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Abstract

A square matrix is called Hessenberg whenever each entry below the subdiagonal is
zero and each entry on the subdiagonal is nonzero. Let V' denote a nonzero finite-
dimensional vector space over a field K. We consider an ordered pair of linear trans-
formations A:V — V and A*: V — V which satisfy both (i), (ii) below.

(i) There exists a basis for V' with respect to which the matrix representing A is
Hessenberg and the matrix representing A* is diagonal.

(ii) There exists a basis for V' with respect to which the matrix representing A is
diagonal and the matrix representing A* is Hessenberg.

We call such a pair a thin Hessenberg pair (or TH pair). By the diameter of the pair
we mean the dimension of V' minus one. There is an “oriented” version of a TH pair
called a TH system. In this paper we investigate a connection between TH systems
and double Vandermonde matrices. We have two main results. For the first result we
give a bijection between any two of the following three sets:

e The set of isomorphism classes of TH systems over K of diameter d.
e The set of normalized west-south Vandermonde systems in Matg (K).

e The set of parameter arrays over K of diameter d.

For the second result we give a bijection between any two of the following five sets:

The set of affine isomorphism classes of TH systems over K of diameter d.

The set of isomorphism classes of RTH systems over K of diameter d.

The set of normalized west-south Vandermonde matrices in Matg 1 (K).

The set of reduced parameter arrays over K of diameter d.
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The set of affine classes of normalized west-south Vandermonde systems in Mat g1 (K).
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1 Introduction

This paper is about a linear algebraic object called a thin Hessenberg pair [I]. To recall its
definition, we will use the following term. A square matrix is called Hessenberg whenever
each entry below the subdiagonal is zero and each entry on the subdiagonal is nonzero.
Throughout the paper, K will denote a field.

Definition 1.1. [Il Definition 1.1] Let V' denote a nonzero finite-dimensional vector space
over K. By a thin Hessenberg pair (or TH pair) on V, we mean an ordered pair of linear
transformations A : V' — V and A* : V' — V which satisfy both (i), (ii) below.

(i) There exists a basis for V' with respect to which the matrix representing A is Hessenberg
and the matrix representing A* is diagonal.

(ii) There exists a basis for V' with respect to which the matrix representing A is diagonal
and the matrix representing A* is Hessenberg.

We call V' the underlying vector space and say that A, A* is over K. By the diameter of
A, A* we mean the dimension of V' minus one.

Note 1.2. It is a common notational convention to use A* to represent the conjugate-
transpose of A. We are not using this convention. In a TH pair A, A* the linear transforma-
tions A and A* are arbitrary subject to (i), (ii) above.

A TH pair is a generalization of a Leonard pair [4]. Roughly speaking, a Leonard pair is a
pair of linear transformations as in Definition [[LTl with the Hessenberg requirement replaced
by an irreducible tridiagonal requirement. Leonard pairs have been extensively studied; for
more information see [5] and the references therein.

In [I] we introduced the concept of a TH pair and began a systematic study of these
objects. We now summarize the content of [I]. In [I, Definition 2.2] we introduced an
“oriented” version of a TH pair called a TH system. A TH system is described as follows.
Let A, A* denote a TH pair on V of diameter d. By definition A is diagonalizable. It turns
out that each eigenspace of A has dimension one [I, Lemma 2.1]. Therefore a basis from
Definition [LII(ii) induces an ordering {V;}&, of the eigenspaces of A. For 0 < i < d, let E;
denote the primitive idempotent of A that corresponds to V;. We call {E;}¢, a standard
ordering of the primitive idempotents of A. A standard ordering of the primitive idempotents
of A* is defined similarly. A TH system is a TH pair A, A* together with a standard ordering
of the primitive idempotents of A and a standard ordering of the primitive idempotents of
A*. Let (A;{E;}4_o; A {E:}9 ) denote a TH system on V. In [I] we investigated six bases
for V' with respect to which the matrices representing A and A* are attractive. We displayed
these matrices along with the transition matrices relating the bases. We classified the TH
systems up to isomorphism.

In the present paper, we continue our study of TH pairs and TH systems. Our focus is
on a connection between TH systems and double Vandermonde matrices. We establish two
main results. These results have the following form. In the first result we display three sets
and show any two are in bijection. In the second result we display five sets and show any
two are in bijection. We now describe the first result. To do this we display the three sets
and then discuss the meaning. The three sets are:



e The set of isomorphism classes of TH systems over K of diameter d.
e The set of normalized west-south Vandermonde systems in Mat g1 (K).

e The set of parameter arrays over K of diameter d.

We now describe the above three sets in more detail. The first set is clear, so consider
the second set. For an indeterminate A let K[\ denote the K-algebra consisting of the
polynomials in A that have all coefficients in K. Let {f;}%, denote a sequence of polynomials
in K[\]. We say that {f;}%, is graded whenever f; = 1 and f; has degree i for 0 < i <
d. By a normalized west-south Vandermonde system in Maty,q(K) we mean a sequence
(X, {0}, {0:}L,) such that: (i) X is a matrix in Matgy(K); (ii) {0;}%, is a sequence of
mutually distinet scalars in K; (iii) {6 }L, is a sequence of mutually distinct scalars in K;
(iv) there exists a graded sequence of polynomials {f;}¢, in K[)] such that X,;; = f;(6;)
for 0 < 4,5 < d; (v) there exists a graded sequence of polynomials {f7}%, in K[\ such
that Xi; = f7,(07) for 0 <i,j < d. We now describe the third set. By a parameter array
over K of diameter d we mean a sequence ({6;}L,, {0}, {¢:}% ;) of scalars taken from K
such that: (i) {6,}%, are mutually distinct; (ii) {6} }L, are mutually distinct; (i) {¢;}L,
are all nonzero. We have now described the three sets. We now describe the bijections
between these sets. We start by describing the bijection from the first set to the second
set. Let @ = (A;{E;}L; A% {E}Y,) denote a TH system on V. Associated with @ is
a certain matrix P € Matgy,1(K). This is the transition matrix from a basis in Definition
[LII(ii) to a basis in Definition [[.1(i), where the bases are normalized so that each entry in
the leftmost column and the bottom row of P is 1. For 0 < i < d let 6; (resp. 6F) denote
the eigenvalue of A (resp. A*) that corresponds to E; (resp. E}). Our bijection sends
the isomorphism class of ® to (P, {6;}&,, {0;}L,). We now describe the bijection from the
third set to the first set. Let ({6;}%, {019, {¢:}%,) denote a parameter array over K of
diameter d. Let A denote the lower bidiagonal matrix in Maty,;(K) with entries A;; = 04,
for 0 <i¢<dand A;;_1 = ¢; for 1 <i < d. Let A* denote the upper bidiagonal matrix
in Matgy (K) with entries Aj; = 0; for 0 <7 < d and A7 ; =1 for 1 <7 < d. Observe
that {0;}%, (resp. {0;}L,) is an ordering of the eigenvalues of A (resp. A*). For 0 <i <d
let E; (resp. E) denote the primitive idempotent of A (resp. A*) that corresponds to 6;
(resp. 0F). We show that ® = (A; {E;}4; A*; {E7}9,) is a TH system. Our bijection sends
({0:34,, {0719, {#:}L,) to the isomorphism class of .

We now describe our second result, which is a variation on the first result. We mentioned
above that the second result involves five sets. The five sets are:

e The set of affine isomorphism classes of TH systems over K of diameter d.

The set of isomorphism classes of RTH systems over K of diameter d.

The set of affine classes of normalized west-south Vandermonde systems in Matg1 (K).

The set of normalized west-south Vandermonde matrices in Mat g1 (K).

The set of reduced parameter arrays over K of diameter d.



We now describe the above five sets in more detail. Throughout the description let o, 3, a*, 5*
denote scalars in K with «, a* nonzero. We now describe the first set. Let

D = (A {E}L; A5 {E}L,) denote a TH system over K. Observe that the sequence
(@A + BL{E;} g a*A* + B*I; {E7}4 ) is a TH system over K, said to be an affine trans-
formation of ®. We now describe the second set. By an RTH system over K we mean
the sequence ({F;}¢ o; {E}L,) induced by a TH system (A; {E;}L,; A {E;}e ) over K.
We now describe the third set. Let (X,{60;}%,{0:}%,) denote a normalized west-south
Vandermonde system in Matg1(K). One checks that (X, {a#; + B}9,, {a*0; + 5*}L,)
is a normalized west-south Vandermonde system in Mat,;(K). These two systems are
said to be affine related. We now describe the fourth set. By a normalized west-south
Vandermonde matrix in Matg;;(K) we mean the matrix X induced by a normalized west-
south Vandermonde system (X, {6;}L,, {0:}L,) in Maty,;(K). We now describe the fifth
set. Let ({0;}L,, {0719, {¢:}% ) denote a parameter array over K. Observe that ({af; +
By o, {0 + B*}4, {aa*d;}L ) is a parameter array over K. These two parameter arrays
are said to be affine related. This affine relation is an equivalence relation; the equivalence
classes are called reduced parameter arrays. We have now described the five sets. We omit
the description of the bijections between these sets as they are not hard to guess.

This paper is organized as follows. In Sections 2, 3 we review some basic concepts
regarding TH pairs and TH systems. In Section 4 we summarize the classification of TH
systems given in [I]. In Section 5 we discuss affine transformations of a TH system. In
Sections 6, 7 we discuss how a given TH system yields three more TH systems called the
relatives. In Sections 8, 9 we discuss some scalars that are helpful in describing a given TH
system. In Section 10 we use these scalars to describe the relatives of a given TH system.
In Sections 11, 12 we discuss the transition matrix P and a related matrix P. In Section 13
we define the notion of a Vandermonde system. In Sections 14-16 we discuss the connection
between Vandermonde systems, graded sequences of polynomials, and Hessenberg matrices.
In Section 17 we discuss the double Vandermonde structure of the transition matrices P and
P. Sections 18, 19 contain the main results of the paper.

2 Thin Hessenberg systems

In our study of a TH pair, it is often helpful to consider a closely related object called a
TH system. Before defining this notion, we make some definitions and observations. For the
rest of the paper, fix an integer d > 0. Let Maty,1(K) denote the K-algebra consisting of
the (d+ 1) x (d + 1) matrices that have all entries in K. We index the rows and columns by
0,1,...,d. Let K¥! denote the K-vector space consisting of the (d + 1) x 1 matrices that
have all entries in K. We index the columns by 0,1,...,d. Observe that Maty,(K) acts
on K41 by left multiplication. For the rest of the paper, fix a vector space V over K with
dimension d + 1. Let End(V') denote the K-algebra consisting of the linear transformations
from V to V. Suppose that {v;}¢, is a basis for V. For X € Maty,(K) and Y € End(V),
we say that X represents Y with respect to {v; }¢_, whenever Yov; = Z?:o Xijv; for 0 < j <d.
For A € End(V) and W C V, we call W an eigenspace of A whenever W # 0 and there
exists € K such that W = {v € V | Av = Ov}. In this case 6 is called the eigenvalue
of A corresponding to W. We say that A is diagonalizable whenever V is spanned by the



eigenspaces of A. We say that A is multiplicity-free whenever A is diagonalizable and each
eigenspace of A has dimension one.

Lemma 2.1. [I, Lemma 2.1] Let A, A* denote a TH pair on V. Then each of A, A* is
multiplicity-free.

We recall a few more concepts from linear algebra. Let A denote a multiplicity-free element
of End(V). Let {V;}&, denote an ordering of the eigenspaces of A and let {6;}., denote
the corresponding ordering of the eigenvalues of A. For 0 < ¢ < d, define E; € End(V)
such that (E; — I)V; =0 and E;V; = 0 for j # i (0 < j < d). Here I denotes the identity
of End(V). We call E; the primitive idempotent of A corresponding to V; (or 6;). Observe
that (i) I = S0, E;; (il) EiE; = 6,,B; (0 < i,j < d); (i) V; = BV (0 < i < d); (iv)
A= Z?:o 0, F;. Moreover

A—0,1 |

= <1< d).

E, O<|.<|d ) 0<i<d) (1)
7

Note that each of {A"}4 ,, {E;}%, is a basis for the K-subalgebra of End(V') generated by
A. Moreover HfZO(A —0,1) = 0.

We now define a TH system.
Definition 2.2. By a thin Hessenberg system (or TH system) on V' we mean a sequence
¢ = (A {E} Lo A {E}L,)
which satisfies (i)—(v) below.
(i) Each of A, A* is a multiplicity-free element of End (V).
(i) {E;}L, is an ordering of the primitive idempotents of A.

(iii) {E7}9, is an ordering of the primitive idempotents of A*.

. o 0, i i—j>1 .

(iv) EZ-AE]—{7A07 =1 (0<1i,5 <d).
s [0, i1 o

(v) EZ-AEJ»—{#O’ =1 (0<1i,j <d).

We refer to d as the diameter of ®. We call V' the underlying vector space and say that ® is
over K.

We comment on how TH pairs and TH systems are related. Let (A4;{FE;}%o; A% {Ef}L,)
denote a TH system on V. For 0 < i < d, let v; (resp. v}) denote a nonzero vector
in E;V (resp. E;V). Then the sequence {v;}%, (resp. {v;}%,) is a basis for V which
satisfies Definition [[II(ii) (resp. Definition [T)(i)). Therefore the pair A, A* is a TH pair
on V. Conversely, let A, A* denote a TH pair on V. Then each of A, A* is multiplicity-free
by Lemma 211 Let {v;}&, (resp. {v;}%,) denote a basis for V which satisfies Definition
[LIlGGi) (resp. Definition [[I}i)). For 0 < i < d, the vector v; (resp. v}) is an eigenvector
for A (resp. A*); let E; (resp. EJ) denote the corresponding primitive idempotent. Then
(A {E L, A% {Er L) is a TH system on V.

)

>



Definition 2.3. Let ® = (A4; {E;}L; A*; {Ef}L,) denote a TH system on V. Observe that
A, A* is a TH pair on V. We say that this pair is associated with ®.

Remark 2.4. With reference to Definition 2.3 conceivably a given TH pair is associated
with many TH systems.

We now recall several definitions and results on TH systems.

Definition 2.5. Let ® = (A; {E;}4; A% {E;}4,) denote a TH system on V. For 0 < i < d,
let 6; (resp. 67) denote the eigenvalue of A (resp. A*) corresponding to E; (resp. Ef). We
refer to {0;}9_, as the eigenvalue sequence of ®. We refer to {07 }%_, as the dual eigenvalue
sequence of . We observe that {6;}L, are mutually distinct and contained in K. Similarly
{0714, are mutually distinct and contained in K.

Definition 2.6. Let A, A* denote a TH pair. By an eigenvalue sequence (resp. dual eigen-
value sequence) of A, A*, we mean the eigenvalue sequence (resp. dual eigenvalue sequence)
of an associated TH system. We emphasize that a given TH pair could have many eigenvalue
and dual eigenvalue sequences.

Let K[)\] denote the K-algebra consisting of the polynomials in A that have all coefficients
in K.

Notation 2.7. Let {6;}L,,{0:}L, denote two sequences of scalars taken from K. For
0<i<d+1,let 7, 77, n; n denote the following polynomials in K[A].

(2

i—1 i—1
== 06n), ni = [N = Oazn),
h=0 h=0
i—1 i—1
=11 -6, m= ] =0
h=0 h=0

We observe that each of 7;, n;, 77, 1] is monic with degree 7.

By (@), for 0 <i<d

: : 7 (A, (AY)
Ei = —aN. o\ Ez* = * [ )%\ 0k : A
Ti(ei)nd—i(9i> T (ei )nd—i(ei)

By a decomposition of V we mean a sequence {U;}%, consisting of one-dimensional
subspaces of V' such that

(2)

V=U+U~+---+Uy (direct sum).

