of $m \neq n$

3.1. One- and two-sided probabilities. For given positive integers $1 \leq m \leq n$ and d with $0<d \leq 1$, let $p v_{o s}$ be the one-sided probability

$$
\begin{equation*}
p v_{o s}(m, n, d)=\operatorname{Pr}\left(\sup _{x}\left(F_{m}-G_{n}\right)(x) \geq d\right)=\operatorname{Pr}\left(\inf _{x}\left(F_{m}-G_{n}\right)(x) \leq-d\right) \tag{32}
\end{equation*}
$$

where the equality holds by symmetry (reversing the order of the observations in the combined sample). Let the two-sided probability (p-value) be

$$
P(m, n ; d):=\operatorname{Pr}\left(\sup _{x}\left|\left(F_{m}-G_{n}\right)(x)\right| \geq d\right)
$$

The following is well known, e.g. for part (b), [10, p. 472], and easy to check:
18. Theorem. For any positive integers m and n and any d with $0<d \leq 1$ we have
(a) $p v_{o s}(m, n, d) \leq P(m, n ; d) \leq p v_{u b}(m, n, d):=2 p v_{o s}(m, n, d)$.
(b) If $d>1 / 2, P(m, n ; d)=p v_{u b}(m, n, d)$.
3.2. Computational methods. To compute p-values $P(m, n ; d)$ for the 2 -sample test for $d \leq 1 / 2$ we used the Hodges (1957) "inside" algorithm, for which Kim and Jennrich [11] gave a Fortran program and tables computed with it for $m \leq n \leq 100$. We further adapted the program to double precision. The method seems to work reasonably well for $m \leq n \leq 100$; for $n=2 m$ with $m \leq 94$ and $d=(m+1) / n$ it still gives one or two correct significant digits, see Table 1. The inside method finds p-values $\operatorname{Pr}\left(D_{m, n} \geq d\right)$ as $1-\operatorname{Pr}\left(D_{m, n}<d\right)$. When p-values are very small, e.g. of order 10^{-15}, the subtraction can lead to substantial or even total loss of significant digits, due to subtracting numbers very close to 1 from 1 (again see Table 1).

The one-sided probabilities $p v_{o s}(m, n, d)$ and thus $P(m, n ; d)$ for $d>1 / 2$ by Theorem 18(b) can be computed by an analogous "outside" method with only additions and multiplications (no subtractions), so it can compute much smaller probabilities very accurately. The smallest probability needed for computing the results of the paper is $\operatorname{Pr}\left(D_{300,600} \geq 1\right)$ which was evaluated by the outside program as $1.147212371856 \cdot 10^{-247}$, confirmed to the given number (13) of significant digits by evaluating $2 /\binom{900}{300}$. Moreover the ratio of this to $2 \exp \left(-2 M^{2}\right)$ is about $3 \cdot 10^{-74}$, so great accuracy in the p-value is not needed to see that the ratio is small. For $m=n$ we can compare results of the outside method to those found from the Gnedenko-Korolyuk formula in Proposition5 For $\operatorname{Pr}\left(D_{500,500} \geq 0.502\right)$ the outside method needs to add a substantial number of terms. It gives $1.87970906825 \cdot 10^{-57}$ which agrees with the Gnedenko-Korolyuk result to the given accuracy.

For large enough m, n there will be an interval of values of d,

$$
\begin{equation*}
d_{0}(m, n) \leq d \leq 1 / 2 \tag{33}
\end{equation*}
$$

in which the p-values are too small to compute accurately by the inside method. We still have the possibility of verifying the DKWM inequality in these ranges using Theorem 18(a) if we can show that

$$
\begin{equation*}
p v_{u b}(m, n, d) \leq 2 \exp \left(-2 M^{2}\right) \tag{34}
\end{equation*}
$$

where as usual $M=\sqrt{m n /(m+n)} d$, and did so computationally for $100 \leq m<$ $n \leq 200$ and $190 \leq n=2 m \leq 600$ as shown by ratios less than 1 in the last columns of Tables 7 and 8 respectively.

With either the inside or outside method, evaluation of an individual probability takes $O(m n)$ computational steps, which is more (slower) than for $m=n$. For $m n$ large, rounding errors accumulate, which especially affect the inside method. Moreover, to find the p-values for all possible values of $D_{m n}$, in the general case that m and n are relatively prime, as in a study like the present one, gives another factor of $m n$ and so takes $O\left(m^{2} n^{2}\right)$ computational steps.

The algorithm does not require storage of $m \times n$ matrices. Four vectors of length n, and various individual variables, are stored at any one time in the computation.

For $n=2 m$, the smallest possible $d>1 / 2$ is $d=(m+1) / n$. Let pvi and pvo be the p-value $\operatorname{Pr}\left(D_{m, n} \geq d\right)$ as computed by the inside and outside methods respectively. Let the relative error of $p v i$ as an approximation to the more accurate pvo be reler $=\left|\frac{p v i}{p v o}-1\right|$. For $n=2 m, m=1, \ldots, 120$, and $d=(m+1) / n$, the following $m=m_{\max }$ give larger reler than for any $m<m_{\max }$, with the given $p v o$.

TABLE 1. p-values for $n=2 m, d=(m+1) / n$

$m_{\max }$	reler	pvo
10	$5.55 \cdot 10^{-15}$	0.0290
20	$7.88 \cdot 10^{-13}$	$8.94 \cdot 10^{-4}$
28	$2.04 \cdot 10^{-12}$	$5.48 \cdot 10^{-5}$
40	$1.32 \cdot 10^{-9}$	$8.29 \cdot 10^{-7}$
49	$6.51 \cdot 10^{-9}$	$3.58 \cdot 10^{-8}$
60	$1.01 \cdot 10^{-6}$	$7.66 \cdot 10^{-10}$
70	$4.76 \cdot 10^{-5}$	$2.32 \cdot 10^{-11}$
80	$2.19 \cdot 10^{-3}$	$7.07 \cdot 10^{-13}$
93	0.063	$7.52 \cdot 10^{-15}$
95	0.109	$3.74 \cdot 10^{-15}$
98	0.525	$1.31 \cdot 10^{-15}$
100	1.045	$6.52 \cdot 10^{-16}$
105	9.758	$1.14 \cdot 10^{-16}$
120	2032.4	$6.01 \cdot 10^{-19}$

The small relative errors for $m \leq 10,20$, or 40 , indicate that the inside and outside programs algebraically confirm one another. As m increases, pvo becomes smaller and reler tends to increase until for $m=100$, pvi has no accurate significant digits. For $m=105, p v i$ is off by an order of magnitude and for $m=120$ by three orders. For $m=122, n=244$, and $d=123 / 244$, for which $p v o=2.99 \cdot 10^{-19}$, pvi is negative, $-4.44 \cdot 10^{-16}$. In other words, the inside computation gave $\operatorname{Pr}\left(D_{122,244}<\right.$ $123 / 244) \doteq 1+4.44 \cdot 10^{-16}$ which is useless, despite being accurate to 15 decimal places.

Of course, p-values of order 10^{-15} are not needed for applications of the Kolmo-gorov-Smirnov test even to, say, tens of thousands of simultaneous hypotheses as in genetics, but in this paper we are concerned with the theoretical issue of validity of the DKWM bound.
3.3. Details related to Facts 2, 3, and 4. Fact 2(b) states that for $1 \leq m<$ $n \leq 3$ the DKWM inequality fails. The following lists $r_{\max }(m, n)>1$ for each of the three pairs and the $d_{\max }$, equal to 1 in these cases, for which $r_{\max }$ is attained.

m	n	$r_{\max }$	$d_{\max }$
1	2	1.264556	1
1	3	1.120422	1
2	3	1.102318	1

Fact 2(a) states that if $1 \leq m<n \leq 200$ and $n \geq 4$, the DKWM inequality holds. Searching through the specified n for each m, we got the following.

For $m=1,2$, the results of Fact $2(\mathrm{f})$ as stated were found.
For $3 \leq m \leq 199$ and $m<n \leq 200$ we searched over n for each m, finding $r_{\max }(m, n)$ for each n and the $n=n_{\max }$ giving the largest $r_{\text {max }}$. Tables 6 and 7 in Appendix B show that all $r_{\max }<1$, completing the evidence for Fact 2(a), and were always found at $n_{\max }=2 m$ for $m \leq 100$, as Fact 2(c) states.

For Fact 2 (d) and (e) and Fact 33 the results stated can be seen in Tables 7 and 8.

Fact 3(a) in regard to relative minima of $r_{\max }$ is seen to hold in Table 6. Increasing $r_{\text {max }}$ for $16 \leq m \leq 300$ is seen in Tables 6and 8 Fact 3(b) is seen in Table 8.

In Fact 3(c), the minimal $r_{\max }(m, 2 m)$ for $m \geq 101$ is at $m=101$ by part (a) with value 0.973341 in Table 8. The largest $r_{\max }$ in Table 7 for $m \geq 101$ is $0.949565<0.973341$ as seen with the aid of Fact 2(d). For Fact 3(d), one sees that $k_{\text {max }}$ is nondecreasing in m in Tables 6 and 8

Regarding Fact 4. the relative error of the DKWM bound as an approximation of a p-value, namely

$$
\begin{equation*}
\operatorname{reler}(d k w m, m, n, d):=\frac{2 \exp \left(-2 M^{2}\right)}{P_{m, n, M}}-1 \tag{35}
\end{equation*}
$$

where M is as in (3) with $d=k / L_{m, n}$, is bounded below for any possible d by

$$
\begin{equation*}
\operatorname{reler}(d k w m, m, n, d) \geq \frac{1}{r_{\max }(m, n)}-1 \tag{36}
\end{equation*}
$$

From our results, over the given ranges, the relative error has the best chance to be small when $n=m$ and the next-best chance when $n=2 m$. On the other hand, in Table 7 in Appendix B, where $\operatorname{rmaxx}=\operatorname{rmaxx}(m)=\max _{m<n \leq 200} r_{\max }(m, n)$, we have for each m, n with $100<m<n \leq 200$ and possible d that

$$
\begin{equation*}
\operatorname{reler}(d k w m, m, n, d) \geq \frac{1}{\operatorname{rmaxx}(m)}-1 \tag{37}
\end{equation*}
$$

Thus Fact 4(a) holds by Fact 3(c) and the near-equality of $\beta(M)$ and $2 \exp \left(-2 M^{2}\right)$ if either is ≤ 0.05, as in the Remark after (5). Fact 4(b) holds similarly by inspection of Table 7
3.4. Conservative and approximate p-values. Whenever the DKWM inequality holds, the DKWM bound $2 \exp \left(-2 M^{2}\right)$ provides simple, conservative p-values. The asymptotic p-value $\beta(M)$ given in (5) is very close to the DKWM bound in case of significance level ≤ 0.05 or less, as noted in the Remark just after (5).

In general, by Fact 4 for example, using the DKWM bound as an approximation can give overly conservative p-values. We looked at $m=20, n=500$. For $\alpha=0.05$ the correct critical value for $d=k / 500$ is $k=151$ whereas the approximation would give $k=155$; for $\alpha=0.01$ the correct critical value is $k=180$ but the approximation would give $k=186$. For $180 \leq k \leq 186$ the ratio of the true p-value to its DKWM approximation decreases from 0.731 down to 0.712 .

Stephens 15 proposed that in the one-sample case, letting $N_{e}:=n$ and

$$
\begin{equation*}
F:=\sqrt{N_{e}}+0.12+0.11 / \sqrt{N_{e}}, \tag{38}
\end{equation*}
$$

one can approximate p-values by $\operatorname{Pr}\left(D_{n} \geq d\right) \sim \beta(F d)$ for $0<d \leq 1$, with β from (5). Stephens gave evidence that the approximation works rather well. In the one-sample case the distributions of the statistics D_{n} and K_{n} are continuous for fixed n and vary rather smoothly with n.

Some other sources, e.g. [14, pp. 617-619], propose in the two-sample case setting $N_{e}=m n /(m+n)$, defining $F:=F_{m, n}$ by (38), and approximating $\operatorname{Pr}\left(D_{m, n} \geq d\right)$ by $S_{\mathrm{pli}}:=\beta(F d)$ ["Stephens approximation plugged into" two-sample]. Since \bar{F} in (38) is always larger than $\sqrt{N_{e}}, S_{\text {pli }}$ is always less than the asymptotic probability $\beta(M)$ for $M=\sqrt{N_{e}} d$ which, in turn, is always less than the DKWM approximation $2 \exp \left(-2 M^{2}\right)$. The approximation $S_{\text {pli }}$ is said in at least two sources we have
seen (neither a journal article) to be already quite good for $N_{e} \geq 4$. That may well be true in the one-sample case. In the two-sample case it may be true when $1<m \ll n$ but not when $n \sim m$. Table 2 compares the two approximations $d k w m=2 \exp \left(-2 M^{2}\right)$ and $S_{\text {pli }}$ to critical p-values for some pairs (m, n). For $m=n$, and to a lesser extent when $n=2 m$, it seems that $d k w m$ is preferable. For other pairs, $S_{\text {pli }}$ is. For the six pairs (m, n) with $L_{m, n}=n$ or $2 n, S_{\text {pli }}<p v$. For the other two (relatively prime) pairs, $p v<S_{\text {pli. }}$. For $m=39, n=40, S_{\text {pli }}$ has rather large errors, but those of $d k w m$ are much larger.

In Table 2] $d=k / L_{m, n}$ and $p v$ is the correct p-value. After each of the two approximations, $d k w m$ and S_{pli}, is its relative error reler as an approximation of $p v$.

Table 2. Comparing two approximations to p-values

m	n	N_{e}	k	d	$p v$	$d k w m$	reler	S_{pli}	reler
40	40	20	12	.3	.05414	.05465	.0094	.04313	.2033
40	40	20	13	.325	.02860	.02925	.0226	.02216	.2253
40	40	20	14	.35	.014302	.01489	.0413	.01079	.2453
40	40	20	15	.375	.006761	.00721	.0669	.00498	.2628
200	200	100	27	.135	.05214	.05224	.0020	.04745	.0899
200	200	100	28	.14	.03956	.03968	.0030	.03578	.0955
200	200	100	32	.16	.011843	.01195	.0092	.01044	.1183
200	200	100	33	.165	.008539	.00864	.0113	.00748	.1240
25	50	16.67	16	.32	.06066	.06586	.0858	.05129	.1545
25	50	16.67	17	.34	.03847	.04242	.1025	.03198	.1687
25	50	16.67	19	.38	.014149	.01624	.1479	.01141	.1933
25	50	16.67	20	.4	.008195	.00966	.1783	.00653	.2029
39	40	19.75	456	.2923	.05145	.06847	.3309	.05476	.0644
39	40	19.75	457	.2929	.04968	.06746	.3579	.05390	.0850
39	40	19.75	541	.3468	.010159	.01731	.7036	.01264	.2439
39	40	19.75	542	.3474	.009849	.01701	.7267	.01240	.2593
20	500	19.23	150	.3	.05059	.06276	.2406	.04973	.0171
20	500	19.23	151	.302	.04817	.05992	.2439	.04733	.0175
20	500	19.23	179	.358	.010608	.01446	.3634	.01038	.0214
20	500	19.23	180	.36	.009998	.01368	.3688	.009787	.0211
21	500	20.15	3074	.29276	.050052	.06319	.2626	.050410	.0072
21	500	20.15	3076^{*}	.29295	.049882	.06291	.2612	.050170	.0058
21	500	20.15	3686	.35105	.010040	.01392	.3869	.010062	.0022
21	500	20.15	3687	.35114	.009979	.01389	.3917	.010033	.0054
100	500	83.33	73	.146	.0534470	.0572963	.07202	.051661	.03343
100	500	83.33	74	.148	.0483882	.0519476	.07356	.0467046	.03479
100	500	83.33	88	.176	.0104170	.0114528	.09943	.0098532	.05413
100	500	83.33	89	.178	.0092390	.010178	.1016	.0087264	.05548
400	600	240	104	.08667	.0521403	.0543568	.04251	.051221	.01763
400	600	240	105	.0875	.0486074	.0506988	.04303	.047719	.01827
400	600	240	125	.10417	.0103748	.0109416	.05463	.0100418	.03210
400	600	240	126	.105	.0095362	.0100634	.05528	.0092231	.03283

(* For $(m, n)=(21,500)$, the value $k=3075$ is not possible.)