For notational convenience, set U_; = 0 and Uy, = 0.

Let ® = (A;{E;}Lo; A% {E}L,) denote a TH system on V. Then {EV}L, is a de-
composition of V, said to be ®-standard. Let 0 # & € EyV. The sequence {E;& e, is a
basis for V' [I, Lemma 8.1], said to be ®-standard. We recall another decomposition of V'
associated with ®. For 0 <i < d, let



U=(EV+EV+- - -+ EV)N(EV+EV+--+E; V). (3)

The sequence {U;}, is a decomposition of V [I Section 4], said to be ®-split. Moreover
for 0 < i <d, both

(A=04:)U; = Uiy, (4)
Setting i = d in ([B)) we find U; = EyV. Combining this with (&) we find
Ui = 13i(A") EoV (0 <i<d). (6)

Recall 0 # & € EyV. From (@) we find that for 0 < i < d, the vector n};_,(A*)&, is a basis
for U;. By this and since {U;}%, is a decomposition of V', the sequence

Na—i(A")&o (0<i<d) (7)
is a basis for V, said to be ®-split. Let 1 <1i < d. By () we have (A*—0I)U; = U;_1, and by
(@) we have (A —04_;111)U;—1 = U;. Therefore U; is invariant under (A —6,_;411)(A* —0:1)

and the corresponding eigenvalue is a nonzero element of K. We denote this eigenvalue by
¢;. We call the sequence {¢;}{, the split sequence of ®. For notational convenience, set

¢o =0 and ¢411 = 0.

Proposition 2.8. [I, Proposition 4.4] Let ® = (A; {E;}L; A*; {E7}L,) denote a TH system
on V with eigenvalue sequence {0;}4_,, dual eigenvalue sequence {0; Y, and split sequence
{¢:}4 .. Then the matrices representing A and A* with respect to a ®-split basis for V are

0 0 0 1 0
¢ Oa— o7 1

¢2 9d—2 9; : (8)
0 Pa o 0 0

respectively.

Next we describe the matrices representing the primitive idempotents of A, A* with respect
to a ®-split basis for V.

Proposition 2.9. Let ® = (A;{E;}L; A% {E;}L,) denote a TH system on V with eigen-
value sequence {0;}%,, dual eigenvalue sequence {0;},, and split sequence {¢;}%,. For
0 < r < d, consider the matrices in Matyy1(K) that represent E, and E' with respect to a
O-split basis. For 0 < 1,5 <d, their (i,7)-entry is described as follows. For E, this entry is

G192+ - @i Ta—i(0,)n;(0r) (9)
¢1¢2 T (bj Tr(9r>nd—r(0r)7

and for EY this entry is

(10)



Proof: Fix a ®-split basis for V. For notational convenience, identify each element of End (V')
with the matrix in Maty,;(K) that represents it with respect to this basis. We first show
that the (i, j)-entry of £ is given by ([I0). Computing the (7, j)-entry of A*E* = 6 E* using
matrix multiplication, and taking into account the form of A* in (§]), we find

(B i1y = (07 = 07)(E7)i;
if + < d— 1. Replacing ¢ by ¢ — 1 in the above line, we find

(E7)ij = (07 — 0 1) (Er)i1, (11)
if ¢ > 1. Using the recursion (1), we routinely find

(E)ij = (07 =00, = 0;5) -+ (67 = 65)(E])o;
= (0 (E)os- (12)

Computing the (0, j)-entry of EXA* = 6*E* using matrix multiplication, and taking into
account the form of A*, we find

(EX)oj—1 = (07 = 05)(EX)o;
if 7 > 1. Replacing j by 7 + 1 in the above line we find

(E)oj = (07 = 0511) (B o (13)

if j < d — 1. Using the recursion (I3]), we routinely find

(E)oj = (67 = 07,.1)(07 = 07,5) -~ (07 = 03) (E)oa
= N (07)(EX)oa- (14)

Combining (I2)), (I4)), we find
(EX)ij = 77 (07)na-;(07)c, (15)

where we abbreviate ¢ = (E¥)oq. We now find c. Since A* is upper triangular, and since E
is a polynomial in A*, we see E* is upper triangular. Recall E*?* = E*, so the diagonal entry
of (EF), equals 0 or 1. We show (E}),. = 1. Setting i = r, j = r in (I3,

(B )rr = 77 (0703, (67)c. (16)

Observe 77(67) # 0 and n%_(07) # 0 by Notation 2.7l and since {6;}%_, are distinct. Observe
¢ # 0; otherwise Ef = 0 in view of (I3). Apparently the right side of (IG) is not 0, so
(Ef). # 0, and we conclude (E¥),, = 1. Setting (Ef),, = 1 in (I6)), solving for ¢, and
evaluating ([I3]) using the result, we find the (i, j)-entry of E¥ is given by (I0).

We now show that the (i, j)-entry of E, is given by ([@). Let G € Maty,1(K) denote the



diagonal matrix with (4, 7)-entry ¢1¢s---¢; for 0 < i < d and set A" := GA'G™!, where A is
the matrix on the left of (8). The matrix A’ is equal to

0, 1 0
041 1
Oa—2 (17)
1
0 o

Let E! denote the primitive idempotent of A" associated with the eigenvalue 6,. We find E!
in two ways. On one hand, applying ([I0) to A’, we find E! has (i, j)-entry

Td—j (0,)n:(6,)

= O 6) "
for 0 <i,5 < d. On the other hand, by elementary linear algebra
E =GE!G™,
so E! has (i, j)-entry
Gi(E) ;G = % (Er)ji (19)
for 0 <i,j < d. Equating (I8)) and the right side of (19), and solving for (E,);;, we routinely
obtain the result. a

Example 2.10. Referring to Proposition 2.9 assume d = 2. With respect to a ®-split basis,
the matrices representing Ey, Fy, Ey are

0 0 0 0 0 0 1 00

0 0o 0], s 1 0|, TR 00 |,

P1P2 ®2 1 1$2 o2 0 192 00
(90—92)(90—91) 6o—061 (91—90)(91—92) 61—6p (92—90)(92—91)

respectively. Moreover the matrices representing £, B, B are

O e AR =R = 0 5o wmE 00 Gmeam

0 0 0 oo s , |00 :

0 0 0 0 0 0 00 1
respectively.

We now give some characterizations of the split sequence.

Lemma 2.11. Let (4;{E;}%; A {E;f}L,) denote a TH system with eigenvalue sequence
{0;}L,, dual eigenvalue sequence {07 }4_, and split sequence {¢;}%_,. Then

O1P2 -+ G

o Eo = g — gy (G — 67

E; (0<i<d). (20)



Proof: Let ® denote the TH system in question and assume V' is the underlying vector space.
Let {U;}L, denote the ®-split decomposition of V. Setting i = 0 in ([B]) we find Uy = E}V.
By this and (), (B]) we obtain

(A" = 01 1)(A" = 030) - - (A" = O 1)1 (A) = drba - - - Pl (21)

on EiV. To obtain (20), multiply both sides of (21]) on the left by Ej and use EjA* = O3 Ef.
]

Corollary 2.12. Let (A; {E;}Lo; A% {E7}L ) denote a TH system with eigenvalue sequence
{0:;}L,, dual eigenvalue sequence {0}, and split sequence {¢;}L,. Then for 0 <i <d,

G103+~ i = (0 — 01) (65 — 65) - - (65 — 67 )trace(ni(A) Eg). (22)
Moreover n;(A)E§ has nonzero trace.

Proof: To obtain (22)), in ([20) take the trace of each side and simplify the result using the
fact that trace(E() = 1 and trace(Egn;(A)E) = trace(n;(A)EGES) = trace(n;(A)E§). This
gives (22)). The last assertion follows since ¢; # 0 for 1 < i < d. O

Corollary 2.13. Let (A;{E;}Lo; A% {Ef}L,) denote a TH system with eigenvalue sequence
{0;}L,, dual eigenvalue sequence {07 }4_, and split sequence {¢;}%_,. Then

¢i = (0 — 07 )trace(n;(A) Ey) /trace(n;—1 (A) Eg) (1<i<d). (23)
Proof: Routine by Corollary O

In Section [7] we give some more characterizations of the split sequence.

3 Isomorphisms for TH pairs and TH systems

In this section we discuss the notion of isomorphism for TH pairs and TH systems.
Lemma 3.1. For X € Matg1(K) the following (1)—(iil) are equivalent.

(i) X s diagonal.

(i) DX = XD for all diagonal D € Mat g1 (K).

(i) There exists a diagonal D € Matg.1(K) that has mutually distinct diagonal entries and
DX =XD.

Proof: (i) = (ii) Clear.

(ii) = (iii) Clear.

(ili) = (i) For 0 <i,j < d with i # j, we show X;; = 0. Comparing the (i, j)-entry of DX
and XD, we find D;; X;; = X;;D;;. By assumption D;; # Dj;, so X;; = 0. O

Let A, A* denote a TH pair on V. In general, End(V') may not be generated by A, A*.

Moreover there may exist a subspace W of V' such that AW C W, A*W C W, W £0,W #£ V.
However we do have the following result.

10



Lemma 3.2. Let A, A* denote a TH pair on V. Let A denote an element of End(V') such
that AA = AA and AA* = A*A. Then A € KI.

Proof: Pick a basis for V' from Definition [[LT](i). For notational convenience, identify each
element of End(V') with the matrix that represents it with respect to this basis. Thus the
matrix A is Hessenberg and the matrix A* is diagonal. Moreover the diagonal entries of A*
are mutually distinct by Lemma 2.1l Applying Lemma B.1] with D = A* and X = A, we
find A is diagonal. For 1 < ¢ < d, comparing the (i,7 — 1)-entry of AA and AA, we find
AiiAi,i—l = Ai,i—lAi—l,i—l- Observe that Ai,i—l % 0 since A is Hessenberg, SO A“ = Ai—l,i—l-
Therefore A;; is independent of ¢ for 0 < ¢ < d. Consequently A € KI. O

For the rest of this section, let W denote a vector space over K with dimension d + 1.
Let I' : V. — W denote a K-vector space isomorphism. Then there exists a unique K-
algebra isomorphism ~ : End(V) — End(W) such that S = T'ST~! for all S € End(V).
Conversely let v : End(V) — End(W) denote a K-algebra isomorphism. By the Skolem-
Noether theorem [2, Corollary 9.122] there exists a K-vector space isomorphism I': V- — W
such that S7 = I'ST~! for all S € End(V). Moreover I is unique up to multiplication by a
nonzero scalar in K.

Definition 3.3. Let A, A* denote a TH pair on V' and let B, B* denote a TH pair on W.
By an isomorphism of TH pairs from A, A* to B, B* we mean a K-algebra isomorphism
v : End(V) — End(W) such that B = AY and B* = A*. We say that the TH pairs A, A*
and B, B* are isomorphic whenever there exists an isomorphism of TH pairs from A, A* to
B, B*.

Lemma 3.4. Let A, A* and B, B* denote isomorphic TH pairs over K. Then the isomor-
phism of TH pairs from A, A* to B, B* is unique.

Proof: Let v and ' denote isomorphisms of TH pairs from A, A* to B, B*. We show that
v = «'. By the comments above Definition 3.3 there exists a K-vector space isomorphism
I':V — W (resp. I":V — W) such that S7 = I'ST™! (resp. S? = I[VSI""!) for all
S € End(V). Consider the composition A = T~!'T". Observe that A is an invertible element
of End(V'). By construction, AA = AA and AA* = A*A. Therefore A € KI by Lemma [3.2]
By these comments, there exists 0 # « € K such that A = «f. Hence I" = al',soy=+/. O

Definition 3.5. Let ® = (A;{E;}¢; A% {E;}4,) denote a TH system on V and let ¥ =
(B; {E}L; B {F7}L,) denote a TH system on W. By an isomorphism of TH systems
from ® to ¥ we mean a K-algebra isomorphism 7 : End(V) — End (W) such that

B=A", B'=A", F=E, F=E" (0<i<d).

(2 K3

We say that the TH systems ® and ¥ are isomorphic whenever there exists an isomorphism
of TH systems from & to W.

Lemma 3.6. Let & and ¥ denote isomorphic TH systems over K. Then the isomorphism
of TH systems from ® to ¥ is unique.

Proof: Similar to the proof of Lemma [3.4 O

We give another interpretation of isomorphism for TH pairs and TH systems.
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Lemma 3.7. Let A, A* denote a TH pair on'V and let B, B* denote a TH pair on W. Then
the following (i), (ii) are equivalent.

(i) The TH pairs A, A* and B, B* are isomorphic.

(ii) There exists a K-vector space isomorphism I' : V. — W such that BI' = T'A and
B T'=TA*"

Moreover assume (i), (ii) hold. Then T' is unique up to a multiplication by a nonzero scalar
in K.

Lemma 3.8. Let ® = (A;{E;}L,; A% {E}YL,) denote a TH system on V and let ¥ =
(B; {F;}d_y; B {F}4,) denote a TH system on W. Then the following (i), (ii) are equiva-
lent.

(i) The TH systems ® and V are isomorphic.

(ii) There ezists a K-vector space isomorphism I : V. — W such that

Bl =TA, BT=TA* FET=TE, FT=TE (0<i<d).

Moreover assume (i), (ii) hold. Then T' is unique up to a multiplication by a nonzero scalar
in K.

4 The classification of TH systems

In [I] we classified the TH systems up to isomorphism. We recall the result in this section.

Definition 4.1. Let ® denote a TH system. By the parameter array of ® we mean the
sequence ({0;}4 o, {0719 o, {0 }L,), where {0;}%, (resp. {0:}L,) is the eigenvalue (resp.
dual eigenvalue) sequence of ® and {¢;}%, is the split sequence of .

Theorem 4.2. [I, Theorem 6.3] Let
({0} im0 {07 Yz, {i}im) (24)

denote a sequence of scalars taken from K. Then there exists a TH system ® over K with
parameter array (24)) if and only if (i)—(iii) hold below.

(i) 0: # 0 if i (0<i,j <d).
(i) 07 # 6 if i (0<i,j<d).
(i) ¢: # 0 (1<i<d).

Moreover assume (i)—(iii) hold. Then ® is unique up to isomorphism of TH systems.

Definition 4.3. By a parameter array over K of diameter d we mean a sequence of scalars
({0:}0 0, {07 Y0, {#: 1) taken from K that satisfies conditions (i)-(iii) of Theorem 2l

12



Corollary 4.4. The map which sends a given TH system to its parameter array induces a
bijection from the set of isomorphism classes of TH systems over K of diameter d, to the set
of parameter arrays over K of diameter d.

Proof: Immediate from Theorem O

To illuminate the bijection in Corollary 4.4l we now describe its inverse in concrete terms.
Let 7 denote the bijection in Corollary [£.41

Proposition 4.5. Let ({0;}%,{0: L, {#:}L,) denote a parameter array over K of diam-
eter d. Let A (resp. A*) denote the matriz on the left (resp. right) in (§). Observe that
A (resp. A*) is multiplicity-free with eigenvalues {0;}L, (resp. {0;}%,). For 0 < i < d
let E; (resp. EY) denote the primitive idempotent of A (resp. A*) that corresponds to 0;
(resp. 0F). Then ® = (A; {E;}L; A% {E YL, is a TH system over K. Moreover 7=% sends
({0:} 0, {0}, {0: L)) to the isomorphism class of ®.

Proof: This is proven as part of the proof of [I, Theorem 6.3]. O

5 The affine transformations of a TH system

A given TH system can be modified in several ways to get a new TH system. In this section
we describe one way. In the next section we describe another way.