The pair $(400,600)$ was included in Table 2 because, according to Fact 2(d), the ratio $n / m=3 / 2$ seemed to come next after $1 / 1$ and $2 / 1$ in producing large $r_{\text {max }}$, and so possibly small relative error for $d k w m$ as an approximation to $p v$, and $r_{\text {max }}$ was increasing in the range computed for this ratio, $m=102,104, \ldots, 132$. Still, the relative errors of S_{pli} in Table 2 are smaller than for dkwm.

It is a question for further research whether the usefulness of $S_{\text {pli }}$, which we found for $m=20$ or 21 and $n=500$, extends more generally to cases where m is only moderately large and $m \ll n$.
3.5. Obstacles to asymptotic expansions. This is to recall an argument of Hodges [10]. Let

$$
Z^{+}:=Z_{m, n}^{+}:=\sqrt{\frac{m n}{m+n}} \sup _{x}\left(F_{m}-G_{n}\right)(x),
$$

a one-sided two-sample Smirnov statistic. There is the well-known limit theorem that for any $z>0$, if $m, n \rightarrow \infty$ and $z_{m, n} \rightarrow z$, then $\operatorname{Pr}\left(Z_{m, n}^{+} \geq z_{m, n}\right) \rightarrow \exp \left(-2 z^{2}\right)$. Suppose further that $m / n \rightarrow 1$ as $n \rightarrow \infty$. Then $\sqrt{m n /(m+n)} \sim \sqrt{n / 2}$. A question then is whether there exists a function $g(z)$ such that

$$
\begin{equation*}
\operatorname{Pr}\left(Z_{m, n}^{+} \geq z_{m, n}\right)=\exp \left(-2 z^{2}\right)\left(1+\frac{g(z)}{\sqrt{n}}+o\left(\frac{1}{\sqrt{n}}\right)\right) . \tag{39}
\end{equation*}
$$

Hodges [10, pp. 475-476,481] shows that no such function g exists. Rather than a $o(1 / \sqrt{n})$ error, there is an "oscillatory" term which is only $O(1 / \sqrt{n})$. Hodges considers $n=m+2$ (with our convention that $n \geq m$).

If $m=n$, successive possible values of $F_{m}-G_{n}$ differ by $1 / n$, and values of $Z_{m, n}^{+}$(or our M) by $1 / \sqrt{2 n}$. Thus for fixed z, which are of interest in finding critical values, $z_{n, n}$ can only converge to z at a $O(1 / \sqrt{n})$ rate. It seems (to us) unreasonable then to expect (39) to hold. For $n=m+2$, successive possible values of $F_{m}-G_{n}$ typically (although not always) differ by at most $4 /(n(n-2))$, and possible values of $Z_{m, n}^{+}$by $O\left(n^{-3 / 2}\right)$, so $z_{m, n}$ can converge to z at that rate. Then (39) is more plausible and it is of interest that Hodges showed it fails.

Here are numerical examples for $m=n-1$, so $L_{m, n}=n(n-1)$, and for $D_{m, n}$ rather than $Z_{m, n}^{+}$. We focus on critical values k and $d=k /(n(n-1))$ at the 0.05 level, having p-values $p v$ a little less than 0.05 . Let reler be the relative error of $d k w m$ as an approximation to $p v$. By analogy with (39), let us see how $\sqrt{n} \cdot$ reler behaves.

TABLE 3. Behavior of the relative error of $d k w m$ for $m=n-1$

n	k	$p v$	reler	$\sqrt{n} \cdot$ reler	n	k	$p v$	reler	$\sqrt{n} \cdot$ reler
40	457	.04968	.3579	2.264	400	15066	.049986	.1379	2.758
100	1850	.049985	.2395	2.395	500	21216	.049983	.08052	1.800
200	5302	.049885	.1627	2.301	600	27889	.049984	.08250	2.021
300	9771	.049995	.1448	2.507					

Here the numbers \sqrt{n} • reler also seem "oscillatory" rather than tending to a constant.
Hodges' argument suggests that the approximation $S_{\text {pli }}$, or any approximation implying an asymptotic expansion, cannot improve on the $O(1 / \sqrt{n})$ order of the relative error of the simple asymptotic approximation $\beta(M)$; it may often (but not always, e.g. for $m=n$) give smaller multiples of $1 / \sqrt{n}$, but not $o(1 / \sqrt{n})$.

Appendix A. Details for $m=n \leq 458$

Here we give details on δ_{n} as in Theorem (1), giving data to show by how much (6) fails when $n \leq 457$.

Recall that for $m=n$, we define $M=k / \sqrt{2 n}$. For each $1 \leq n \leq 457$, we define $k_{\text {max }}$ to be the k such that $1 \leq k \leq n$ and $\frac{P_{n, n, M}}{2 e^{-2 M^{2}}}$ is the largest. Since (6) fails for $n \leq 457$, when plugging in $k=k_{\text {max }}$, we must have

$$
\frac{P_{n, n, M}}{2 e^{-2 M^{2}}}>1
$$

Define

$$
\delta_{n}:=\frac{P_{n, n, M}}{2 e^{-2 M^{2}}}-1,
$$

where $M=k_{\max } / \sqrt{2 n}$. Then for any fixed $n \leq 457$ and $M>0$,

$$
P_{n, n, M}=\operatorname{Pr}\left(K S_{n, n} \geq M\right) \leq 2\left(1+\delta_{n}\right) e^{-2 M^{2}}
$$

When n increases, the general trend of δ_{n} is to decrease, but δ_{n} is not strictly decreasing, e.g. from $n=7$ to $n=8$ (Table (5). For $N \leq 457$, we define

$$
\Delta_{N}=\max \left\{\delta_{n}: N \leq n \leq 457\right\}
$$

Then it is clear that for all $n \geq N$ and $M>0$,

$$
\begin{equation*}
P_{n, n, M}=\operatorname{Pr}\left(K S_{n, n} \geq M\right) \leq 2\left(1+\Delta_{N}\right) e^{-2 M^{2}} \tag{40}
\end{equation*}
$$

In Table 4 we list some pairs $\left(N, \Delta_{N}\right)$ for $1 \leq N \leq 455$. The values of δ_{n} and Δ_{N} were originally output by Mathematica rounded to 5 decimal places. We added .00001 to the rounded numbers to assure getting upper bounds.

Table 4. Selected Pairs $\left(N, \Delta_{N}\right)$

N	Δ_{N}	N	Δ_{N}	N	Δ_{N}
1	0.35915	75	0.00276	215	0.00045
2	0.23152	80	0.00234	225	0.00041
3	0.13811	85	0.00229	230	0.00039
4	0.08432	90	0.00203	235	0.00036
5	0.08030	95	0.00192	240	0.00034
6	0.06223	100	0.00177	250	0.00032
7	0.04287	105	0.00160	255	0.00028
9	0.04048	110	0.00155	265	0.00028
10	0.03401	115	0.00136	270	0.00026
11	0.02629	120	0.00133	275	0.00024
13	0.02603	125	0.00124	285	0.00023
14	0.02376	130	0.00112	290	0.00020
15	0.02065	135	0.00111	305	0.00018
16	0.01773	140	0.00101	310	0.00016
18	0.01755	145	0.00095	325	0.00015
20	0.01511	150	0.00092	330	0.00013
24	0.01237	155	0.00083	345	0.00012
28	0.00923	160	0.00080	350	0.00011
32	0.00865	165	0.00078	355	0.00010
36	0.00707	170	0.00070	365	0.00009
40	0.00645	175	0.00068	370	0.00008
			Continued on next page		

N	Δ_{N}	N	Δ_{N}	N	Δ_{N}
44	0.00549	180	0.00066	375	0.00007
48	0.00509	185	0.00060	390	0.00006
52	0.00433	190	0.00058	395	0.00005
56	0.00415	195	0.00056	415	0.00004
60	0.00348	200	0.00052	420	0.00003
65	0.00338	205	0.00048	440	0.00002
70	0.00280	210	0.00048	455	0.00001

For $451 \leq N \leq 458$, values of Δ_{N} which are more precise than those Mathematica displays (it gives just 5 decimal places) are as follows. In all these cases $k=35$. For $N=458, k=36$ would give a still more negative value. Theorem (c) shows that no k would give $\Delta_{N}>0$ for any $N \geq 458$.

N	Δ_{N}
451	$5.116 \cdot 10^{-6}$
452	$4.707 \cdot 10^{-6}$
453	$4.156 \cdot 10^{-6}$
454	$3.462 \cdot 10^{-6}$
455	$2.627 \cdot 10^{-6}$
456	$1.649 \cdot 10^{-6}$
457	$5.309 \cdot 10^{-7}$
458	$-7.284 \cdot 10^{-7}$

Recall that for $n \geq 458$, we have $\delta_{n} \leq 0$. As stated in Theorem (e) we have that for $12 \leq n \leq 457$,

$$
\begin{equation*}
\delta_{n}<-\frac{0.07}{n}+\frac{40}{n^{2}}-\frac{400}{n^{3}} \tag{41}
\end{equation*}
$$

(More precisely, (41) should be read as: the Mathematica output δ_{n} plus 0.00001 is smaller than the right hand side of (41) when $11<n<458$.) The formula was found by regression and experimentation. In Table 5 we provide the values of δ_{n} when $1 \leq n \leq 11$.

TABLE 5. δ_{n} for $n \leq 11$

n	$\delta_{n}{ }^{1}$	n	$\delta_{n}{ }^{1}$
1	0.35914	7	0.04286
2	0.23151	8	0.04434
3	0.1381	9	0.04047
4	0.08431	10	0.034
5	0.08029	11	0.02628
6	0.06222		

[^1]
Appendix B. Tables for $m<n$

First, we give Table 6 for $3 \leq m \leq 99$ and $m<n \leq 200$, showing the n for which the largest $r_{\max }$ is attained, which is always $n=2 m$, the $d_{\max }=k_{\max } / n$ at which $r_{\max }$ is attained, and "pvatmax," the p-value in the numerator of $r_{\text {max }}$. In this range, the bound (34) was used $\left(d_{0}(m, n) \leq 1 / 2\right.$ is defined) only for $95 \leq m \leq 99$, to avoid probabilities less than 10^{-14} from the inside method. The given $r_{\text {max }}$ are confirmed. Details are in Table 8 first 5 rows, last 2 columns.

TABLE 6. $3 \leq m \leq 99, m<n \leq 200$.

m	n	$r_{\max }$	$k_{\max }$	pvatmax	$d_{\max }$
3	6	0.986116	4	0.333333	0.666667
4	8	0.973325	4	0.513131	0.5
5	10	0.951143	4	0.654679	0.4
6	12	0.938437	5	0.468003	0.416667
7	14	0.947585	6	0.341305	0.428571
8	16	0.950533	6	0.424185	0.375
9	18	0.949182	6	0.500403	0.333333
10	20	0.944748	6	0.569105	0.3
11	22	0.946271	7	0.42873	0.318182
12	24	0.946955	8	0.320096	0.333333
13	26	0.949675	8	0.368058	0.307692
14	28	0.950815	8	0.414328	0.285714
15	30	0.950668	8	0.458559	0.266667
16	32	0.950333	9	0.351588	0.28125
17	34	0.951642	9	0.388814	0.264706
18	36	0.952087	9	0.424878	0.25
19	38	0.9527	10	0.32966	0.263158
20	40	0.953956	10	0.360358	0.25
21	42	0.954631	10	0.390399	0.238095
22	44	0.954788	10	0.419677	0.227273
23	46	0.95505	11	0.330725	0.23913
24	48	0.955966	11	0.356137	0.229167
25	50	0.956499	11	0.381112	0.22
26	52	0.956683	11	0.405588	0.211538
27	54	0.957278	12	0.323585	0.222222
28	56	0.958022	12	0.345065	0.214286
29	58	0.958501	12	0.366261	0.206897
30	60	0.958735	12	0.387131	0.2
31	62	0.958918	13	0.311609	0.209677
32	64	0.959602	13	0.330051	0.203125
33	66	0.960091	13	0.348314	0.19697
34	68	0.960399	13	0.366366	0.191176
35	70	0.960536	13	0.384182	0.185714
36	72	0.961028	14	0.313042	0.194444
37	74	0.961533	14	0.328951	0.189189
38	76	0.9619	14	0.344729	0.184211
39	78	0.962136	14	0.360355	0.179487
			$C o n t i n u e d$ on	next page	

m	n	$r_{\max }$	$k_{\max }$	pvatmax	$d_{\max }$
40	80	0.962249	14	0.375811	0.175
41	82	0.962708	15	0.309089	0.182927
42	84	0.963123	15	0.322988	0.178571
43	86	0.963437	15	0.336793	0.174419
44	88	0.963654	15	0.350491	0.170455
45	90	0.963776	15	0.364068	0.166667
46	92	0.964152	16	0.301667	0.173913
47	94	0.964521	16	0.313932	0.170213
48	96	0.964812	16	0.326132	0.166667
49	98	0.965027	16	0.338257	0.163265
50	100	0.965171	16	0.350299	0.16
51	102	0.965387	17	0.29201	0.166667
52	104	0.965731	17	0.30292	0.163462
53	106	0.966015	17	0.313788	0.160377
54	108	0.966239	17	0.324605	0.157407
55	110	0.966407	17	0.335364	0.154545
56	112	0.966519	17	0.346059	0.151786
57	114	0.966794	18	0.29073	0.157895
58	116	0.967076	18	0.300472	0.155172
59	118	0.967311	18	0.310182	0.152542
60	120	0.9675	18	0.319853	0.15
61	122	0.967645	18	0.329482	0.147541
62	124	0.967746	18	0.339061	0.145161
63	126	0.968	19	0.286669	0.150794
64	128	0.968245	19	0.295428	0.148438
65	130	0.968453	19	0.304163	0.146154
66	132	0.968624	19	0.312871	0.143939
67	134	0.96876	19	0.321547	0.141791
68	136	0.968862	19	0.330188	0.139706
69	138	0.969058	20	0.280649	0.144928
70	140	0.96928	20	0.28857	0.142857
71	142	0.969473	20	0.296476	0.140845
72	144	0.969636	20	0.304361	0.138889
73	146	0.96977	20	0.312224	0.136986
74	148	0.969876	20	0.320062	0.135135
75	150	0.969993	21	0.273263	0.14
76	152	0.970201	21	0.280462	0.138158
77	154	0.970385	21	0.287651	0.136364
78	156	0.970544	21	0.294827	0.134615
79	158	0.970681	21	0.301987	0.132911
80	160	0.970794	21	0.30913	0.13125
81	162	0.970884	21	0.316252	0.12963
82	164	0.971022	22	0.271515	0.134146
83	166	0.971201	22	0.278079	0.13253
84	168	0.97136	22	0.284636	0.130952
85	170	0.9715	22	0.291182	0.129412
			$C o n t i n u e d$	on	$n e x t$

m	n	$r_{\max }$	$k_{\max }$	pvatmax	$d_{\max }$
86	172	0.97162	22	0.297717	0.127907
87	174	0.971721	22	0.304238	0.126437
88	176	0.971804	22	0.310744	0.125
89	178	0.971931	23	0.268046	0.129213
90	180	0.972091	23	0.274057	0.127778
91	182	0.972234	23	0.280063	0.126374
92	184	0.972361	23	0.286062	0.125
93	186	0.972472	23	0.292052	0.123656
94	188	0.972567	23	0.298032	0.12234
95	190	0.972647	23	0.304	0.121053
96	192	0.972743	24	0.263293	0.125
97	194	0.97289	24	0.268818	0.123711
98	196	0.973022	24	0.274341	0.122449
99	198	0.973142	24	0.279858	0.121212

Next, for each m with $100 \leq m \leq 199$ we searched by computer among all $n=$ $m+1, \ldots, 200$. For each such $n, r_{\max }(m, n)$ was found, and then for given m, the largest such $r_{\text {max }}$, called rmaxx $^{\max }$ Table 7 attained at $n=n_{\max }$ and for that n, at $d=\mathrm{dmax}$ $=k_{\max } / L_{m, n_{\max }}$ (recall that $L_{m, n}$ is the least common multiple of m and n), and with a p-value "pvatmax" in the numerator of rmaxx. There are columns in Table 7 for each of these.