Lemma 5.1. Let ® = (A;{E;}Ly; A% {Ef}L,) denote a TH system on V. Let «, 3, a*, B*
denote scalars in K with o, a® nonzero. Then the sequence

(@A + BLAEYL g o A" + B {E; }Lo) (25)
1s a TH system on V.
Proof: Routine. O

Definition 5.2. Referring to Lemma [5.1] we call the TH system (25]) the affine transforma-
tion of ® associated with «, B, a*, *.

Definition 5.3. Let ® and ¢’ denote TH systems over K. We say that ® and &' are affine
isomorphic whenever ® is isomorphic to an affine transformation of ®'. Observe that affine
isomorphism is an equivalence relation.

Lemma 5.4. With reference to Lemmal5d), let ({0;}0q, {0}, {#:}L,) denote the param-
eter array of ®. Then the parameter array of the TH system (23) is ({ab; + B}y, {a*0F +

5*}?:(» {aa* o ?l:1)-

Proof: Let ® denote the TH system (28]). By Definition 25| for 0 < i < d the scalar 6; is the
eigenvalue of A associated with E;, so a#; + [ is the eigenvalue of « A + 51 associated with
E;. Thus {ab; + B}L, is the eigenvalue sequence of ®'. Similarly {a*07 + 3%}, is the dual
eigenvalue sequence of ®'. In (23], if we replace A by aA + BI and replace 0; (resp. ¢7) by
af; + B (resp. o6 + 3*) for 0 < j < d, then the left-hand side becomes aa*®;. Therefore
{aa*¢;}4 | is the split sequence of @' O
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6 The relatives of a TH system

Let @ denote a TH system. In the previous section we modified ® in a certain way to get
another TH system. In this section we modify @ in a different way to obtain two more TH
systems. These TH systems are called ®* and ®. We start with ®*.

Definition 6.1. Let ® = (A4; {E;}L; A*; {Ef}L,) denote a TH system on V. Observe that

)

(A% {Er Y s A {Ei}L,) is a TH system on V, which we denote by ®*.

Lemma 6.2. [I, Lemma 6.4] Let & denote a TH system with parameter array
({0:34, {0: 19 o, {:}L,). Then the TH system ®* has parameter array ({0; } g, {0}, {Pa—ir1}L,)-

We now consider ®. For the rest of this section, let W denote a vector space over K
with dimension d + 1. For K-algebras A and A’, by a K-algebra anti-isomorphism from
A to A’ we mean a K-vector space isomorphism { : A — A’ such that (RS)" = STRf
for all R,S € A. By a K-algebra anti-automorphism of A we mean a K-algebra anti-
isomorphism from A to A. The anti-automorphisms of Mat,,1(K) are described as follows.
Let R denote an invertible element of Maty;(K). Then there exists a unique K-algebra anti-
automorphism 1 of Mats;(K) such that ST = RS'R™! for all S € Maty,;(K). Conversely,
let 1 denote a K-algebra anti-automorphism of Matyy(K). By the Skolem-Noether theorem
[2, Corollary 9.122], there exists an invertible R € Maty,;(K) such that ST = RS!R~! for all
S € Matgy1(K). Moreover R is unique up to a multiplication by a nonzero scalar in K.

Define Z € Matg,;(K) such that Z;; = 6;4;4 for 0 < 4,5 < d. Observe that Z~ = Z.
Define ¢ to be the K-algebra anti-automorphism of Matg1(K) such that S¢ = ZS'Z for
all S € Matgy1(K). For S € Maty(K), S° is obtained from S by reflecting about the
diagonal connecting the top right corner of S and the bottom left corner of S. In other
words, (5°);; = Sq—ja—i for 0 <i,j < d. For example,

1
S=1 4 .S =
7

co Ot N
O O W
~J 00 ©
= Ot O
— N W

Observe that (S°)¢ = S for all S € Matyy1(K). Note that if H € Matgy1(K) is Hessenberg
then H* is Hessenberg.

Lemma 6.3. Let A denote a multiplicity-free element of End(V) with eigenvalues {6;}¢_,.
For 0 <i <d, let E; € End(V) denote the primitive idempotent of A corresponding to 0;.
For any anti-isomorphism t : End(V') — End(W), the following (i), (ii) hold.

(i) A" is a multiplicity-free element of End(W) with eigenvalues {0;}%_,.
(ii) For 0 <i<d, EZT is the primitive idempotent of AT corresponding to 0;.

Proof: (i) For f € K[\] we have f(A) = 0 if and only if f(A") = 0. Therefore A and AT
have the same minimal polynomial. The minimal polynomial of A is H?:o()‘ — 0;) so the
minimal polynomial of AT is H?:o()‘ — 6;). By this and since {6;}L, are mutually distinct,
AT is diagonalizable with eigenvalues {6;}% . Recall dim W = d+1 so AT is multiplicity-free.
(ii) Apply t to (). O
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Proposition 6.4. Let (A;{E;}% ; A% {E7}L,) denote a TH system on'V. Let t denote an
anti-isomorphism from End(V') to End(W). Then (At {El_YL o At {ET V4 ) is o TH
system on W.

Proof: Define W = (AT {El_}& ;A {E .32 ). In order to show that ¥ is a TH sys-
tem on W, we show that W satisfies conditions (i)—(v) of Definition 2221 By Lemma
63, ¥ satisfies conditions (i)—(iii). We now show that W satisfies condition (iv). Since
(A {E;}4; A {E7}4,) is a TH system, we have

s )0 ifi—75>1 ..
E,A E]_{#O’ o (0<i,j<d). (26)
Applying 1 to (28), we find
toast ot 0,ifi—j5>1 .
EiA Ei_{;éO,ifi—jzl (0<4,5<4d) (27)
Relabelling the indices in (27]), we find
» 0,ifi—j5>1 o
E} A TE‘S—J':{;AO ifz’j—jzl (0<i,j<ad).

Therefore W satisfies condition (iv). Similarly U satisfies condition (v). Therefore ¥ is a TH
system on W. O

Definition 6.5. Let ® = (A; {E;}L; A {E;},) denote a TH system on V and let ¥ =

(B; {F;}d_y; B*; {F}9_,) denote a TH system on W. By an anti-isomorphism of TH systems

from ® to ¥ we mean a K-algebra anti-isomorphism 1 : End(V) — End(W') such that
B=A", pB=A%  E=E_. E=E' (0<i<d).

Observe that if 1 is an anti-isomorphism of TH systems from ® to ¥, then 17! is an anti-

isomorphism of TH systems from ¥ to ®. We say that the TH systems & and ¥ are
anti-isomorphic whenever there exists an anti-isomorphism of TH systems from & to W.

Lemma 6.6. Let & denote a TH system over K. Then there exists a TH system ¥ over
K such that ® and VU are anti-isomorphic. Moreover ¥ is unique up to isomorphism of TH
systems.

Proof: We first show that U exists. Write ® = (A4; {E;}Lq; A" {E;}L,) and assume V is
the vector space underlying ®. By elementary linear algebra, there exists a K-algebra anti-
automorphism t of End(V). Define ¥ = (AT {E}_}¢ ; A {E:T .32 ). By Proposition 6.4,
¥ is a TH system on V. By Definition 6.5, ® and ¥ are anti-isomorphic. We have shown
that U exists. Next we show that ¥ is unique. Suppose that ¥’ is a TH system on W
such that ® and ¥’ are anti-isomorphic. We show that ¥ and ¥’ are isomorphic. Let 1’
denote an anti-isomorphism of TH systems from ® to ¥’. Then the composition /17! is an
isomorphism of TH systems from W to ¥’. Therefore ¥ and ¥’ are isomorphic. O
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Lemma 6.7. Let ® and ¥ denote anti-isomorphic TH systems over K. Then the anti-
isomorphism of TH systems from ® to ¥ is unique.

Proof: Let t and 1’ denote anti-isomorphisms of TH systems from ® to ¥. We show that
T = 1. Observe that the composition {711’ is an isomorphism of TH systems from ® to .
The map 171 is the identity by Lemma 3.6, so + = {'. O

Proposition 6.8. Let ® denote a TH system over K with parameter array
({0:34, {0: 39 o, {i}L,). Let VU denote a TH system over K. Then the following (i), (ii)
are equivalent.

(i) ® and ¥ are anti-isomorphic.
(i) The parameter array of ¥ is ({04}, {05} o, {Paiv1}Ly).

Proof: (if)=(i) Write ® = (A; {Ei}{Lo; A" {Ef }ilo) and W = (B; {F}ile; B {F}Lo). As-
sume V (resp. W) is the vector space underlying ® (resp. V). For notational convenience,
fix a ®-split basis for V' (resp. W-split basis for W) and identify each element of End(V)
(resp. End(W)) with the matrix in Matg(K) that represents it with respect to this basis.
By Proposition 2.8

04 0 0; 1 0
¢1 Oa 0r 1
A= ®2 Hd.—2 7 o 03
1
0 oq B9 0 0%
Moreover
0o 0 o 1 0
Ga 05, 1
B = ¢d—1 92 B* = 92_2
.. 1
0 o1 Oy 0 0

Recall the K-algebra anti-automorphism ¢ of Maty,1(K) from above Lemma [6.3l Observe
that B = A° and B* = A*. By this and () we find F; = E; ;, and F = E}°. for
0 < i < d. Therefore ¢ is an anti-isomorphism of TH systems from ® to ¥, so ® and ¥ are
anti-isomorphic.

(i)=-(ii) Routine by Theorem [1.2] Lemma [6.6, and the previous part. O

We now discuss the notion of anti-isomorphism for TH pairs.

Definition 6.9. Let A, A* denote a TH pair on V and let B, B* denote a TH pair on
W. By an anti-isomorphism of TH pairs from A, A* to B, B* we mean a K-algebra anti-
isomorphism t : End(V) — End(W) such that B = A" and B* = A*. Observe that if { is an
anti-isomorphism of TH pairs from A, A* to B, B*, then 17! is an anti-isomorphism of TH
pairs from B, B* to A, A*. We say that the TH pairs A, A* and B, B* are anti-isomorphic
whenever there exists an anti-isomorphism of TH pairs from A, A* to B, B*.
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Lemma 6.10. Let A, A* denote a TH pair over K. Then there exists a TH pair B, B*
over K such that A, A* and B, B* are anti-isomorphic. Moreover B, B* is unique up to
isomorphism of TH pairs.

Proof: Similar to the proof of Lemma O

Lemma 6.11. Let A, A* and B, B* denote anti-isomorphic TH pairs over K. Then the
anti-isomorphism of TH pairs from A, A* to B, B* is unique.

Proof: Similar to the proof of Lemma O

We recall some more terms and facts from elementary linear algebra. A map ( ,) :
V xW — K is called a bilinear form whenever the following conditions hold for all v,v" € V,
w,w € W, and a € Ko (i) (v + v, w) = (v,w) + (v, w); (ii) (av,w) = alv,w); (iii)
(v,w+w) = (v,w) + (v,w); (iv) (v, aw) = a{v,w). We observe that a scalar multiple of a
bilinear form is a bilinear form.

Let (,):V x W — K denote a bilinear form. Then the following are equivalent: (i)
there exists a nonzero v € V' such that (v, w) = 0 for all w € W; (ii) there exists a nonzero
w € W such that (v, w) =0 for all v € V. The form (, ) is said to be degenerate whenever
(i), (ii) hold and nondegenerate otherwise.

Bilinear forms are related to anti-isomorphisms as follows. Let {, ) : V x W — K denote
a nondegenerate bilinear form. Then there exists a unique anti-isomorphism } : End(V) —
End(W) such that (Sv,w) = (v, STw) for all v € V, w € W, and S € End(V). Conversely,
given an anti-isomorphism t : End(V) — End(W) there exists a nonzero bilinear form
(,):V xW — K such that (Sv,w) = (v, STw) for allv € V, w € W, and S € End(V).
This bilinear form is nondegenerate, and uniquely determined by  up to multiplication by
a nonzero scalar in K. We say that the form ( , ) is associated with .

Define V to be the dual space of V, consisting of all K-linear transformations from V' to
K. By elementary linear algebra, V is a vector space over K and dimV = dim V. Define
a bilinear form ( ,) : V x V — K such that (v, f) = f(v) forall v € V and f € V.
The form ( , ) is nondegenerate. We call ( , ) the canonical bilinear form between V' and
V. Let 0 : End(V) — End(V) denote the anti-isomorphism associated with ( , ). Thus
(Sv, f) = (v,8°f) for all v € V, f € V, and S € End(V). We call o the canonical anti-
isomorphism from End(V) to End(V).

Definition 6.12. Let & = (A;{E; }Z 0 A% {Er ) denote a TH system on V with pa-
rameter array ({6;} 0,{9* 4 {ditL,). Define <I> (A% {E9 3L A {E2 .} ), where
o End(V) — End(V) is the canonical anti-isomorphism. By Proposition [6.4] ® is a TH
system on V. By Definition 6.5, ® and ® are anti-isomorphic. By Proposition 6.8, ® has

parameter array ({ed—l}z:m {9 —z}g:m {¢d—2+1}z:1)'

7 The Zy x Z- action

Let ® = (A; {E;}L; A {E7}L,) denote a TH system. We saw in the previous section that
each of the following is a TH system:

ot = (AS{EL 0§A'{E}d 0);
(I) = (Ao;{Eg—z 1= 07A*0 {E;lw )
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Viewing *, ~ as permutations on the set of all TH systems,
*2:N2:1’ ko= Yok, (28)

The group generated by symbols *, ~ subject to the relations (28] is the group Zs x Z,.
Thus *, ~ induce an action of Zs X Zsy on the set of all TH systems. Two TH systems will
be called relatives whenever they are in the same orbit of this Z, X Z, action. The relatives
of ® are as follows:

name relative
P (A§ {Ei}?:dm A% {Ef}gzo)
o~ (A*§ {EZ‘}izo; A; {Ei}i:O)

~q> (A%, {Eg_i}?:m A*; {Efikzi}g:o)
o | (A By A% {EL )

Corollary 7.1. Let ® denote a TH system with parameter array ({0}, {0:} Lo, {0i}L ).
Then the parameter arrays of its relatives are as follows:

name p(lrameter array

o ({0 }o: {0 Yoo {9}

e ({07 yo, {0} 0, {Pa—ita 1)
S| ({Oa-i}o 105 o {Pa—iti }iy)
P ({92—1' ?:m{%—z}?:o,{@}?:l)

Proof: Immediate from Lemma and Proposition O

We will use the following notational convention.

Definition 7.2. Let ® denote a TH system. For g € Z, X Z5 and for an object f associated
with @, let f9 denote the corresponding object associated with &Y.

We end this section by giving some more characterizations of the split sequence, as promised
at the end of Section [2

Lemma 7.3. Let (A;{E;},; A {E:},) denote a TH system with parameter array

)

({0:3,, {0: 34 o, {d:}L,). Then the following (i)—(iii) hold for 0 <i < d.

¢d¢d—l e ¢d—i+1
(0o — 01)(00 — 0a) - (6o — 0;)

deﬁbd—l tee de—z'—i—l E*
0 — 05 )0 — 05 o) (05— 05_,) ¢

(i) Eon; (A")Ey =

Ey.

(i) Eqmi(A)Eq =

(iil) Eqry (A")Eq = (04 —0a—1)(0g — ba—2) - - - (84 — ed—i)Ed.

Proof: Let ® denote the TH system in question.

(i) Apply Lemma 211 to ®*.