For each $m<n \leq 200$ and each possible value d of $D_{m, n}$ in the range (33) where the p-value by the inside method was found to be less than 10^{-14} and so would have too few reliable significant digits, we evaluated instead the upper bound $p v_{u b}(m, n, d)$ as in Theorem 18(a) and took the ratio

$$
\begin{equation*}
r_{u b}(m, n, d)=p v_{u b}(m, n, d) /\left(2 \exp \left(-2 M^{2}\right)\right) \tag{42}
\end{equation*}
$$

where as usual $M=\sqrt{m n /(m+n)} d$. We took the maximum of these for the possible values of d and the ratio of that maximum to $r_{\max }(m, n)$ as evaluated for all other possible values of d. Then we took in turn the maximum of all such ratios for fixed m over n with $m<n \leq 200$, giving $m r m r$ ("maximum ratio of maximum ratios") in the last column of Table 7 As all these are less than 1 (the largest, for $m=196$, is less than 0.415), we confirm that $r_{\max }(m, n)$ is not attained in the range (33) for $100 \leq m<n \leq 200$ and so the given values of $n_{\text {max }}$ and $r \max x$ are confirmed.

For given m, $m r m r$ often, but not always, occurs when $n=n_{\text {max }}$. For example, it does when $m=132$ and for $195 \leq m \leq 199$, but not for $m=168$, for which $n_{\max }=196$ but $m r m r$ occurs for $n=169$.

In Tables 6 and 8 the ratio n / m is always 2 , in Table 6 and for $m=100$ because $n_{\text {max }}=2 m$ from the computer search, and in Table 8 by our choice. In the range $101 \leq$ $m<n \leq 200, n_{\max } / m=2$ is not possible, but $3 / 2$ is and occurs as described in Fact 2(d). For example, when $m=175, n_{\max }=176$, even though $n=200$ would have given a simpler ratio $n / m=8 / 7$; but $r_{\max }(175,200)=0.927656<0.928771=r_{\max }(175,176)$. Ratios occur of $n_{\max } / m=9 / 7=198 / 154,10 / 7=190 / 133$, and $11 / 7=187 / 119$.

TABLE 7. $100 \leq m<n \leq 200$

m	$n_{\text {max }}$	$r \max x$	$k_{\text {max }}$	pvatmax	dmaxx	$d_{0}(m, 200)$	mrmr
100	200	0.973248	24	0.28537	0.12	0.49	0.238509
101	200	0.913382	2134	0.408438	0.105644	0.482525	0.228132
102	153	0.943929	36	0.346915	0.117647	0.480784	0.215796
103	155	0.913333	1764	0.403162	0.110492	0.479951	0.211469
104	156	0.944382	36	0.358576	0.115385	0.478846	0.214312
105	175	0.93144	58	0.375393	0.110476	0.477143	0.216784
106	159	0.944769	37	0.337672	0.116352	0.475377	0.220575
107	161	0.914677	1886	0.391834	0.109479	0.474439	0.220863
108	162	0.945233	37	0.348785	0.114198	0.473148	0.226247
109	164	0.915258	1921	0.403431	0.107463	0.471606	0.226013
110	165	0.94563	37	0.35982	0.112121	0.470909	0.228994
111	185	0.932974	60	0.36867	0.108108	0.46973	0.235811
112	168	0.946023	38	0.339124	0.113095	0.468214	0.235084
113	170	0.916523	2048	0.391779	0.106611	0.466504	0.236755
114	171	0.946435	38	0.34966	0.111111	0.465702	0.245198
115	184	0.924245	96	0.395831	0.104348	0.464565	0.245341
116	174	0.946787	38	0.360125	0.109195	0.462931	0.246682
117	195	0.934419	61	0.381039	0.104274	0.461538	0.249586
118	177	0.947179	39	0.339676	0.110169	0.460593	0.256402
119	187	0.92098	134	0.40119	0.102368	0.459328	0.256227
120	180	0.947549	39	0.349682	0.108333	0.46	0.257563
121	182	0.918795	2314	0.369177	0.105077	0.457107	0.260102
122	183	0.94787	40	0.329881	0.10929	0.455984	0.266913
123	164	0.935287	53	0.366045	0.107724	0.454878	0.265827
124	186	0.948254	40	0.339454	0.107527	0.453871	0.267777
125	200	0.926795	101	0.385868	0.101	0.454	0.269952
126	189	0.94859	40	0.348975	0.10582	0.451667	0.276748
127	191	0.92039	2493	0.367425	0.102774	0.450827	0.276017
128	192	0.948905	41	0.329447	0.106771	0.449688	0.27736
129	172	0.936549	54	0.372684	0.104651	0.448721	0.279215
130	195	0.949257	41	0.338568	0.105128	0.447692	0.285965
131	197	0.921385	2571	0.38654	0.099624	0.446565	0.287611
132	198	0.949565	41	0.347641	0.103535	0.445455	0.294401
133	190	0.923341	132	0.395393	0.099248	0.444436	0.293273
134	135	0.920683	2045	0.330121	0.113046	0.443955	0.280389
135	180	0.937714	56	0.356856	0.103704	0.442963	0.274898
136	170	0.930667	70	0.375306	0.102941	0.441765	0.273921
137	138	0.921316	2091	0.342759	0.1106	0.440766	0.277844
138	184	0.93829	56	0.370191	0.101449	0.44	0.284898
139	140	0.921695	2121	0.351497	0.108993	0.439101	0.279904
140	175	0.931495	71	0.376012	0.101429	0.438571	0.283698
141	188	0.938842	57	0.362092	0.101064	0.437518	0.290272
142	143	0.922434	2310	0.291798	0.113759	0.436549	0.294849
143	144	0.922679	2326	0.295749	0.112956	0.436189	0.302968
144	192	0.939363	58	0.354142	0.100694	0.435	0.295917

m	$n_{\text {max }}$	$r \max x$	$k_{\text {max }}$	pvatmax	dmaxx	$d_{0}(m, 200)$	mrmr
145	174	0.92777	87	0.381501	0.1	0.433966	0.296235
146	147	0.92338	2375	0.307108	0.110661	0.433151	0.304232
147	196	0.939886	58	0.366614	0.098639	0.432347	0.30574
148	185	0.933056	73	0.376649	0.098649	0.431622	0.302085
149	150	0.924015	2423	0.318878	0.108412	0.43104	0.305384
150	200	0.940395	59	0.358464	0.098333	0.431667	0.313118
151	152	0.9244	2455	0.326689	0.106962	0.42947	0.320836
152	190	0.933791	74	0.376618	0.097368	0.428684	0.307194
153	154	0.924759	2488	0.334009	0.105594	0.427876	0.31393
154	198	0.926355	132	0.384897	0.095238	0.427403	0.321538
155	186	0.929738	90	0.381638	0.096774	0.426452	0.329063
156	195	0.934499	75	0.376378	0.096154	0.425769	0.314584
157	158	0.925501	2711	0.282122	0.109288	0.424841	0.322061
158	159	0.925721	2728	0.285641	0.10859	0.424557	0.329455
159	160	0.925934	2745	0.289158	0.107901	0.423459	0.328888
160	200	0.935183	76	0.375946	0.095	0.42375	0.339848
161	162	0.926347	2780	0.29579	0.106587	0.422174	0.329698
162	189	0.927765	108	0.38127	0.095238	0.421481	0.336907
163	164	0.92674	2814	0.302799	0.105267	0.420798	0.344069
164	165	0.926928	2831	0.306296	0.104619	0.420366	0.341805
165	198	0.931538	93	0.380526	0.093939	0.419697	0.337482
166	167	0.927286	2865	0.313277	0.103348	0.418855	0.343963
167	168	0.927455	2882	0.316759	0.102723	0.417725	0.350977
168	196	0.928852	110	0.381517	0.093537	0.417619	0.357974
169	170	0.927778	2917	0.323319	0.101532	0.416746	0.343789
170	171	0.927934	2934	0.326785	0.100929	0.416471	0.35065
171	172	0.928084	2951	0.330246	0.100333	0.415351	0.35752
172	173	0.928229	2968	0.333699	0.099745	0.415116	0.364343
173	174	0.928384	3160	0.274412	0.104976	0.414451	0.352725
174	175	0.92858	3178	0.277564	0.104368	0.413966	0.356959
175	176	0.928771	3196	0.280715	0.103766	0.413571	0.363665
176	177	0.928956	3214	0.283863	0.103172	0.4125	0.370297
177	178	0.929141	3233	0.286679	0.102615	0.41209	0.376845
178	179	0.929321	3251	0.289823	0.102034	0.411629	0.383179
179	180	0.929496	3269	0.292965	0.101459	0.410698	0.369441
180	181	0.929666	3287	0.296104	0.10089	0.410556	0.375911
181	182	0.929831	3305	0.299239	0.100328	0.409309	0.382325
182	183	0.929992	3323	0.302371	0.099772	0.408901	0.388746
183	184	0.930148	3341	0.3055	0.099222	0.408087	0.374912
184	185	0.930299	3359	0.308624	0.098678	0.407826	0.381228
185	186	0.930446	3378	0.311415	0.098169	0.407027	0.387516
186	187	0.930591	3396	0.314533	0.097637	0.40672	0.393782
187	188	0.930732	3414	0.317646	0.09711	0.406043	0.387575
188	189	0.930867	3432	0.320755	0.096589	0.405426	0.386262
189	190	0.930999	3450	0.323859	0.096074	0.404894	0.39243
190	191	0.931125	3468	0.326959	0.095564	0.404474	0.398548

Continued on next page

m	$n_{\max }$	$r \operatorname{maxx}$	$k_{\max }$	pvatmax	dmaxx	$d_{0}(m, 200)$	$m r m r$
191	192	0.931267	3679	0.271066	0.100322	0.403953	0.404579
192	193	0.931438	3699	0.27362	0.099822	0.403542	0.392781
193	194	0.931607	3718	0.276457	0.0993	0.402409	0.397034
194	195	0.931772	3737	0.279293	0.098784	0.402165	0.402986
195	196	0.931932	3756	0.282127	0.098273	0.402051	0.408865
196	197	0.932089	3775	0.284959	0.097768	0.400408	0.414765
197	198	0.932242	3794	0.287789	0.097267	0.400533	0.401356
198	199	0.932391	3813	0.290616	0.096772	0.401162	0.407172
199	200	0.932536	3832	0.293442	0.096281	0.398719	0.412943

The following Table 8 treats $95 \leq m \leq 300$ and $n=2 m$. In each such case, $r_{\text {max }}(m, n)$ was computed. It has a numerator p-value "pvatmax" attained at $d_{\max }=k_{\max } / n$.

Throughout the table, $r_{\text {max }}$ continues to increase, as it does in Table 6 for $m \geq 16$, and as stated in Fact 3(a).

In the last column, $r b d_{\max }$ is the maximum of $r_{u b}(m, 2 m, d)$ as defined in (42) for d in the range (33). These $r b d_{\max }$ tend to increase with m, although not monotonically. All values shown are less than 0.65 , which is less than $r_{\max }$ for all the values of m shown. This confirms the values of $r_{\text {max }}$.

TABLE 8. $95 \leq m \leq 300, n=2 m$

m	n	$r_{\max }$	$k_{\max }$	pvatmax	$d_{\max }$	$d_{0}(m, 2 m)$	$r b d_{\max }$
95	190	0.972647	23	0.304	0.121053	0.5	0.221227
96	192	0.972743	24	0.263293	0.125	0.5	0.217684
97	194	0.97289	24	0.268818	0.123711	0.494845	0.22868
98	196	0.973022	24	0.274341	0.122449	0.494898	0.225026
99	198	0.973142	24	0.279858	0.121212	0.489899	0.235886
100	200	0.973248	24	0.28537	0.12	0.49	0.232128
101	202	0.973341	24	0.290874	0.118812	0.485149	0.242848
102	204	0.973421	24	0.296371	0.117647	0.485294	0.238995
103	206	0.973488	24	0.301857	0.116505	0.480583	0.249572
104	208	0.973611	25	0.262685	0.120192	0.480769	0.245632
105	210	0.973737	25	0.267779	0.119048	0.47619	0.256064
106	212	0.973852	25	0.27287	0.117925	0.476415	0.252044
107	214	0.973955	25	0.277958	0.116822	0.471963	0.262329
108	216	0.974047	25	0.283042	0.115741	0.472222	0.258236
109	218	0.974129	25	0.28812	0.114679	0.472477	0.254206
110	220	0.974199	25	0.293191	0.113636	0.468182	0.264215
111	222	0.974264	26	0.255903	0.117117	0.463964	0.274206
112	224	0.974386	26	0.260616	0.116071	0.464286	0.269986
113	226	0.974498	26	0.265329	0.115044	0.460177	0.27983
114	228	0.9746	26	0.270039	0.114035	0.460526	0.275555
115	230	0.974692	26	0.274746	0.113043	0.456522	0.285254
116	232	0.974776	26	0.279451	0.112069	0.456897	0.28093
117	234	0.97485	26	0.284151	0.111111	0.452991	0.290484
118	236	0.974915	26	0.288846	0.110169	0.449153	0.299999
119	238	0.974975	27	0.253039	0.113445	0.44958	0.295527
120	240	0.975085	27	0.25741	0.1125	0.45	0.291118
121	242	0.975187	27	0.261782	0.11157	0.446281	0.300389
						Continued on $n e x t$ page	