(ii) Apply Lemma ZIT to ® and then apply o' to each side of the resulting equations.
(iii) Apply (ii) to ®*. O
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Corollary 7. 4 Let (A;{E;}L o A% {EY,)
({0:} 0, {073, {0:},). Then the following

(i
(i) Gada—1-- " Pa—i+1 = (0o — 01)(6p — b2) - - (6 — 0;)trace(n; (A") Eo).
(il) @ada—1 - ba—ir1 = (07 — 05_1)(0g — O5_5) - - - (63 — 65_;)trace(r;(A) £7).
(ill) P1dg- -y = (0g — O04-1)(0g — Oq_2) - - - (04 — Oq_; ) trace(r; (A*) Ey).
Moreover cach of 5t(A*)Ey, 7:(A) B, 7(A*) Ey has nonzero trace.

denote a TH system with parameter array
1)—(iil) hold for 0 <i <d.

Proof: Let ® denote the TH system in question.

(i) Apply Corollary to O*.

(ii) In the equation of Lemma[T.3|(ii), take the trace of each side and simplify the result using
the fact that trace(E}) = 1 and trace(E;7;(A)E}) = trace(r;(A)ESE;) = trace(r;(A)E}).
(iii) Apply (ii) to ®*.

The last assertion follows since ¢; # 0 for 1 <1 < d. d

Corollary 7.5. Let (A {E}d o A% {E YL ) denote a TH system with parameter array
({0:34, {0: 39, {:}L,). Then the followmg (i)—(iil) hold for 1 <i <d.

(1) @i = (B0 — Oa—it)trace(ng_;,, (A")Eo)/trace(ng_;(A") Eq).
(i) ¢; = (05 — 07_)trace(r4_i41(A)E}) /trace(ry_i(A)EY).
(i) ¢ = (04 — Oq—i)trace(r; (A*)Ey) /trace(r_(A™)Eq).

Proof: Routine by Corollary [7.4] O

8 The scalars {¢;}% ,

Let ® denote a TH system. In this section we associate with ® a sequence of scalars {£;}&,
that will help us describe .

Definition 8.1. Let ® denote a TH system with dual eigenvalue sequence {0;}% . For
0 <1 <d, define

0 - 14(65)
L T O)m(6))
(65 — 07)(65 — 05) - - (05 — 63)
(07 = 06) (07 = 07) -~ (07 — 0;-0)(0; — 074) -~ (67 — 031) (6] — 0)

Observe that {5 = 1.
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Lemma 8.2. Let ® denote a TH system with eigenvalue sequence {0; Y, and dual eigenvalue
sequence {0 }L,. Then for 0 <i <d,

P 1a(0o)
' 7i(0i)na—i(0;)
(0o — 01) (0o — 02) -~ (6 — 0a)
(0; —60)(0; — 1) -+ (0; — 0;—1)(0; — Oig1) - - (0 — ba—1)(0; — 64)’

; 74 (63)

i (ed—i)Td—i(ed—i)
_ (05— 031)(03 — 05s) - (0= 05)
(92—1' - 92)(92—1' - 92—1) e (92 i 92 2+1)(9;—i - 92—1'—1) e (92—1' - 9?)(92—2‘ - 95)’
- 74(0a)

' 0i(0g—i)Ta—i(0a—s)
(03— 04—1)(0g — Oq—2) - - - (04 — Op)
(Ba—i — 0a)(Oa—i — Oa—1) - - (Ba—i — Oa—it1) (Oa—i — Og—i—1) - - (Ba—i — 01) (04— — bp)

7 1i(07) 7a(0a)
Moreover ¢; = ly_; and f* = oy
n2(05) na(fo) -

Proof: Combine Corollary [[.T] and Definition Bl O

We give one significance of the sequence {£;}%,.

Lemma 8.3. Let (A;{E;}¢_o; A {E;}L,) denote a TH system. Then E,E; Ey = (;EE; Ey
for 0 <1 <d.

Proof: Let ® denote the TH system in question and assume V' is the underlying vector space.
For notational convenience, fix a ®-split basis for V' and identify each element of End (V)
with the matrix in Maty,;(K) that represents it with respect to this basis. We show that
E4(EF — U;ES)Ey = 0. By (@) the entries of all but the first column of E; are zero and the
entrles of all but the last row of Fy are zero. Therefore for 0 < m,n < d, the (m, n)-entry of
E4(EF — G;ES)Ey is

(Ea)mo(Ei — €iEg)oa(Eo)an- (29)
By ([I0) the middle factor in (29) is 0, so (29) is 0. Therefore Eq4(E} — (;E5)Ey = 0 and the
result follows. O

Corollary 8.4. Let (A;{E;}L,; A {E;},) denote a TH system. Then the following (i)—
(iii) hold for 0 <i < d.

(i) E3E;E; = (*E:E\E:.
(i) E4E*Ey = ly_;E.E3E,.

(iii) EjEE; =0 EiE.E;.
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Proof: Let ® denote the TH system in question.

(i) Apply Lemma B3] to ®*.

(ii) Apply Lemma B3] to ® and then apply o~ ! to each side of the resulting equations.

(iii) Apply (ii) to ®*. O

Definition 8.5. Let ® denote a TH system of diameter d. We associate with ® a diagonal
matrix L € Maty;(K) with (,4)-entry ¢; for 0 <i <d.

9 The scalar v

Let & denote a TH system. In this section we associate with ® a scalar v that will help us
describe ®.

Definition 9.1. Let (A;{E;}4; A% {E;}L,) denote a TH system. By [I Lemma 7.5],
trace(Ey E§) is nonzero. Let v denote the reciprocal of trace(EyEy).

We give one significance of the scalar v.
Lemma 9.2. [I, Lemma 7.4] Let (A;{E;}4_o; A {E;}L,) denote a TH system. Then both
VEQESEQ = E(), I/EB(E})EBk = ES

Lemma 9.3. Let ® denote a TH system with parameter array ({6; Y, {0: 4o, {¢:}L,) and
let v denote the scalar from Definition[91. Then

(6o — 61) (6o — 05) - - - (0 — 0a) (65 — 07)(05 — 05) - - - (05 — 03)

YT G162 b ’ )
o (00— 001)(0a = 0as) -+ (00— 00) (05— 031) (05 — 03 5) -+ (03 — )
162+ b |

Moreover v* = v and U* = .

Proof: Line (30]) holds by [I, Lemma 7.6]. The remaining assertions follow from Corollary
(.1l O

Lemma 9.4. Let (A; {E;}L,; A {Ef}L,) denote a TH system. Then both

VE,EE, = Ey, DESEJES = EX.

Proof: Let ® denote the TH system in question. Apply Lemma 0.2 to ® and then apply o

to each side of the resulting equations. O
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10 Anti-isomorphic TH systems and the bilinear form

Let ® denote a TH system on V and let ® denote the relative of ® from Definition .12
Recall that ® and ® are anti-isomorphic. In this section, we discuss further the relationship
between ® and ®. Recall the canonical bilinear form (,):Vx V — K from above
Definition Let U (resp. U) denote a subspace of V (resp. V). We say that U and U
are orthogonal whenever (z,y) = 0 for all z € U and y € U. Let {V;}%, (resp. {Vi},)
denote a decomposition of V (resp. V). We say that {V;}¢, and {V;}%, are dual whenever
V; and f/] are orthogonal for 0 < i,7 < d, i # j. By elementary linear algebra, for any
decomposition {V;}L, (resp. {V;}%,) of V (resp. V) there exists a unique decomposition
{Vi}e, (resp. {Vi}9,) of V (resp. V) such that {V;}&, and {V;}¢, are dual. Let {v;}¢,
(resp. {#;}L,) denote a basis for V (resp. V). We say that {v;}%, and {#;}%, are dual
whenever (v;,0;) = d;; for 0 < 4,5 < d. By elementary linear algebra, for any basis {v;}{,
(resp. {#;}L,) for V (resp. V) there exists a unique basis {#;}%, (resp. {v;}L,) for V (resp.
V) such that {v;}&, and {;}&, are dual. Given any sequence {;}% , by the inversion of
{a;}L, we mean the sequence {ag_;}L,.

Recall the ®-standard decomposition {E:V}4, from above ([@]). Observe by Definition
that {E37, V1L, is the ®-standard decomposition. We now compare these two decom-
positions.

Lemma 10.1. With reference to Definition[6.12, the following (i), (ii) are inverted dual.
(i) The ®-standard decomposition of V.
(ii) The ®-standard decomposition of V.

Proof: For distinct 4,7 (0 < 7,5 < d) we show that EfV and Ej*“f/ are orthogonal. Let
u€e EVandv e E]’-“’V. Simplify the equation (A*u,v) = (u, A*?v) using A*u = 0fu and
A*v = v to obtain (0 — 67)(u,v) = 0. Now (u,v) = 0 since 0 # 07. Therefore E;V and

E;"f/ are orthogonal and the result follows. O

Let 0 # & € EoV and recall the ®-standard basis {E; &}, for V from above (B). Let
0 # &4 € EJV and observe by Definition that {E37.64}L, is a ®-standard basis for V.
These two bases are related as follows.

Proposition 10.2. With reference to Definition 613, let 0 # & € EgV and 0 # &4 € ng/.
Then for 0 <1i,j5 <d,

(Eréo, E;7Ea) = 613 (Ego, €a),
where £; is from Definition [81.
Proof: Using the definition of ¢ from above Definition along with Lemma [B.3] we find

(Br&, E;°&)) = (E;Eo&, B} E5&,)
= (B E;Eoo, Eg&a)
= 0y (E; Eo&o, EG&a)

22



= 0y EaE; Eogo, £4)
= 0,li(E4E; Eo&o, £4)
= 5ij£i<E8E0£07 Egéd)
= 0,0 (ESéo, £a).

|

Corollary 10.3. With reference to Definition[6.13, let {v;}{_, (resp. {w;}{) denote a basis
for'V (resp. V). Suppose that {v;}¢_, and {w;}L_, are inverted dual. Then the following (i),
(i) are equivalent.

(i) {tivi}d, is a ®-standard basis for V.
(i) {w;}L, is a ®-standard basis for V.

Proof: Use Proposition [10.2] O

By Definition B0l the sequence {EZ-V};-i:O~ is the ®*-standard decomposition. By Defi-
nition 612 the sequence {EJ ,V}¢, is the ®*-standard decomposition. We now compare
these two decompositions.

Lemma 10.4. With reference to Definition[6.12, the following (i), (ii) are inverted dual.
(i) The ®*-standard decomposition of V.
(ii) The ®*-standard decomposition of V.

Proof: Apply Lemma [I0.1] to ®*. O

Let 0 # & € EgV and observe by Definition that {E;&}, is a ®*-standard basis
for V. Let 0 # & € E%°V and observe by Definition [6.12] that {E9 &3}, is a ®*-standard

basis for V. These two bases are related as follows.

Proposition 10.5. With reference to Definition[6.12, let 0 # &5 € EJV and 0 # 52 € E;"f/.
Then for 0 <1i,5 <d,

(Bi&s, E7E5) = 6,35 (Eo&s, €3),
where €5 is from Lemma[82.
Proof: Apply Proposition [10.2] to ®*. O

Corollary 10.6. With reference to Definition[613, let {v;}{_, (resp. {w;}y) denote a basis
for'V (resp. V). Suppose that {v;}¢_, and {w;}L, are inverted dual. Then the following (i),
(i) are equivalent.

(i) {Cv}L, is a *-standard basis for V.

(ii) {w;}L, is a ®*-standard basis for V.
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Proof: Apply Corollary to ®*. O
Let {U;}X, denote the ®-split decomposition of V. Recall from (@) that for 0 < i < d,
U=(EV+EV+- -+ EV)N(EV+EV+--+E; V). (31)

Let {U;}%_, denote the ®-split decomposition of V. Combining Definition and (31]), we
find that for 0 <1 <d,

U =(EfVA+ESV A4+ EV)N(EV +ES V44 EV). (32)
We now compare these two decompositions.
Lemma 10.7. With reference to Definition[6.12, the following (i), (ii) are inverted dual.

(i) The ®-split decomposition of V.

(i) The ®-split decomposition of V.

Proof: We use the notation from above this lemma. For 0 < ¢,j < d with i+ j # d, we show
that U; and U ; are orthogonal. We consider two cases: ¢+j < d and i+ j > d. First suppose
that i+j < d. Abbreviate M = E;V+E{V+- - +E;V and N = E;°V+E V4 +E7.V.
Observe that U; € M by @BI) and U; € N by (B2). Moreover M and N are orthogonal by
our assumption and Lemma [0l Therefore U; and Uj are orthogonal. Next suppose that
i+j>d. Abbreviate S = BV + E}V + -+ Es;V and T = EJV + E]_\V + -+ EZV.
Observe U; € S by (BI) and (7]- C T by B2). Moreover S and T are orthogonal by our
assumption and Lemma [I0.4l Therefore U; and Uj are orthogonal and the result follows. O

Let 0 # & € EyV and recall from ([7) that the sequence

Ma-i(A")o (0<i<d) (33)
is a ®-split basis for V. Let 0 £ &, € ng/ and observe by Definition that the sequence
Ta-i(A™)Ed (0<i<d) (34)

is a ®-split basis for V. The bases (33), [34) are related as follows.

Proposition 10.8. With reference to Definition[613, let 0 # & € EgV and 0 # &4 € ng/.
Then for 0 <1i,5 <d,

(1 (A7)0, T (A™)Ea) = Gi a3 (05)(Eg o, Ea).-
Proof: First suppose i + j # d. Then the result holds by Lemma [[0.7 and the comments

above this proposition. Next suppose that ¢ + j = d. Using (2]), Proposition [0.2] and the
definition of ¢ from above Definition .12, we find

(7 (A%)60, 7 (A™)Ea) = (mj_;(A")&o, 75 (A™)Ea)
(TI(A*)UZE (A&, &)
i (07)(E; €0, &)
Wi (0B Eréo, &a)
S ](9;><E'£07E;‘<oéd>
M- J(9}*) {(Eg&o, €a)



|

Corollary 10.9. With reference to Definition[6.13, let {v;}{_y (resp. {w;}y) denote a basis
for V' (resp. V). Suppose that {v;}L, and {w;}L, are inverted dual. Then the following (i),
(ii) are equivalent.

(i) {vi}l, is a ®-split basis for V.
(ii) {w;}l, is a d-split basis for V.

Proof: Use Proposition [10.8l O

At the end of of Section [I'], we give the relationship between a ®-standard (resp. ®*-
standard) basis for V and a ®*-standard (resp. ®-standard) basis for V. This relationship
is of a different type than the ones in the present section.

11 The transition matrices for a TH system

Let ® denote a TH system. In this section we consider several transition matrices associated

with ®. First we clarify our terms. Let {u;}%, and {v;}{, denote bases for V. By the

transition matriz from {u;}&, to {v;}&,, we mean the matrlx T € Matgyq(K) such that
= S Tiu; for 0 < j < d.

Definition 11.1. [, Definition 10.6] Let ® = (A; {E;}L; A% {E;}4,,) denote a TH system
on V. Let 0 # & € EgV and 0 # & € E;V. Recall the ®-standard basis {Ef&}L, for V
and the ®*-standard basis { E;¢5 14, for V. Let P € Matg,1(K) denote the transition matrix
from {E;&5}L, to {Ef& L, with &, & chosen so that & = Ej&.

Theorem 11 2. [I, Theorem 10.8] Let ® denote a TH system with parameter array
({0:}0 0, {0, {06 }L,) and let P denote the matrix from Definition[I11. For 0 <i,j <d,
the (i, j)-entry of P is equal to {; times

d 9 - 9d 9 — 04 1) (ei - 9d—h+1>(9; - 95)(9; - HT) T (9; - 92—1)
Z G192+ Pn, ’ (35)

h=0

where {; is from Definition [8.1.