m	n	$r_{\text {max }}$	$k_{\text {max }}$	pvatmax	$d_{\text {max }}$	$d_{0}(m, 2 m)$	$r b d_{\text {max }}$
122	244	0.975281	27	0.266152	0.110656	0.442623	0.309615
123	246	0.975366	27	0.270521	0.109756	0.443089	0.305077
124	248	0.975444	27	0.274888	0.108871	0.439516	0.314162
125	250	0.975514	27	0.279251	0.108	0.44	0.309596
126	252	0.975576	27	0.283611	0.107143	0.436508	0.318543
127	254	0.97563	27	0.287967	0.106299	0.437008	0.313952
128	256	0.975721	28	0.253321	0.109375	0.433594	0.322764
129	258	0.975816	28	0.257387	0.108527	0.434109	0.318152
130	260	0.975904	28	0.261453	0.107692	0.430769	0.326832
131	262	0.975985	28	0.265518	0.10687	0.427481	0.335454
132	264	0.976059	28	0.269582	0.106061	0.42803	0.330751
133	266	0.976126	28	0.273644	0.105263	0.424812	0.339243
134	268	0.976187	28	0.277703	0.104478	0.425373	0.334527
135	270	0.976241	28	0.28176	0.103704	0.422222	0.342891
136	272	0.976302	29	0.24855	0.106618	0.422794	0.338166
137	274	0.976392	29	0.252341	0.105839	0.419708	0.346406
138	276	0.976476	29	0.256133	0.105072	0.416667	0.354584
139	278	0.976553	29	0.259924	0.104317	0.417266	0.34979
140	280	0.976625	29	0.263715	0.103571	0.414286	0.357847
141	282	0.976691	29	0.267505	0.102837	0.414894	0.35305
142	284	0.976752	29	0.271294	0.102113	0.411972	0.360988
143	286	0.976806	29	0.27508	0.101399	0.412587	0.356191
144	288	0.976855	29	0.278865	0.100694	0.409722	0.364013
145	290	0.976921	30	0.246802	0.103448	0.406897	0.371771
146	292	0.977002	30	0.250345	0.10274	0.407534	0.366924
147	294	0.977077	30	0.253889	0.102041	0.404762	0.37457
148	296	0.977148	30	0.257433	0.101351	0.405405	0.369728
149	298	0.977213	30	0.260976	0.100671	0.402685	0.377264
150	300	0.977274	30	0.264519	0.1	0.4	0.384736
151	302	0.97733	30	0.268061	0.099338	0.400662	0.379856
152	304	0.97738	30	0.271602	0.098684	0.401316	0.375025
153	306	0.977426	30	0.275142	0.098039	0.398693	0.382351
154	308	0.977485	31	0.244214	0.100649	0.396104	0.389613
155	310	0.97756	31	0.247532	0.1	0.396774	0.384751
156	312	0.97763	31	0.250851	0.099359	0.394231	0.391913
157	314	0.977695	31	0.254171	0.098726	0.39172	0.399011
158	316	0.977756	31	0.25749	0.098101	0.392405	0.394124
159	318	0.977813	31	0.26081	0.097484	0.389937	0.401125
160	320	0.977865	31	0.264129	0.096875	0.390625	0.396251
161	322	0.977914	31	0.267447	0.096273	0.388199	0.403157
162	324	0.977958	31	0.270764	0.095679	0.385802	0.41
163	326	0.978004	32	0.240951	0.09816	0.386503	0.40511
164	328	0.978074	32	0.244064	0.097561	0.384146	0.411862
165	330	0.978139	32	0.247179	0.09697	0.384848	0.406986
166	332	0.978201	32	0.250294	0.096386	0.38253	0.413649
167	334	0.978259	32	0.25341	0.095808	0.38024	0.42025

m	n	$r_{\text {max }}$	$k_{\text {max }}$	pvatmax	$d_{\text {max }}$	$d_{0}(m, 2 m)$	$r b d_{\text {max }}$
168	336	0.978313	32	0.256526	0.095238	0.380952	0.415365
169	338	0.978364	32	0.259642	0.094675	0.378698	0.421881
170	340	0.97841	32	0.262758	0.094118	0.376471	0.428335
171	342	0.978453	32	0.265873	0.093567	0.377193	0.423445
172	344	0.978492	32	0.268987	0.093023	0.375	0.429816
173	346	0.978549	33	0.240075	0.095376	0.375723	0.424944
174	348	0.978611	33	0.243003	0.094828	0.373563	0.431236
175	350	0.97867	33	0.245932	0.094286	0.371429	0.437467
176	352	0.978726	33	0.248862	0.09375	0.372159	0.432595
177	354	0.978778	33	0.251792	0.09322	0.370056	0.43875
178	356	0.978827	33	0.254723	0.092697	0.367978	0.444844
179	358	0.978873	33	0.257654	0.092179	0.368715	0.439976
180	360	0.978915	33	0.260584	0.091667	0.366667	0.445997
181	362	0.978955	33	0.263514	0.09116	0.367403	0.441149
182	364	0.978991	33	0.266444	0.090659	0.365385	0.447097
183	366	0.979048	34	0.238431	0.092896	0.363388	0.452987
184	368	0.979105	34	0.24119	0.092391	0.36413	0.448147
185	370	0.979159	34	0.243949	0.091892	0.362162	0.453968
186	372	0.979211	34	0.246709	0.091398	0.362903	0.449149
187	374	0.979259	34	0.24947	0.090909	0.360963	0.454903
188	376	0.979304	34	0.252231	0.090426	0.361702	0.450104
189	378	0.979347	34	0.254992	0.089947	0.357143	0.466241
190	380	0.979386	34	0.257753	0.089474	0.357895	0.461424
191	382	0.979423	34	0.260515	0.089005	0.34555	0.508269
192	384	0.979457	34	0.263276	0.088542	0.34375	0.513568
193	386	0.97951	35	0.236154	0.090674	0.341969	0.518807
194	388	0.979563	35	0.238756	0.090206	0.342784	0.513896
195	390	0.979613	35	0.24136	0.089744	0.341026	0.519079
196	392	0.979661	35	0.243964	0.089286	0.339286	0.524203
197	394	0.979706	35	0.246569	0.088832	0.340102	0.51932
198	396	0.979749	35	0.249175	0.088384	0.338384	0.524391
199	398	0.979789	35	0.251781	0.08794	0.336683	0.529404
200	400	0.979827	35	0.254387	0.0875	0.3375	0.52455
201	402	0.979862	35	0.256993	0.087065	0.335821	0.529512
202	404	0.979894	35	0.259599	0.086634	0.334158	0.534418
203	406	0.979938	36	0.233354	0.08867	0.334975	0.529595
204	408	0.979988	36	0.235813	0.088235	0.333333	0.534452
205	410	0.980036	36	0.238273	0.087805	0.331707	0.539254
206	412	0.980081	36	0.240735	0.087379	0.332524	0.534462
207	414	0.980124	36	0.243196	0.086957	0.330918	0.539217
208	416	0.980165	36	0.245659	0.086538	0.329327	0.543919
209	418	0.980203	36	0.248122	0.086124	0.330144	0.539158
210	420	0.980239	36	0.250586	0.085714	0.328571	0.543815
211	422	0.980273	36	0.25305	0.085308	0.327014	0.548421
212	424	0.980305	36	0.255513	0.084906	0.32783	0.543692
213	426	0.980337	37	0.230127	0.086854	0.326291	0.548254

m	n	$r_{\text {max }}$	$k_{\text {max }}$	pvatmax	$d_{\text {max }}$	$d_{0}(m, 2 m)$	$r b d_{\text {max }}$
214	428	0.980384	37	0.232454	0.086449	0.324766	0.552767
215	430	0.98043	37	0.234782	0.086047	0.325581	0.548069
216	432	0.980473	37	0.237111	0.085648	0.324074	0.552541
217	434	0.980514	37	0.239441	0.085253	0.322581	0.556963
218	436	0.980553	37	0.241771	0.084862	0.323394	0.552298
219	438	0.980591	37	0.244103	0.084475	0.321918	0.55668
220	440	0.980626	37	0.246434	0.084091	0.320455	0.561015
221	442	0.980659	37	0.248767	0.08371	0.321267	0.556383
222	444	0.980691	37	0.251099	0.083333	0.31982	0.56068
223	446	0.98072	37	0.253432	0.08296	0.318386	0.56493
224	448	0.980754	38	0.228757	0.084821	0.319196	0.56033
225	450	0.980798	38	0.230962	0.084444	0.317778	0.564545
226	452	0.98084	38	0.233169	0.084071	0.316372	0.568714
227	454	0.98088	38	0.235376	0.0837	0.317181	0.564146
228	456	0.980918	38	0.237585	0.083333	0.315789	0.568281
229	458	0.980954	38	0.239794	0.082969	0.31441	0.572371
230	460	0.980989	38	0.242004	0.082609	0.315217	0.567836
231	462	0.981022	38	0.244215	0.082251	0.313853	0.571893
232	464	0.981053	38	0.246426	0.081897	0.3125	0.575907
233	466	0.981083	38	0.248637	0.081545	0.311159	0.579877
234	468	0.981111	38	0.250849	0.081197	0.311966	0.575386
235	470	0.981142	39	0.226879	0.082979	0.310638	0.579326
236	472	0.981183	39	0.228972	0.082627	0.309322	0.583224
237	474	0.981222	39	0.231066	0.082278	0.310127	0.578766
238	476	0.98126	39	0.233162	0.081933	0.308824	0.582634
239	478	0.981296	39	0.235258	0.08159	0.307531	0.586462
240	480	0.98133	39	0.237355	0.08125	0.308333	0.582036
241	482	0.981363	39	0.239452	0.080913	0.307054	0.585835
242	484	0.981394	39	0.241551	0.080579	0.305785	0.589594
243	486	0.981424	39	0.24365	0.080247	0.306584	0.585201
244	488	0.981452	39	0.245749	0.079918	0.305328	0.588933
245	490	0.981478	39	0.247849	0.079592	0.304082	0.592626
246	492	0.981505	40	0.224576	0.081301	0.304878	0.588265
247	494	0.981543	40	0.226564	0.080972	0.303644	0.591932
248	496	0.98158	40	0.228554	0.080645	0.302419	0.595561
249	498	0.981616	40	0.230545	0.080321	0.301205	0.599153
250	500	0.98165	40	0.232537	0.08	0.302	0.594836
251	502	0.981683	40	0.234529	0.079681	0.300797	0.598403
252	504	0.981714	40	0.236523	0.079365	0.299603	0.601933
253	506	0.981744	40	0.238517	0.079051	0.300395	0.597648
254	508	0.981772	40	0.240512	0.07874	0.299213	0.601156
255	510	0.9818	40	0.242507	0.078431	0.298039	0.604627
256	512	0.981825	40	0.244503	0.078125	0.298828	0.600373
257	514	0.98185	40	0.246499	0.077821	0.297665	0.603822
258	516	0.981881	41	0.223807	0.079457	0.296512	0.607236
259	518	0.981916	41	0.225699	0.079151	0.297297	0.603012