Corollary 11.3. With reference to Definition[I1.1], for 0 < i < d both
P =1, Py = €;,

where {; is from Definition [8.1.

Proof: Use Theorem [11.21 O
The following definition is motivated by Definition [[1.1] and Corollary [I1.3]

Definition 11.4. We call the matrix P from Definition [IT.1l the west normalized transition
matriz of ®.
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Motivated by the sum (35), we make a definition. Let A, i denote commuting indeterminates.
Let K[, i] denote the K-algebra consisting of the polynomials in A,  that have all coefficients
in K.

Definition 11.5. Let ® denote a TH system with parameter array ({6;}&,, {0; YL, {d:i}d,).
Define p € K[, u| by

Z ¢1¢2 (36)

where {77}, and {n;}¢_, are from Notation 2771 We call p the two-variable polynomial of
D.

Example 11.6. With reference to Definition IT.5, assume d = 2. Then

(A —02) (1 — 65) n (A= 02) (A —01) (1 — 65) (e — 9*)
¢1 102

Remark 11.7. With reference to Definition I1.5] for 0 < i, j < d the scalar p(6;, 07) is the
sum (35).

Definition 11.8. Let ® denote a TH system with parameter array ({6;}%,, {07 1o, {®: }L,).
Let P € Matgy(K) denote the matrix with (4, j)-entry p(6;,0;) for 0 < 4,5 < d. Observe

that by Theorem [[1.2l and Remark [I1.7], the matrix P from Definition [[T.1lis equal to PL,
where L is the matrix from Definition R3]

p=1+

Example 11.9. With reference to Definition 1.8 assume d = 2. Then

(6o—02)(07 —65) (Bo—=02)(05—-05) | (fo—02)(00—01)(05—05)(05—67)
1 1*'0 o 1+ AT 1
P = 1 1_‘_(1—2;(1_0) 1—|-(1 2)(05—0¢)
1 1
1 1 1

Corollary 11.10. With reference to Definition[I1.8, for 0 < i < d both

Proof: Routine. O

We now interpret the matrix P as a transition matrix. Let {u;}%, denote the inverted dual
of a d-standard basis for V. By Corollary T03} {fiu;}%, is a ®-standard basis for V, where
(; is from Definition Bl Recall the canonical bilinear form (, ) : V x V — K from above
Definition [6.12]

Corollary 11.11. Let & = (A;{E;}L ; A {E;}L,) denote a TH system on V. Let 0 #
& € EJV and 0 # 4 € E3V. Note by Lemma [I10.1] that (50,§d> # 0. Recall the ®*-
standard basis {E;E:Y0, for V and the ®-standard basis {E37 ..}, for V. Let 7D denote
the matriz from Definition I1.8. Then o/P is the transition matriz from {E;} to the
inverted dual of {Egz"zgd}l o, where a is the reciprocal of (&%,€4). In particular if we choose
€5, € S0 that (&g, €q) = 1, then P is the transition matriz from {E;&5}0, to the inverted dual

of {Ei78a}o.
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Proof: Choose & € EyV so that £ = Ej&o, and recall the - standard basis {E*&]}d o- The
matrix P from Definition [T.T]is the transition matrix from {E&, to {E &}d,. Now
by Definition T8 aP is the transition matrix from {E;&5}¢, to {af TEré L Moreover
by Proposition 0.2, {al; ' Er& e, is the inverted dual of {E;flfd}d_ Therefore aP is the

transition matrix from {E;&:}%, to the inverted dual of {E37 .39, O
The following definition is motivated by Corollary IT.I0l and Corollary IT.1Tl

Definition 11.12. We call the matrix P from Definition [[T.8 the west-south normalized
transition matriz of ®.

12 The transition matrices P,P and their relatives

Let ® denote a TH system. In the previous section we discussed two closely related transition
matrices P, P associated with ®. In this section we find the relationship between P,P and
their relatives. There are two types of relations; one type is best expressed in terms of P
and its relatives, while the other is best expressed in terms of P and its relatives.

Proposition 12.1. [I, Proposition 10.9] With reference to Definition [I1.1, both

PP* = P*P =vl, PP*= PP =1l,
where v, v are from Definition [l

Let {u;}%, and {v;}¢, denote bases for V. Let T € Maty,;(K) denote the transition
matrix from {u;}&, to {v,}Z o- By elementary linear algebra, T" is the transition matrix
from the dual of {v;}¢, to the dual of {u;}¢,. Therefore T is the transition matrix from
the inverted dual of {v;}%, to the inverted dual of {u;}%,

Proposition 12.2. With reference to Definition[11.8, both
P =P, (P*)s =P. (37)

Proof: Choose 0 # &5 € E5V and 0 # E4 € E”V so that (&, €4) = 1. Recall the ®*-standard
basis {E;&x}4, for V and the d-standard basis {E;;"Zfd}d for V. By Corollary [T.1I, P
is the transition matrix from {E; £ to the inverted dual of {E37.£,3% . Moreover by

Corollary [[T.IT applied to ®*, P* is the transition matrix from {E%%.£,}% , to the inverted
dual of {E;¢x14 .. By these comments and the ones above this proposition we obtain the
equation on the left in ([B7). The equation on the right in (B87) is similarly obtained. O

The following lemma could be used to give another proof of Proposition [12.2]

Lemma 12.3. With reference to Definition [11.5, both

p(,U, )‘) :]5*()":“% p*(,u, )‘) :ﬁ()‘nu)'
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Proof: Combining Corollary [7.1] and Definition I1.5] we find

_ L (\mn(p)
P ) = T k),
; ¢1¢2 e ¢h

Therefore p(u, \) = p*(\, ). The proof for the other claim is similar. O

We will continue our discussion of the transition matrices P, P in Section [I7. In Sections
[I3HI6 we recall some linear algebra that will be needed in the discussion.

13 Vandermonde matrices and systems

Let @ denote a TH system. In Section [I[7] we will show that each of the transition matrices
P, P of ® has a certain structure said to be double Vandermonde. To prepare for that, over
the next few sections we discuss some linear algebra related to Vandermonde matrices.

Definition 13.1. Let n denote a nonnegative integer. Let {f;}" , denote a sequence of
polynomials in K[A]. We say that {f;}I, is graded whenever

(i) fo=1;
(ii) the degree of f; is equal to i for 0 < i < n.

Definition 13.2. A matrix X € Maty;(K) is called west Vandermonde whenever the
following (i), (ii) hold.

(i) There exists a sequence of mutually distinct scalars {6;}%, taken from K and a graded
sequence of polynomials {f;}¢_, in K[)] such that

Xy = Xofy(0)  (0<ij<d). (38)

(il) X0 #0for 0 <i <d.

With reference to Definition [13.2] assume X is west Vandermonde. As we will see,
the polynomials {f;}¢, are uniquely determined by the sequence of scalars {6}, but the
sequence {f;}%_, is not unique. To facilitate our discussion of this issue, we introduce the
following term.

Definition 13.3. Let X € Maty;(K) denote a west Vandermonde matrix. Let {6},
denote a sequence of scalars taken from K. We say that X and {6;}¢, are compatible
whenever

() #0047 (0<ij<d)
(ii) there exists a graded sequence of polynomials {f;}%, in K[\] that satisfies (BS).

Observe that if X and {6;}%, are compatible, then X and {af; + 3}%, are compatible for
any «, f € K with a # 0.
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Lemma 13.4. Let X € Maty,(K) denote a west Vandermonde matriz. Let {0;}L, denote
a sequence of scalars taken from K. Then the following (i), (ii) are equivalent provided d > 1.

(i) X and {6;}L, are compatible.
(ii) There ezists a,b € K with a # 0 such that 0; = aX;1/ X0 + 0 for 0 <i <d.

Proof: (i) = (ii) By Definition [3.3] there exists a polynomial f; € K[)] of degree 1 such
that X;1 = X0 /f1(6;) for 0 <i < d. Write f; = aX\ + [ for some «, f € K with o # 0. Thus
Xi1 = Xio(ab; + ) for 0 < i < d. Rearranging terms, we find that there exists a, b € K with
a # 0 such that §; = aX;1/X;0+ b for 0 <i <d.

(ii) = (i) By Definition [3.2] there exists a sequence of scalars {0/}, taken from K that
is compatible with X. By the previous part, there exists o', € K with a’ # 0 such that
0, = a'X;1/Xio+ 0 for 0 < i < d. Thus there exists a,f € K with a # 0 such that
0; = af+ B3 for 0 <i < d. Now X and {6;}, are compatible by the observation at the end
of Definition O

Lemma 13.5. Let X € Matg,(K) denote a west Vandermonde matriz. Let {0;}L, denote
a sequence of scalars taken from K that is compatible with X. Let {0/}L, denote a sequence
of scalars taken from K. Then the following (i), (ii) are equivalent.

(i) X and {0/}L, are compatible.
(ii) There ezists a, f € K with o # 0 such that 0, = ab; + B for 0 < i <d.

Proof: (i) = (ii) Routine by Lemma [I3.4]
(ii) = (i) This is the observation at the end of Definition [[3.3 O

Lemma 13.6. Let {0;}%, denote a sequence of mutually distinct scalars taken from K. Let
X € Matg,1(K) denote a west Vandermonde matriz that is compatible with {6;}%_,. Then
there exists a unique graded sequence of polynomials { f;}4_, in K[\] that satisfies (33).

Proof: By Definition [[3.3 there exists a graded sequence of polynomials {f;}¢, in K[|
that satisfies (B8]). We show that this sequence is unique. Suppose that {f/}¢_, is a graded
sequences of polynomials in K[A] that satisfies (38). We show that f/ = f; for 0 < i < d.
Let i be given and define ¢g; = f; — f;. Using (B8)), we find g;(f;) = 0 for 0 < j < d. Since
{6}, are mutually distinct and g; has degree at most 4, it follows that g; = 0. Therefore
f! = fi. We have shown that the sequence {f;}&, is unique. O

Lemma 13.7. Let {0;}L, denote a sequence of mutually distinct scalars taken from K.
Let {fi}L, denote a graded sequence of polynomials in K[\|. Let {c;}%_, denote a sequence
of nonzero scalars taken from K. Define X € Matgy1(K) such that X;; = c;f;(0;) for
0<i,j <d. Then X is west Vandermonde and compatible with {0;}L,. Moreover {fi}&,
are the corresponding polynomials from Lemma [13.6.

Proof: Routine. O

Lemma 13.8. Let {0;}L, denote a sequence of mutually distinct scalars taken from K. Let
X € Matg,(K) denote a west Vandermonde matrix that is compatible with {0;}¢_, and let
{fi}4_, denote the corresponding polynomials from LemmalI3.8. Let X' € Matqy:1(K). Then
the following (i), (ii) are equivalent.

29



(i) X' is a west Vandermonde matriz that is compatible with {0;}L, and {fi}&, are the
corresponding polynomials from Lemma [13.6.

(ii) There ezists an invertible diagonal matriz D € Maty,1(K) such that X' = DX.

Proof: (i) = (ii) Using (38]), we find that for 0 <i,j < d,

X! X..

_W Y f(p.

XZ((] XiO f] (91) (39)
Define a diagonal matrix D € Matg(K) with (4,4)-entry X/,/X;o for 0 < i < d. Observe
that D is invertible. Moreover X’ = DX by (39).
(ii) = (i) Since X' = DX we find that for 0 <i,j <d,

Xy
By this and (B8)), we find that X/, = X[,f;(0;) and (i) follows. O

Lemma 13.9. Let {0;}L, denote a sequence of mutually distinct scalars taken from K. Let
X € Matg1(K) denote a west Vandermonde matriz that is compatible with {0;}%_, and let
{fi}L, denote the corresponding polynomials from Lemma[I38. Let D € Matg,(K) denote
an invertible diagonal matrixz. Then XD is a west Vandermonde matriz that is compatible
with {0;}¢_, and {Dy; f;/Doo}d_ are the corresponding polynomials from Lemma [13.8.

Proof: Routine using (38)). O

Definition 13.10. By a west Vandermonde system in Matg,1(K) we mean a sequence
(X,{6:}%,) such that

(i) X is a west Vandermonde matrix in Mat g1 (K);

(ii) {6,}L, is a sequence of mutually distinct scalars taken from K that is compatible with
X.

Definition 13.11. Let (X, {6,},) denote a west Vandermonde system in Mat,;(K). In
Lemma we associated (X, {6;}%,) with some polynomials {f;}¢,. For convenience, let
farr = TTLo\ = 6:). We call {f;}1 the polynomials of (X, {6:}0).

Definition 13.12. Let X € Maty(K). Let X’ € Maty1(K) denote a matrix that is
obtained by rotating X clockwise 90 degrees. We call X south Vandermonde whenever X’
is west Vandermonde.

The above notions regarding west Vandermonde matrices carry over to south Vandermonde
matrices.

We end this section with a comment.

Lemma 13.13. Let X € Maty,1(K) denote a west or south Vandermonde matriz. Then X
15 1nvertible.

Proof: First assume that X is west Vandermonde. Perform invertible row and column
operations on X so that the resulting matrix X’ has (i, j)-entry € for 0 < 4,5 < d. The
determinant of X' is equal to [y, ;<4(0; — 6;). The {6;}{, are mutually distinct so this
determinant is nonzero. Therefore X’ is invertible so X is invertible. The case of south
Vandermonde is similar. O
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14 Hessenberg matrices and graded sequences of poly-
nomials

Recall the notion of a Hessenberg matrix from Section [Il In the next section we discuss the
role Vandermonde matrices play in the diagonalization of Hessenberg matrices. To prepare
for that, in this section we discuss the relationship between Hessenberg matrices and graded
sequences of polynomials.

Lemma 14.1. Let H € Matyy1(K) denote a Hessenberg matrixz. Then the minimal polyno-
mial of H is equal to the characteristic polynomial of H.

Proof: Using the Hessenberg shape of H, we find I, H, H?,..., H? are linearly independent.
Therefore the minimal polynomial of H has degree d + 1. The result follows. O

Given a Hessenberg matrix H, we are interested in finding the polynomial in Lemma

I4.1

Notation 14.2. Let H € Maty,(K) denote a Hessenberg matrix. We denote by cy the
product Hle H; ;—1. Observe that cy is nonzero.

Definition 14.3. Let H € Matyy1(K) denote a Hessenberg matrix. Define a sequence of
polynomials {f;}%*) in K[\] such that

(i) fo=1
(i) Nfj =S Hyfi for 0 < j <d—1;
(iil) Afa= ¢ far1 + Z?:o H;qf;, where cp is from Notation
We call {f;}) the polynomials of H.

Definition 14.4. A graded sequence of polynomials { f; }4*} in K[)] is called standard when-
ever fyi1 is monic.

Lemma 14.5. Let H € Maty1(K) denote a Hessenberg matriz with polynomials { f;}%5.
Then the following (i)—(iii) hold.

(i) For 0 <i<d, f; has degree i with \' coefficient (H H;; 1)t
ii) fqr1 ts monic with degree d + 1.
+
(iii) The sequence {f;}*) is graded and standard.

Proof: Routine. O

Let I denote the identity matrix in Maty(K). For 0 < i < d, let ¢ denote the 4t
column of I. Observe that {¢;}¢_, is a basis for the vector space K1,

Lemma 14.6. Let H € Maty,1(K) denote a Hessenberg matriz. Then there exists a unique
standard graded sequence of polynomials { f; Y52} in K[\] such that f;(H)eo = ¢; for 0 <i <d
and fo1(H)eg = 0. The { i} are the polynommls of H from Definition [T].3.
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Proof: Concernlng ex1stence let {f;}%*} denote the polynomials of H. By Lemma [IZ5(iii)
the sequence {f;}%; is graded and standard We show that f;(H)ey = ¢; for 0 < i < d and
far1(H)eg = 0. Abbreviate v; = fi(H)eg for 0 < i < d + 1 and note that vy = ¢. From
Definition [14.3], we have

j+1

Hoj =Y Hyv,  (0<j<d), (40)
i=0

where Hy 14 = ci;'. By the definition of {¢}2,, we have

j+1

&= Hye (0<j<d), (41)

where €;,1 = 0. Comparing ([A0), (@) and using vy = €y, we find v; = ¢; for 0 < i < d+ 1.
Therefore fi(H)ey = ¢; for 0 < i < d and fy41(H)eo = 0. Concerning uniqueness, let { f/}&3
denote a standard graded sequence of polynomials in K[\| such that f/(H)ey = ¢; for 0 <
i <dand f), (H)e = 0. We show that f/ = f; for 0 <7 < d+ 1. Let ¢ be given and define

= f! — fi. Observe that g;(H)ey = 0. Thus g;(H)e; = ¢;:(H)fj(H)eo = f;(H)gi(H)eo =0
for 0 < j < d, so g;(H) = 0. Therefore the minimal polynomial of H divides g;. The
polynomial g; has degree at most d, and the minimal polynomial of H has degree d + 1 by
Lemma [[4.1l Therefore g; = 0 so f! = fi. O

Corollary 14.7. Let H € Maty,,(K) denote a Hessenberg matriz with polynomials { fi}&o

Then fqi1 s both the minimal polynomaial and the characteristic polynomial of H.

Proof: Using Lemma we find that fy1(H)e; = far1(H)fi(H)eo = fi(H) far1(H)eo =0
for 0 < i < d. Therefore fy,1(H) = 0. The result follows by Lemma [I41] and Lemma
M4.01(ii). O

So far, given a Hessenberg matrix we obtain a graded sequence of polynomials. Now
turning things around, given a graded sequence of polynomials we obtain a Hessenberg
matrix.

Definition 14.8. Let {f;}¢f} denote a graded sequence of polynomials in K[A]. Observe
that for 0 < j <d, \f; is in the span of {f;}/2,. So for 0 < j < d, there exists a unique
sequence of scalars {c;; }”:0 taken from K such that M= 1 c;j fi.- We call the scalar c;;
the (i, j)-connection coefficient for the given graded sequence of polynomials.

Definition 14.9. Let {f;}%*} denote a graded sequence of polynomials in K[\]. By the

connection coefficient matriz of {fi}4) we mean the Hessenberg matrix H € Matgy;(K)

such that H;; = ¢;; for 0 < 4,57 < d, i —j < 1. The scalars ¢;; are from Definition [14.8
Observe that the scalar ¢441,4 plays no role in the definition of H.

Lemma 14.10. Let {f;}3 (resp. {fI}&3) denote a graded sequence of polynomials in K[|
with connection coe[ﬁczent matmx H (resp. H'). Then the following (i), (ii) are equivalent.

(i) H=H.
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(i) fi = fi for 0 <i < d and there exists 0 # ¢ € K such that for1 = cf}, .
Proof: Routine by Definition [14.9 O

Lemma 14.11. Let {fi}f;’ol denote a standard graded sequence of polynomials in K[\ and
let H € Maty,1(K) denote a Hessenberg matriz. Then the following (i), (ii) are equivalent.

(1) {f:;}*) are the polynomials of H.

(ii) H is the connection coefficient matriz of { f;}44.

Proof: Routine. O

15 A Vandermonde matrix as a transition matrix

In this section we discuss the role that Vandermonde matrices play in the diagonalization of
a Hessenberg matrix.

Lemma 15.1. Let H € Maty1(K) denote a Hessenberg matriz with polynomials { f;}%5.
Then the following (1)—(iii) are equivalent.

(i) H s diagonalizable.
(il) H is multiplicity-free.
(i) far1 has d+ 1 distinct roots in K.

Proof: Recall that the polynomial f;,; has degree d + 1 and it is the minimal polynomial of
H by Corollary [4.7l By elementary linear algebra a matrix in Maty,;(K) is diagonalizable
if and only if its minimal polynomial has distinct roots in K. The result follows. O

Let H € Matg,(K) denote a multiplicity-free Hessenberg matrix and let {6;}¢, denote
an ordering of the eigenvalues of H. Let D € Maty;1(K) denote the diagonal matrix with
(,1)-entry 6; for 0 < i < d. By elementary linear algebra, there exists an invertible X €
Matg,1(K) such that H = X ~'DX. We comment on the uniqueness of X. Suppose that Y €
Matg, 1 (K) is invertible and H = Y~!DY. Then X"!DX =Y~'DY so DYX"' =Y X~'D.
Therefore Y X! is diagonal by Lemma B.Il By construction Y X! is invertible. By these
comments there exists an invertible diagonal matrix A € Matg1(K) such that Y = AX.

Lemma 15.2. Let H € Maty,1(K) denote a multiplicity-free Hessenberg matriz with polyno-
mials {fi}24. Let {0;}%_, denote an ordering of the eigenvalues of H and let D € Matg 1 (K)
denote the diagonal matriz with (i,1)-entry 0; for 0 < i < d. For X € Maty,1(K), the fol-
lowing (i), (ii) are equivalent.

(i) X is invertible and H = X 'DX.

(ii) (X, {0:}L,) is a west Vandermonde system with polynomials { f; 4.
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Proof: (i) = (ii) Observe that {6;}¢, are mutually distinct since H is multiplicity-free. We
show that

Xij = Xaof5(6:)  (0<i,j <d). (42)

Since H = X 'DX we have f;(H) = X' f;(D)X so X f;(H) = f;(D)X. Hence e.X f;(H)ey =
el f;(D)Xeg. Simplify this equation using f;(H)ey = €; from Lemma together with ma-
trix multiplication to obtain (42)). By (42) and since X is invertible we find X;y # 0 for
0 <1 <d. By Corollary [I4.7 we have f;41 = Hf o(A — 6;). By these comments (X, {6;}% )
is a west Vandermonde system with polynomials { f;}{ d“

(ii) = (i) By Lemma [I3.13 X is invertible. We now show that H = X 'DX. For 0 <i <d,
evaluate the equations in Definition [[4.3|(ii),(iii) at A = 6;. In the resulting equations multiply
each side by X and simplify using (38) and Corollary [[4.7] to obtain 6, X,;; = Zi:o H,; X
for 0 < j < d. Therefore DX = XH so H=X"'DX. O

Corollary 15.3. Let (X,{0;}L,) denote a west Vandermonde system with polynomials
{f;}*. Let D € Matgy,(K) denote the diagonal matriz with (i,4)-entry 0; for 0 < i <
d. Then X 'DX is the connection coefficient matriz of {f;}*}. Moreover X 'DX is
multiplicity-free and Hessenberg.

Proof: Let H € Matg1(K ) denote the connection coefficient matrix of {f;}%3. Then H is
Hessenberg by Definition T£9. We show that H = X 'DX and that H is multlphclty—free
By Lemma [I4.17] the {f;}; d+1 are the polynomials of H. Since fz,1 = Hf oA —0;) and
{0,}L, are mutually dlstlnct we find using Corollary 4.7 that H is multiplicity-free. Now
by Lemma [I5.2 we find H = X 'DX. The result follows. O

We have been discussing west Vandermonde systems. We now obtain analogous results for
south Vandermonde systems.

Definition 15.4. Let {f;}%} denote a standard graded sequence of polynomials in K[\]. Let
H € Matg,;(K) denote the connection coefficient matrix of {f;}%*}. Recall from Definition
M4.9 that H is Hessenberg, so H*¢ is Hessenberg. The polynomlals of H* will be denoted by
{144, The two polynomial sequences {f;}%) and {f;}%* ! are said to be associated. Note
that f3,, = fay1 by Corollary T4.7

Lemma 15.5. Let H € Maty1(K) denote a multiplicity-free Hessenberg matriz with polyno-
mials {fi}2a. Let {0;}%, denote an ordering of the eigenvalues of H and let D € Maty 1 (K)
denote the diagonal matriz with (i,1)-entry 0; for 0 < i < d. For X € Maty1(K), the fol-
lowing (i), (ii) are equivalent.

(i) X is invertible and H = X DXL,

(i) (X, {0;}L,) is a south Vandermonde system with polynomials { fs}&4 4.

Proof: (i) = (ii) In the equation H = XDX™! apply ¢ to each side to obtain H® =
(X<)~!D<X*. By this and Lemma [[5.2 the sequence (X<, {f4_;}%,) is a west Vandermonde
system with polynomials {f;}%;. Therefore (X, {6;}%,) is a south Vandermonde system

with polynomials {f;}9*1.
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(ii) = (i) By assumption (X,{6;}¢,) is a south Vandermonde system with polynomials
{19+ Therefore (X<, {04_:}%,) is a west Vandermonde system with polynomials { f;}¢f .
Applying Lemma we find that X¢ is invertible and H¢ = (X°)"!D<X<. Applying ¢ we
find that X is invertible and H = X DX 1. a

Corollary 15.6. Let (X, {0;}L,) denote a south Vandermonde system with polynomials
{fy4L Let D € Matyy1(K) denote the diagonal matriz with (i,4)-entry 0; for 0 < i <
d. Then XDX™' is the connection coefficient matriz of {ff}+ d+1 Moreover XDX 1
multiplicity-free and Hessenberg.

Proof: Similar to the proof of Corollary [15.3l O

16 The inverse of a Vandermonde matrix

Let X € Matgy,1(K) denote a west or south Vandermonde matrix. In Lemma [I3.13] we
showed that X is invertible. In this section we discuss the matrix X —'.

Proposition 16.1. Let (X,{60;}%,) denote a west Vandermonde system with polynomials
{f:Y&4 L. Then the following (i), (i) hold.

(1) (XY, {0:}L,) is a south Vandermonde system with polynomials { f; }* .\, where { f; }{4]

are the associated polynomials of { f;}57.

.. -1 o c
(i) (X Mg = e ATV en for 0 < j < d, where H is the connection coefficient matriz
of {f: Y24 and cy is from Notation [T].3

Proof: (i) Let D € Matgy1(K) denote the diagonal matrix with (4,7)-entry 6; for 0 < i < d.
Observe that H is Hessenberg by Definition [[4.9] and that { f;} d+1 are the polynomials of
H by Lemma TZIT Since fo1 = [[g(X — 9) and {0,}4, are mutually distinct, we find
using Corollary M4 that H is multiplicity-free and {6;}{ is an ordering of the eigenvalues
of H. Therefore H = X 'DX by Lemma [5.2. Applying Lemma to X1, we find
(X1, {6;}%,) is a south Vandermonde system with polynomials {f;}411.

(ii) First assume that X;0 = 1 for 0 < i < d. Let h € K[\] denote the polynomial
S (XY fi In the equation X X' = I, evaluate the j”-column using matrix multi-
plication to find that h(6;) = ¢&;; for 0 < i < d. Let e; € K[\ denote the polynomial
#ﬁij(@)‘ Observe that e;(0;) = d;; for 0 < i < d. Thus h(6;) = ¢;(6;) for 0 < i < d. It
follows that h = e; since both h and e; have degree d. In particular, the leading coefficient of
h is equal to the leading coefficient of ;. By Lemmal[IZ5(i) the leading coefficient of f; is ¢,
so the leading coefficient of h is (X 1) gc;'. The leadmg coefficient of e; is (7;(6;)na—;(6;)) "
By these comments (X 1)gct = (75(0;)na—;(0;)) 7 so (X7 1)y = - The result is
now proven for the special case in which X;p = 1 for 0 < ¢ < d. For the gjeneral case, apply
the special case to the west Vandermonde system (A71X, {6,} ), where A € Maty,;(K) is

the diagonal matrix with (7,7)-entry X for 0 <i < d. O

Proposition 16.2. Let (X,{0;}L,) denote a south Vandermonde system with polynomials
{f: YL, Then the following (i), (i) hold.
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(1) (X1, {0}, is a west Vandermonde system with polynomials { fs }5 , where { f; }444

are the associated polynomials of { f;}{7.

(i) (X 1) = m for 0 <i <d, where H is the connection coefficient matrixz of

{fi ?iol and cyg is from Notation [1].3.
Proof: Similar to the proof of Proposition [16.1l O

In the next section we return to our discussion of TH systems.

17 The transition matrices P,P and their Vandermonde
structures

We return our attention to TH systems. Let ® denote a TH system. Recall the transition
matrices P and P of ® from Definition [[1.1] and Definition [[1.§l We will show that each of
P, P has a west Vandermonde structure and a south Vandermonde structure. We start by
associating with ® a graded sequence of polynomials.

Definition 17.1. Let ® = (A; {E;}L; A*; {E;}L,) denote a TH system on V. Let {v;}&,
denote a ®-standard basis for V and let H € Maty(K) denote the matrix representing A
with respect to {v;}%_,. Observe that H is Hessenberg. Let {s;}%) denote the polynomials
of H from Definition I4.3] so that s;(A)vy = v; for 0 < i < d by Lemma [I4.6] and s4.1 is the

minimal polynomial of A by Corollary IT4.7

The following normalization of the {s;}4*! will be useful.

Definition 17.2. With reference to Definition [7.1] let {t;}%*} denote the sequence of poly-
nomials in K[\| that satisfies (i), (ii) below.

(i) For 0 <i <d, t; = s;/¢; where /; is from Definition 811

(11) td+1 = Sq4+1-
We will show in Corollary that ¢;(04) = 1 for 0 < i <d.

In Definition [7.1] we saw how the polynomials {s;}%*} arise naturally from the action

of A on a ®-standard basis for V. We now discuss the meaning of the polynomials {t;}*7
from this point of view. Let {u;}%_, denote the inverted dual of a ®-standard basis for V.
By Corollary 0.3l {f;u;}L, is a ®-standard basis for V, where ¢; is from Definition Rl
Therefore by Definition I7.2] ¢;(A)ug = w; for 0 < i < d and ¢4y is the minimal polynomial
of A.

Our next goal is to show that the polynomials {s;}*%3 and {f;}¢f are associated in the
sense of Definition [5.4l We will use the following fact. Let {v;}{, denote a basis for V'
and let R € End(V). Let S € Maty,1(K) denote the matrix representing R with respect to
{v;}4_,. By elementary linear algebra, S* is the matrix representing R° with respect to the
dual of {v;}&,, where ¢ : End(V) — End(V) is the canonical anti-isomorphism from above
Definition Therefore the matrix S° represents R’ with respect to the inverted dual of

{Ui}?:o-
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Lemma 17.3. With reference to Definition[17.1] and Definition[17.3, for each column of the
table below, the two graded sequences of polynomials are associated in the sense of Definition

[£5.4,

{8 d+1 ‘ {8 d+1 ‘{ }d—i—l ‘ {§* d+1
{ti}§ d“ | {t*}d+1 ROERG }f:“

Proof: Let {v;}¢_, denote a ®-standard basis for V and let H € Maty(K) denote the matrix
representing A with respect to {v;}&,. By Definition 7.1}, {s;}¢ d+1 are the polynomials of H.
Let {w;}&_, denote the inverted dual of {v;}{,. Applying the comments below Definition
to ®, we find #;(A”)wy = w; for 0 < i < d and t4y; is the minimal polynomial of A°.
Moreover by the comments above the present lemma, the matrix H° represents A% with
respect to {w;}%,. Now by Lemma [IZ4.6 the {f;}¢*} are the polynomials of H¢. Therefore
{5} and {#; }d are associated by Deﬁmtlon [I5.4 We have verified our assertions about
the ﬁrst column of the above table. Our assertions about the remaining columns follow from

Definition [T.2 O
We recall some elementary linear algebra. Let {u;}%, and {v;}%, denote bases for V.