m	n	$r_{\max }$	$k_{\max }$	pvatmax	$d_{\max }$	$d_{0}(m, 2 m)$	$r b d_{\max }$
260	520	0.98195	41	0.227593	0.078846	0.296154	0.606405
261	522	0.981983	41	0.229488	0.078544	0.295019	0.609763
262	524	0.982014	41	0.231383	0.078244	0.293893	0.613087
263	526	0.982045	41	0.23328	0.077947	0.294677	0.608909
264	528	0.982074	41	0.235177	0.077652	0.293561	0.612213
265	530	0.982101	41	0.237075	0.077358	0.292453	0.615484
266	532	0.982128	41	0.238973	0.077068	0.293233	0.611335
267	534	0.982153	41	0.240872	0.076779	0.292135	0.614587
268	536	0.982177	41	0.242772	0.076493	0.291045	0.617806
269	538	0.982199	41	0.244672	0.076208	0.289963	0.620993
270	540	0.982232	42	0.22256	0.077778	0.290741	0.616889
271	542	0.982265	42	0.224363	0.077491	0.289668	0.620058
272	544	0.982296	42	0.226167	0.077206	0.288603	0.623196
273	546	0.982327	42	0.227973	0.076923	0.289377	0.619121
274	548	0.982356	42	0.229779	0.076642	0.288321	0.622241
275	550	0.982385	42	0.231585	0.076364	0.287273	0.625331
276	552	0.982412	42	0.233393	0.076087	0.288043	0.621285
277	554	0.982438	42	0.235201	0.075812	0.287004	0.624358
278	556	0.982462	42	0.23701	0.07554	0.285971	0.627402
279	558	0.982486	42	0.238819	0.075269	0.284946	0.630415
280	560	0.982509	42	0.240629	0.075	0.285714	0.626412
281	562	0.98253	42	0.242439	0.074733	0.284698	0.62941
282	564	0.982561	43	0.220904	0.076241	0.283688	0.632379
283	566	0.982592	43	0.222624	0.075972	0.284452	0.628404
284	568	0.982621	43	0.224345	0.075704	0.283451	0.631358
285	570	0.98265	43	0.226066	0.075439	0.282456	0.634284
286	572	0.982678	43	0.227788	0.075175	0.281469	0.637181
287	574	0.982705	43	0.229511	0.074913	0.28223	0.633249
288	576	0.98273	43	0.231235	0.074653	0.28125	0.636132
289	578	0.982755	43	0.23296	0.074394	0.280277	0.638988
290	580	0.982778	43	0.234685	0.074138	0.281034	0.635083
291	582	0.982801	43	0.236411	0.073883	0.280069	0.637926
292	584	0.982823	43	0.238137	0.07363	0.27911	0.640741
293	586	0.982843	43	0.239864	0.073379	0.278157	0.64353
294	588	0.98287	44	0.218899	0.07483	0.278912	0.639666
295	590	0.982899	44	0.220541	0.074576	0.277966	0.642442
296	592	0.982927	44	0.222183	0.074324	0.277027	0.645192
297	594	0.982955	44	0.223826	0.074074	0.277778	0.641356
298	596	0.982981	44	0.22547	0.073826	0.276846	0.644094
299	598	0.983007	44	0.227115	0.073579	0.27592	0.646806
300	600	0.983031	44	0.228761	0.073333	0.275	0.649493

References

[1] D. André (1887). "Solution directe du problème resolu par M. Bertrand." Comptes Randus Acad. Sci. Paris 105, 436-437.
[2] L. Bachelier (1901). "Théorie mathématique du jeu." Ann. Sci. Ecole Nat. Sup., 3^{e} sér., 18, 143-209.
[3] L. Bachelier (1912)*. Calcul des probabilités, 1. Gauthier-Villars, Paris.
[4] L. Bachelier (1939). Les nouvelles méthodes du calcul des probabilités. Gauthier-Villars, Paris.
[5] J. Blackman (1956). An extension of the Kolmogorov distribution. Ann. Math. Statist. 27, 513-520. [cf. 6]]
[6] J. Blackman (1958). "Correction to 'An extension of the Kolmogorov distribution.' " Ann. Math. Statist. 29, 318-322.
[7] A. Dvoretzky, J. Kiefer, J. Wolfowitz (1956). "Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator." Ann. Math. Statist. 27, 642-669.
[8] M. Dwass (1967). "Simple random walk and rank order statistics." Ann. Math. Statist. 38, 1042-1053.
[9] B. V. Gnedenko, V. S. Korolyuk (1951). "On the maximum discrepancy between two empirical distributions." Dokl. Akad. Nauk SSSR 80, 525-528 [Russian]; Sel. Transl. Math. Statist. Probab. 1 (1961), 13-16.
[10] J. L. Hodges (1957). "The significance probability of the Smirnov two sample test." Arkiv för Matematik 3, 469-486.
[11] P. J. Kim and R. I. Jennrich (1970), "Tables of the exact sampling distribution of the twosample Kolmogorov-Smirnov criterion, $D_{m n}, m \leq n$, in Selected Tables in Mathematical Statistics, Institute of Mathematical Statistics, ed. H. L. Harter and D. B. Owen; Repub. Markham, Chicago, 1973.
[12] P. Massart (1990). "The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality." Ann. Probability 18, 1269-1283.
[13] T. S. Nanjundiah (1959). "Note on Stirling's Formula." Amer. Math. Monthly. 66, 701-703.
[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery (1992). Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2d. ed., Cambridge University Press.
[15] M. A. Stephens (1970). Use of the Kolmogorov-Smirnov, Cramér-Von Mises and related statistics without extensive tables. J. Royal Statistical Soc. Ser. B (Methodological) 32, 115122.
[16] F. Wei and R. M. Dudley (2011). "Two-sample Dvoretzky-Kiefer-Wolfowitz Inequalities." Preprint.

* An asterisk indicates items of which we learned from secondary sources but which we have not seen in the original.
(Fan Wei) M.I.T.
E-mail address, Fan Wei: fan_wei@mit.edu
(R. M. Dudley) M.I.T. Mathematics Department

E-mail address, R. M. Dudley: rmd@math.mit.edu

[^0]: Date: August 12, 2011.
 1991 Mathematics Subject Classification. 2008 MSC: 62G10, 62G30.
 Key words and phrases. Kolmogorov-Smirnov test, empirical distribution functions.

[^1]: ${ }^{1}$ The data shown in Table 5 are the Mathematica output without adding 0.00001 .