Let T' € Mat,1(K) denote the transition matrix from {u;}&, to {Uz}z:o- Pick A € End(V)
and let S € Matgy1(K) denote the matrix that represents A with respect to {u;}%,. Then
the matrix 77*ST represents A with respect to {v;}%,.

We now display a west Vandermonde structure for P.

Proposition 17.4. Let ® denote a TH system with eigenvalue sequence {0;}¢_, and dual
eigenvalue sequence {07 }4 . Let P denote the transition matriz of ® from Definition [I11.
Then (P,{0;}L,) is a west Vandermonde system, and the corresponding polynomials are the
{59} from Definition[T71. For each relative of P we display a west Vandermonde system
along wzth the corresponding polynomials.

west Vandermonde system | corresponding polynomials
(P, {0:}) {si}
(P, {6; }) {sf }fil
(P, {0a-i}{-o) (5}
(P, {05} {51

Proof: Write ® = (A; {E;}L; A*; {E7}L ) and assume V is the vector space underlying ®.
Let H € Matg;(K) (resp. D € Matd+1(K)) denote the matrix representing A with respect
to a ®-standard (resp. ®*-standard) basis for V. By construction H is Hessenberg and
multiplicity-free with an ordering of the eigenvalues {6;}%,. By construction D is diagonal
with (7,4)-entry 6; for 0 < i < d. By Definition 7.1 {s;}* d+1 are the polynomials of H. By
Definition IT.1] and the comments above this proposition, we have H = P~'DP. Therefore
by Lemma (P,{0;},) is a west Vandermonde system with polynomials {s;}*"5. We
have verified our assertions about the first row of the above table. Our assertions about the
remaining rows follow from Corollary [7.11 O

We now display a south Vandermonde structure for P.
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Proposition 17.5. Let ® denote a TH system with eigenvalue sequence {0;}¢_, and dual
eigenvalue sequence {0 }¢,. Let P denote the transition matriz of ® from Definition IT1.1.
Then (P, {0:}L,) is a south Vandermonde system, and the corresponding polynomials are
the {t}¢ d+1 from Definition [I7.3. For each relative of P we display a south Vandermonde
system along with the corresponding polynomials.

south Vandermonde system | corresponding polynomials
(P, {0r}0) {t},
(P, {0:}) {t; }d+1
(P,{6;_.}0) {t:},
(P*, {0a-i}o) {t:}Z

Proof: By Proposition M7.4] (P*, {0;},) is a west Vandermonde system with polynomials
{s:}9*1 Thus by Proposition 6.1 and Lemma 73, ((P*)~*,{0:}%,) is a south Vander-
monde system with polynomials {;}**+. By this and since PP* =vl, (v 1P {0:}%,) is a
south Vandermonde system with polynomlals {t:},. Therefore by Lemma 3.8 (P, {6:}%,)
is a south Vandermonde system with polynomials {£:}¢. We have verified our assertions

about the first row of the above table. Our assertions about the remaining rows follow from
Corollary [7.1. O

We now turn to the matrix P. Below we display a west Vandermonde structure and a
south Vandermonde structure for P. We begin with the west Vandermonde structure.

Corollary 17.6. Let ® denote a TH system with eigenvalue sequence {0;}&, and dual eigen-
value sequence {0 }L,. Let P denote the transition matriz of ® from Definition[I1.8. Then
(P,{0:}4,) is a west Vandermonde system, and the corresponding polynomials are the {t at
from Definition[17.9. For each relative of P we display a west Vandermonde system along
with the corresponding polynomaials.

west Vandermonde system | corresponding polynomials
(P, {6} o) {t:}i%o
(P* {0 o) {t:}i%y
(P, {0a-i}o) {t:}i%o
(P {05} o) {t; }fi )

Proof: Routine by Lemma [I3.9 and Proposition 7.4l

We now display a south Vandermonde structure for P.

Corollary 17.7. Let ® denote a TH system with eigenvalue sequence {0;}L, and dual eigen-
value sequence {0:}4,. Let P denote the transition matriz of ® from Definition I1.8. Then
(P, {0:}L,) is a south Vandermonde system, and the corresponding polynomials are the
{tr} d+1 fmm Definition [I7.2. For each relative of P we display a south Vandermonde sys-
tem along with the corresponding polynomials.

south Vandermonde system

corresponding polynomials

(P, {Hf}?zo) {t* d+1
(P {0i}Lo) {7 }d+1
(P, {07 _}L,) {t: 1441

(P*, {fa-i}o)
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Proof: Similar to the proof of Corollary [I7.6] using Proposition [[7.5 O

We have now displayed the west Vandermonde and south Vandermonde structures for P

and P. As corollaries to these results, we now obtain some facts involving the polynomials
{Sz d+1 and {t }d—i—l

Corollary 17.8. Let ® denote a TH system with eigenvalue sequence {0;}4_, and dual eigen-
value sequence {07 }4_. Let P denote the transition matriz of ® from DefinitionI1.1 and let
P denote the correspondzng matriz from Definition T1.8. Let {s;} (resp. {t:}*23) denote
the polynomials of ® from Definition [I7.1] (resp. Definition @) Then the following (i),
(ii) hold for 0 <i,j <d.

(i) Py = 0it;(0;) = its_,(07) = s;(6;) = (;55_,(07) /0,

(i) Py =t;(0:) = £5_,(05) = 5;(0:) /¢ = 55_,(07) /0,
Here (5, 0%, are from Definition 81 and Lemma 82 respectively.

Proof: (i) Using Corollary I3 (B8)), and Proposition I7.4] we find P;; = s;(6;). Similarly
using Proposition in place of Proposition [I7.4] we find P;; = Ejfz_i(Q;). The remaining
assertions follow using Definition

(ii) Use (i) and the fact that P;; = P;;¢; for 0 < i,5 < d. O

We emphasize one aspect of Corollary I7.8 which is telling us that the {s;}%*3 and the
{t;}9} each satisfy a variation on the Askey-Wilson duality [3, Theorems 14.7-14.9].

Corollary 17.9. Let ® denote a TH system with eigenvalue sequence {0;}, and dual eigen-
value sequence {07} . Let {s;}40 (resp. {t:;}44) denote the corresponding polynomials
from Definition[171] (resp. Deﬁmtzon@) Then the following (i), (ii) hold for 0 <i,j < d.

(1) #;(6:) = £5_;(6;).

(i) s;(6:)/¢; =35 2(9*)/&[ ., where (5, 0%, are from Definition[81 and Lemma[83 respec-
tively.

We have a comment on how the polynomials {s;}$} and {t;}**3 are normalized.

Corollary 17.10. Let ® denote a TH system with eigenvalue sequence {0;}¢_, and dual
eigenvalue sequence {07} . Let {s;}0 (resp. {t;}44) denote the corresponding polynomi-
als from Definition [17.1] (resp. Deﬁmtzon@) Then the following (i), (ii) hold.

(i) s;(04) = ¥; for 0 < i < d, where {; is from Definition [8]]

(i) t;(04) =1 for 0 <i <d.
Proof: Use Corollary [T.3] and Corollary I7.8(i). O
The polynomials {ti}f;’ol are not orthogonal in general; however we do have the following.

Corollary 17.11. Let ® denote a TH system with eigenvalue sequence {0;}¢_, and dual
eigenvalue sequence {0 }4_,. Let {t;}*} denote the corresponding polynomials from Defini-
tion[I7.3. Then the following (i), (ii) hold.
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d

) Y ti(0)E(00) 0 = bivjavly’ (0<i,j<d).
n=0
(ii) Zt ) tai(02)0 = S v(£5) 7" (0 <m,n <d).

Here {0;}4, {¢;}L, are from Definition [81 and Lemma [82 respectively, and v is from
Definition [9.1.

Proof: (i) Let P denote the transition matrix of ® from Definition I]]]]. In the equation
P*P = vI, compare the (d — j,7)-entry of each side to obtain Zn 0 d jan = ditjav. In

this equation, evaluate P,; and Pi_. using Corollary I78 to obtain $_¢ ti(0,)0iti(6,) =
0i+j.av. The result follows.

(i) Let P denote the transition matrix of ® from Definition IT.1l In the equation PP* = vI,
compare the (m,n)-entry of each side to obtain Z?:o PP = Omnv. In this equation,

evaluate P,,; and P; using Corollary [[7.8 to obtain Z?:o Citi(0,)0 tq_i(0,) = Oppv. The

result follows. O

7, nOn

We now give an analogue of Corollary [7.11] that applies to the polynomials {s;}%*}.

Corollary 17.12. Let ® denote a TH system with eigenvalue sequence {0;}¢, and dual
eigenvalue sequence {07 }L . Let {s;}¢ d“ denote the corresponding polynomials from Defini-
tion[I7.1. Then the following (i), (ii) hold

d
(©) D 5i(00)5;(00)0, = Sija vl (0<i,j<d).
n=0
d

i) > si(0 0,)(Lai) ™t = O (€))7 (0 <m,n <d).

=0
Here {0}, {0:}L are from Lemma 82 and v is from Definition [,
Proof: Use Definition I7.2(i) and Corollary [[7.11] O
We now express the polynomials {¢; df ' and {s;} d+1 in terms of the parameter array of .

To do this we will use the two-variable polynomlal p of ® from Definition [I1.5

Corollary 17.13. Let ® denote a TH system with eigenvalue sequence {0;}4, and dual
eigenvalue sequence {07 }4_,. Let {t;}I*} denote the corresponding polynomials from Defini-

tion[I7.9. Then the following (i), (ii) hold.
(i) For0<i<d, t; = p(X,0F) where p is from Definition [11.7.

(ii) tarr = [Tio(A — 64).

Proof: Let P denote the transition matrix of ® from Definition Since Pi; = p(6;, 05)
for 0 <4,j < d, we find that (P, {6;}&,) is a west Vandermonde system with polynomials
{f¥4 ) where f; = p(\,0F) for 0 < i < d and fo, = Hfzo()\ — 0;). The result follows by

Corollary 7.6l O
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Example 17.14. With reference to Definition 7.2, assume d = 2. Then

to = 1,
T 1+()\—92L§9T—95)7
1
_ (A=02)(05 —05) (A —02)(X—01)(05 — 05)(05 — 07)
o= 1 o1 * D12 '

Corollary 17.15. Let ® denote a TH system with eigenvalue sequence {0;}4, and dual
eigenvalue sequence {0:Y% . Let {s;}53 denote the corresponding polynomials from Defini-

tion[I7.1. Then the following (i), (ii) hold.
(i) For0<i<d, s; ={;p(\,0F) where {; is from Definition[81 and p is from Definition

1.9
(i) sas1 = [To(A = 6)).
Proof: Use Definition and Corollary O

Remark 17.16. In view of Corollary [7.13] one may wonder about the polynomial p(6;, ).
By Lemma and Corollary 713, p(6;, \) = p*(\, 60;) = £, for 0 < i < d.

We now give the results promised at the end of Section [0l Let ® = (4; {E;}¢; A% {Ef}L,)
denote a TH system on V. Let 0 # § € EyV and recall the ®-standard basis {E*fo} ~, for
V from above (). Let 0 # & € Ei°V and recall the ®*-standard basis {EJ ,£5}4, for V
from above Proposition . These two bases are related as follows.

Proposition 17.17. With reference to the TH system ® in Definition[6.12, let 0 # & € EoV
and 0 # &5 € E5°V. Then for 0 <4,j <d,

(Eféo, EJE) = v 0l t:(0;) (S0, §3).
Here ¢;, 0% are from Definition[8.1 and Lemmal8.2 respectively, and v, t; are from Definition

(24 Vi

(91 and Definition [I7.3 respectively.

Proof: Let P denote the transition matrix of ® from Definition [Tl Let £ = E{&, and
observe by Lemma [9.2] that

E(]é-g == E()Eggo = E(]ESE()&) = V_lEo&) = V_l&]. (43)

We may now argue

d
(Er&o, EZE) = Y PulEa&, EIE) (by Definition TLT)
n=0
- E;sz(Eogga 52) (by Proposition [10.5)

0s:(0;) (B, €5) (by Corollary I78)
v si(6;) (€0, §5) (by @3)
= v Ht(0;) (%, €)) (by Definition I7.2).
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]

Let ® = (A;{E;}L; A% {E}L,) denote a TH system on V. Let 0 # & € BV and

recall the ®*-standard basis { F; fo}d for V from above Proposition I05l Let 0 # &4 € E5V

and recall the d-standard basis {E;;" €434, for V from above Propos1t10n . These two
bases are related as follows.

Proposition 17.18. With reference to the TH system ® in Definition[6.12, let 0 # & € EgV
andO%deEgV Then for 0 <1,j <d,

(Ei&s, B Ca) = v 5t (67)(65, €a).-

Here 07,0, are from Lemmal8.2 and Definition[8.1] respectively, and v, t} are from Definition
(91 and Definition [I7.3 respectively.

Proof: Apply Proposition I7.17 to ®*. O

18 TH systems and Vandermonde systems

In the previous sections we discussed TH systems and Vandermonde systems. In this section
we give a natural correspondence between these two objects.

Definition 18.1. A matrix X € Maty(K) is called west-south (or double) Vandermonde
whenever X is both west Vandermonde and south Vandermonde. Assume X is west-south
Vandermonde. We say that X is west (resp. south) normalized whenever X;o = 1 (resp.
Xg = 1) for 0 <i < d. We say that X is normalized whenever it is both west normalized
and south normalized.

Definition 18.2. By a west-south (or double) Vandermonde system in Matgq(K), we
mean a sequence (X, {0;}% ., {0:}L,) such that (X,{6;}¢,) is a west Vandermonde sys-
tem in Maty1(K) and (X, {07}%,) is a south Vandermonde system in Matg;(K). Let
(X, {0:30 0, {0:},) denote a west-south Vandermonde system. Observe that X is west-
south Vandermonde. We say that (X, {0;}%,, {07 }L,) is west normalized (resp. south nor-
malized) (resp. normalized) whenever X is west normalized (resp. south normalized) (resp.
normalized) in the sense of Definition [I81l

Our main goal in this section is to establish a bijection between the following two sets:

the set of isomorphism classes of TH systems over K of diameter d, (44)

the set of normalized west-south Vandermonde systems in Mat g (K). (45)

To do this we define a map p from ({44 to (45) and a map x from (45) to (44]), and show
that they are inverses of each other. We start with an observation. Let ® denote a TH
system over K of diameter d, with eigenvalue sequence {6;}%_, and dual eigenvalue sequence
{0:19_,. Let P denote the transition matrix of ® from Definition TT.8 By Corollary
the sequence (P, {6;}%,) is a west Vandermonde system in Maty,(K), and by Corollary
7.7 the sequence (P, {0;}L,) is a south Vandermonde system in Mat,;(K). By Corollary
[ILI0, P is both west normalized and south normalized. Therefore (P, {0;}L,, {0;}d,) is a
normalized west-south Vandermonde system in Matg (K).
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Definition 18.3. We define a map p from (44 to ([@5). We do this as follows. Let ® denote
a TH system over K of diameter d, with eigenvalue sequence {6;}%, and dual eigenvalue
sequence {07} . Let P denote the transition matrix of ® from Definition IT.8 By the above
comment (P, {0;}¢_,, {07 }%_,) is a normalized west-south Vandermonde system in Mat g, (K).
The map p sends the isomorphism class of ® to (P, {60;}%, {07 }9,).

We now define the map x. We start with the following construction. Let (X, {6;},, {0:}9,)
denote a normalized west-south Vandermonde system in Mat,, 1(K). We construct a TH sys-
tem ® on V as follows. Recall that X is invertible by Lemma Therefore there exist
bases {u;}¢,, {vi}d, for V such that X is the transition matrix from {u;}&, to {v;}%,.
Define A € End(V) such that Au; = 6;u; for 0 < i < d. Define A* € End(V) such that
A*v; = 0fv; for 0 < i < d. For 0 <i < dlet E; (resp. E}) denote the primitive idempotent of
A (resp. A*) corresponding to 6; (resp. 67). Now define ® = (A; {E;}L,; A {E7}4,). We
claim that ® is a TH system on V. To prove the claim we show that ® satisfies conditions
(i)—=(v) in Definition Conditions (i)—(iii) hold by construction. Let D* € Matgy(K)
denote the diagonal matrix with (7, 7)-entry 67 for 0 < i < d. Observe that D* represents A*
with respect to {v;}%_,. Hence by the comment above Proposition [7.4] the matrix X D*X 1
represents A* with respect to {u;}&,. Moreover since (X, {6;}L,) is a south Vandermonde
system, X D*X 1 is Hessenberg by Corollary [[5.6l By these comments, condition (iv) holds.
Let D € Matg41(K) denote the diagonal matrix with (i,7)-entry 6; for 0 < ¢ < d. Observe
that D represents A with respect to {u;}&,. Hence by the comment above Proposition [7.4],
the matrix X 'DX represents A with respect to {v;}&,. Moreover since (X, {0;}%,) is a
west Vandermonde system, X 'DX is Hessenberg by Corollary By these comments,
condition (v) holds. Therefore ® is a TH system on V. By construction ® has eigenvalue
sequence {6;}%, and dual eigenvalue sequence {6} }ZL.

Definition 18.4. We define a map x from ({@3) to (d4). We do this as follows. Let
(X, {0:}L,,{0:}L,) denote a normalized west-south Vandermonde system in Matg;(K). Let

® denote the corresponding TH system constructed above. The map x sends (X, {6;}¢_, {6:}L,)
to the isomorphism class of ®.

Our next goal is to show that the maps p and x are inverses of each other. We first recall
some elementary linear algebra. Let {u;}%,, {vi}%,, {wi}L, denote bases for V. Let
T € Matg,1(K) denote the transition matrix from {u;}¢, to {v;}L, and let S € Matg,;(K)
denote the transition matrix from {v;}&, to {w;}%,. Then T'S is the transition matrix from

{ui by to {wi .

Lemma 18.5. Let (X, {0;}L,, {07 }L,) denote a normalized west-south Vandermonde system
in Maty1(K) and let @ denote the TH system constructed above Definition [I8.4 Then X
is the transition matriz of ® from Definition [I1.8.

Proof: Let P denote the transition matrix of ® from Definition We show that P = X.
In what follows we refer to the construction of ® above Definition [I84l By the construction
of A (resp. A*) we find that u; € E;V (resp. v; € EfV) for 0 < i < d. Recall that X is
the transition matrix from {u;}%, to {v;}&,. By these comments, Definition IT.8 and the
comment above this lemma, there exist invertible diagonal matrices Dy, Dy € Matgy(K)
such that P = D; X D,. The matrices P and X are west normalized, meaning that P,y =
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X0 = 1for 0 < ¢ < d. The matrices P and X are south normalized, meaning that
Py = X4 = 1 for 0 < i < d. Evaluating the equation P = D1 X Dy using these comments,
we find that D; is a nonzero scalar multiple of the identity and D, is the inverse of D;.
Therefore P = X. O

Theorem 18.6. The map p from Definition [I8.3 and the map x from Definition are
inverses of each other. Moreover each of p, x is bijective.

Proof: We show that p o x is the identity map on (4H) and x o p is the identity map on
([@). We first show that poy is the identity map on [@5). Let (X, {6;}%, {0;}%,) denote a
normalized west-south Vandermonde system in Mat,,1(K). Let ® denote the corresponding
TH system constructed above Definition [8.4. The map x sends (X, {0;}%,, {0;}L,) to the
isomorphism class of ®. Recall from above Definition [I8.4] that ¢ has eigenvalue sequence
{0,}L, and dual eigenvalue sequence {6;}.,. By Lemma X is the transition matrix
of ® from Definition [T.8 By these comments and Definition the map p sends the
isomorphism class of ® to (X, {6;}%,,{0:},). Therefore p o x is the identity map on (E5]).
Next we show that x o p is the identity map on ([d4]). Let ® denote a TH system over K
of diameter d, with eigenvalue sequence {6}, and dual eigenvalue sequence {6} }¢_,. Let P
denote the transition matrix of ® from Definition [T.8. The map p sends the isomorphism
class of ® to (P, {0;}L,, {0:}L,). The map y sends (P, {6;}%, {0:}L,) to the isomorphism
class of ®', where ® is the corresponding TH system constructed above Definition [I8.4l
Recall from above Definition I84 that ' has eigenvalue sequence {6;}¢_, and dual eigenvalue
sequence {0;}L,. We show that ® and ® are isomorphic. To do this we will invoke Lemma
B8 Write ® = (A; {E;}L; A5 {E ) and & = (A {E/}Ly; A {EF}L,). Let V (resp.
V") denote the vector space underlying ® (resp. ®’). Let 0 # & € EjV (resp. 0 #
& € E'V') and recall the ®*-standard basis (resp. ®*-standard basis) {E;&i}L, (resp.
{ElE L) for V (resp. V') from above Proposition M08 Let I' : V — V' denote the
K-vector space isomorphism which sends E;£§ to El&S for 0 < i < d. We show that

AT =TA,  AT=TA*, ET=TE, ET=TIE (0<i<d). (46)

We first show that EI' = I'E; for 0 < i < d. Let i be given. In order to show that EI' = I'E;,
we show that E/T" and I'E; agree at each vector in the ®*-standard basis { E;& ?:0. Observe
that for 0 < j < d, ETE;& = E/E = 64E¢) and TEE;E = 6,TES = 6,E5).
Thus EI' = T'E;. Next we show that AT" = 'A. Recall A = Z?:o 0;,E;. Observe that
A = Z?:o 0;E! since ® has eigenvalue sequence {6;}¢,. By these comments AT = I'A.
Next we show that E'I' = 'E} for 0 < i < d. Let P (resp. P’) denote the transition matrix
of @ (resp. ') from Definition I1.1], and let L (resp. L’) denote the matrix associated with
® (resp. @) from Definition Observe that L = L’ by Definition 8] since ® and ¢’
have the same dual eigenvalue sequence {67} ,. By Lemma P is the transition matrix
of ® from Definition IT.8 By these comments and Definition IT.8, we have P = P’. Let
0 # & € EgV (resp. 0 # & € EV’) such that & = Ei& (resp. & = EJ'E)). Recall
the ®-standard basis (resp. ®-standard basis) {E;& )L, (resp. {EFE L) for V (resp.
V') from above (B]). By Definition [Tl and since P = P’, P is the transition matrix from
{E&YL, (resp. {EI& ) to {Eré e, (resp. {E7E}L,). We can now easily show that
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EYT =TE?! for 0 <i<d. Let i be given. In order to show that E'I' = I'E} we show that
EYT and T'E} agree at each vector in the ®-standard basis { £7¢ ;-l:o. For 0 <5 <,

d d
E{TE & =E/TY Py,E& =E'Y PyE& = E'E/¢ = 6,E/',
h=0 h=0

d d
PE;E; S = 0i;TE;&o = 6551 Z Py Epg = 0y Z P Ep&s = 0i B

h=0 h=0

We have now shown that EMI" and I'Ef agree at each vector in the ®-standard basis
{Er&}I_. Therefore E;'T = T'E;. Next we show that A*TI’ = T'A*. Recall A* = S0 Er.

1=0 "1
Observe that AY = Z?:o 0r B} since @' has dual eigenvalue sequence {0;}%,. By these
comments A’ = ["'A*. We have now shown (46]). Now ® and ¢’ are isomorphic in view of

Lemma [B.8. Therefore x o p is the identity map on (44]). The result follows. O

Combining Corollary 4] and Theorem [I8.6] we get a bijection between any two of the
following three sets:

e The set of isomorphism classes of TH systems over K of diameter d.
e The set of normalized west-south Vandermonde systems in Mat 1 (K).

e The set of parameter arrays over K of diameter d.

19 Reduced TH systems and Vandermonde matrices

In the previous section we explained how double Vandermonde systems correspond with TH
systems. In this section we turn our attention to double Vandermonde matrices and explain
how these correspond with objects called reduced TH systems.

Definition 19.1. A sequence ({E;}% ;i {E;}L,) is called a reduced TH system (or RTH
system) on V whenever there exist A, A* € End(V) such that (A4;{E;}Lq; A% {E}L,) is
a TH system on V. Let ® = (A;{FE;}L; A*;{E;}L,) denote a TH system on V. Then
{ B} g {E:}L,) is an RTH system on V, called the reduction of ®.

Definition 19.2. Let A = ({E;}L,; {E;}L,) denote an RTH system on V. Let W denote
a vector space over K with dimension d + 1, and let Q = ({F;}L; {Fr},) denote an RTH
system on W. By an isomorphism of RTH systems from A to € we mean a K-algebra
isomorphism « : End(V) — End(W) such that F; = E} and F} = E;” for 0 <i < d. We
say that the RTH systems A and ) are isomorphic whenever there exists an isomorphism of
RTH systems from A to €.

Proposition 19.3. Let ® and &' denote TH systems over K. Then the following (i), (ii)
are equivalent.

(i) The reduction of ® is isomorphic to the reduction of ®’.
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(ii) @ is affine isomorphic to ®'.

Proof: (i) = (ii) Let P (resp. P’) denote the transition matrix of ® (resp. ®’) from Definition
0TI From its definition, we see that P (resp. P’) is determined by the primitive idempotents
of ® (resp. ®'). Hence by our assumption P = P’. Let {6;}%, (resp. {0/},) denote the
eigenvalue sequence of ® (resp. ®'). By Proposition [7.4 P and {6;}¢, are compatible.
Similarly P’ and {6/}, are compatible. Since P = P’, we conclude that P is compatible
with each of {0;}¢_, and {#/}¢,. Hence by Lemma there exist a, f € K with a # 0
such that 0, = af; + 8 for 0 <4 < d. Let {07 }%, (resp. {6;'}L,) denote the dual eigenvalue
sequence of ® (resp. ®'). By a similar argument, there exist o, §* € K with a* # 0 such
that 6 = a0 + * for 0 < i < d. It follows that ® is affine isomorphic to ®'.

(ii) = (i) Clear. O

Corollary 19.4. Let A and 2 denote isomorphic RTH systems over K. Then the isomor-
phism of RTH systems from A to Q is unique.

Proof: Let v and ' denote isomorphisms of RTH systems from A to 2. We show that
v =~ Let ® (resp. V) denote a TH system over K whose reduction is A (resp. ). By
Proposition ® is affine isomorphic to ¥. In other words, ® is isomorphic to an affine
transformation ¥’ of ¥. By construction ® and ¥’ have the same eigenvalue sequence and
dual eigenvalue sequence. By this and the comment (iv) above (), we find that each of v
and 7/ is an isomorphism of TH systems from ® to V. Now v = 4/ in view of Lemma 3.6l
The result follows. O

We now give a correspondence between TH systems and reduced TH systems.

Corollary 19.5. The map which sends a TH system to its reduction induces a bijection
from the set of affine isomorphism classes of TH systems over K to the set of isomorphism
classes of RTH systems over K.

Proof: Immediate from Proposition [19.3 O

We now turn our attention to double Vandermonde systems and double Vandermonde ma-
trices.

Lemma 19.6. Let Q = (X, {0,}L,,{0:}%,) denote a normalized west-south Vandermonde
system in Matyy1(K). Let «, 5, a*, 5* denote scalars in K with o, a* nonzero. Then the
sequence

(X, {abi + BYo; {07 + B }o) (47)
is a normalized west-south Vandermonde system in Matg1 (K).

Proof: Routine by Lemma [13.5. O

Definition 19.7. Referring to Lemma [19.6] we call ([T) the affine transformation of Q
associated with o, B, a*, 5*.

Definition 19.8. Let 2 and ' denote normalized west-south Vandermonde systems in
Mat 41 (K). We say that Q and ' are affine related whenever (2 is an affine transformation
of . Observe that the affine relation is an equivalence relation.
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Lemma 19.9. Let Q = (X, {0;}L,,{0:}9,) and Q' = (X', {0/}%,,{0:}L,) denote nor-
malized west-south Vandermonde systems in Matgy1(K). Then the following (i), (ii) are
equivalent.

(i) X =X".
(ii) Q is affine related to .

Proof: (i) = (ii) Immediate from Lemma [I3.5
(ii) = (i) Clear. O

We now give a correspondence between normalized double Vandermonde systems and nor-
malized double Vandermonde matrices.

Corollary 19.10. The map which sends a normalized west-south Vandermonde system
(X, {0}, {0:}L,) to the matriz X induces a bijection from the set of affine classes of
normalized west-south Vandermonde systems in Maty,q(K) to the set of normalized west-
south Vandermonde matrices in Mat 41 (K).

Proof: Immediate from Lemma [19.9 O

Next we give a correspondence between affine isomorphism classes of TH systems and affine
classes of normalized double Vandermonde systems. Recall the map p from Definition [I8.3

Lemma 19.11. Let ® = (A; {E;}L; A% {E}YL,) denote a TH system over K. Let

(X, {0:39,{0:}L,) denote the image under p of the isomorphism class of ®. Let a, 3, a*, B*
denote scalars in K with o, o nonzero and consider the TH system (23). Then p sends the
isomorphism class of (23) to (X, {ab; + B}y, {a*0r + B*}L,).

Proof: Immediate from Lemma 5.4 O

Corollary 19.12. The bijection p from Definition [I8.3 induces a bijection from the set of
affine isomorphism classes of TH systems over K of diameter d, to the set of affine classes
of normalized west-south Vandermonde systems in Matqq(K).

Proof: Immediate from Lemma [T9.111 O

We now bring the parameter arrays into the discussion.

Definition 19.13. We define a binary relation on the set of parameter arrays over K of diam-

eter d. We do this as follows. Let p = ({6 }{_o, {0} }i_o, {¢:}{_1) and p’ = ({0} o, {07} o, {1 }i21)
denote parameter arrays over K of diameter d. We say that p and p’ are affine related when-

ever there exist scalars a, 8, a*, f* in K with a, a* nonzero such that the following (i)—(iii)
hold.

(i) 0, = ab; + 3 (0<i<d).
(ii) 07 = 0r +5*  (0<i<d).
(i) ¢} =aa*¢;  (1<i<d).
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Observe that the affine relation is an equivalence relation. By a reduced parameter array we
mean an equivalence class of this relation.

Corollary 19.14. The bijection from Corollary[{.4] induces a bijection from the set of affine
isomorphism classes of TH systems over K of diameter d, to the set of reduced parameter
arrays over K of diameter d.

Proof: Immediate from Lemma 5.4 O

Combining Corollaries [9.5] [9.10, [9.12] 914, we get a bijection between any two of
the following five sets:

e The set of affine isomorphism classes of TH systems over K of diameter d.

The set of isomorphism classes of RTH systems over K of diameter d.

The set of affine classes of normalized west-south Vandermonde systems in Mat g1 (K).

The set of normalized west-south Vandermonde matrices in Mat g1 (K).

The set of reduced parameter arrays over K of diameter d.
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