A Note on Terence Tao's Paper "On the Number of Solutions to $\frac{4}{p}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}{ }^{\prime}$

Chaohua Jia

Abstract

For the positive integer n, let $f(n)$ denote the number of positive integer solutions $\left(n_{1}, n_{2}, n_{3}\right)$ of the Diophantine equation $$
\frac{4}{n}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}
$$

For the prime number $p, f(p)$ can be split into $f_{1}(p)+f_{2}(p)$, where $f_{i}(p)(i=1,2)$ counts those solutions with exactly i of denominators n_{1}, n_{2}, n_{3} divisible by p.

Recently Terence Tao proved that

$$
\sum_{p<x} f_{2}(p) \ll x \log ^{2} x \log \log x
$$

with other results. But actually only the upper bound $x \log ^{2} x \log \log ^{2} x$ can be obtained in his discussion. In this note we shall use an elementary method to save a factor $\log \log x$ and recover the above estimate.

1. Introduction

For the positive integer n, let $f(n)$ denote the number of positive integer solutions $\left(n_{1}, n_{2}, n_{3}\right)$ of the Diophantine equation

$$
\frac{4}{n}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}} .
$$

Erdös and Straus conjectured that for all $n \geq 2, f(n)>0$. It is still an open problem now although there are some partial results.

In 1970, R. C. Vaughan[2] showed that the number of $n<x$ for which $f(n)=0$ is at most $x \exp \left(-c \log ^{\frac{2}{3}} x\right)$, where x is sufficiently large and c is a positive constant.

Recently Terence Tao[1] studied the situation in which n is the prime number p. He gave lower bound and upper bound for the mean value of $f(p)$. Precisely, he split $f(p)$ into $f_{1}(p)+f_{2}(p)$, where $f_{i}(p)(i=1,2)$ counts
those solutions with exactly i of denominators n_{1}, n_{2}, n_{3} divisible by p. He proved that

$$
\begin{equation*}
x \log ^{2} x \ll \sum_{p<x} f_{2}(p) \ll x \log ^{2} x \log \log x \tag{1}
\end{equation*}
$$

and

$$
x \log ^{2} x \ll \sum_{p<x} f_{1}(p) \ll x \exp \left(\frac{c \log x}{\log \log x}\right)
$$

where p denotes the prime number, x is sufficiently large and c is a positive constant. Then he conjectured that for $i=1,2$,

$$
\begin{equation*}
\sum_{p<x} f_{i}(p) \ll x \log ^{2} x \tag{2}
\end{equation*}
$$

But actually Terence Tao[1] only proved

$$
\begin{equation*}
\sum_{p<x} f_{2}(p) \ll x \log ^{2} x \log \log ^{2} x \tag{3}
\end{equation*}
$$

since there was an error in his discussion. In this note we shall use an elementary method to save a factor $\log \log x$ and recover the upper bound in the right side of (1).

Theorem. Let p denote the prime number. Then for sufficiently large x, we have

$$
\sum_{p<x} f_{2}(p) \ll x \log ^{2} x \log \log x
$$

2. The proof of Theorem

Lemma 1. If $\varphi(n)$ is the Euler totient function, then

$$
\varphi(n) \gg \frac{n}{g(n)}
$$

Here

$$
g(n)=\prod_{p \mid n}\left(1+\frac{1}{p}\right)=\sum_{d \mid n} \frac{\mu^{2}(d)}{d}
$$

where $\mu(d)$ is the Möbius functions.
Proof. We know that

$$
\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

Then

$$
\varphi(n)=n \frac{\prod_{p \mid n}\left(1-\frac{1}{p^{2}}\right)}{\prod_{p \mid n}\left(1+\frac{1}{p}\right)} \geq \frac{n}{g(n)} \prod_{p}\left(1-\frac{1}{p^{2}}\right) \gg \frac{n}{g(n) .}
$$

It is easy to see

$$
g(n)=\sum_{d \mid n} \frac{\mu^{2}(d)}{d}
$$

Lemma 2. If $x \geq 1$, then

$$
\sum_{x<n \leq 2 x} \frac{1}{\varphi(n)} \ll 1
$$

Proof. By Lemma 1, we have

$$
\begin{aligned}
\sum_{x<n \leq 2 x} \frac{1}{\varphi(n)} & \ll \sum_{x<n \leq 2 x} \frac{g(n)}{n} \\
& =\sum_{x<n \leq 2 x} \frac{1}{n} \sum_{d \mid n} \frac{\mu^{2}(d)}{d} \\
& =\sum_{d \leq 2 x} \frac{\mu^{2}(d)}{d} \sum_{\substack{x<n \leq 2 x \\
d \mid n}} \frac{1}{n} \\
& =\sum_{d \leq 2 x} \frac{\mu^{2}(d)}{d^{2}} \sum_{\frac{x}{d}<l \leq \frac{2 x}{d}} \frac{1}{l} \\
& \ll \sum_{d \leq 2 x} \frac{\mu^{2}(d)}{d^{2}} \ll 1 .
\end{aligned}
$$

Lemma 3. Let p denote the prime number. Then the functions $f_{2}(p)$ is equal to three times the number of triples (a, b, c) of positive integers such that

$$
(a, b)=1, \quad c|a+b, \quad 4 a b| p+c
$$

One can see Proposition 1.2 of [1].
By some transformation, Terence Tao[1] got

$$
\begin{aligned}
\sum_{p<x} f_{2}(p) & \ll \sum_{1 \leq i \leq \frac{1}{2} \log _{2} x} \sum_{i \leq j \leq \log _{2} x-i} \frac{x}{1+\log _{2} x-i-j} . \\
& \cdot \sum_{2^{i}<a \leq 2^{i+1}} \sum_{\substack{2^{j}<b \leq 2^{j+1} \\
(a, b)=1}} \frac{d(a+b)}{\varphi(a) \varphi(b)} .
\end{aligned}
$$

Here $d(n)$ is the divisor function. It is necessary to keep the condition $(a, b)=1$.

Now we consider the estimate for the sum

$$
\begin{equation*}
\sum_{V<a \leq 2 V} \frac{1}{\varphi(a)} \sum_{\substack{W<b \leq 2 W \\(a, b)=1}} \frac{d(a+b)}{\varphi(b)} \tag{4}
\end{equation*}
$$

where $1 \leq V \leq W \leq x$.
Let

$$
\begin{equation*}
S(a, W)=\sum_{\substack{W<b \leq 2 W \\(a, b)=1}} \frac{d(a+b)}{\varphi(b)} \tag{5}
\end{equation*}
$$

Then Lemma 1 yields that

$$
\begin{aligned}
& S(a, W) \ll \sum_{\substack{W<b \leq 2 W \\
(a, b)=1}} d(a+b) \cdot \frac{g(b)}{b} \\
& \ll \frac{1}{W} \sum_{\substack{W<b \leq 2 W \\
(a, b)=1}} d(a+b) g(b) \\
& =\frac{1}{W} \sum_{\substack{W+a<k \leq 2 W+a \\
(k, a)=1}} d(k) g(k-a) \\
& =\frac{1}{W} \sum_{\substack{W+a<r l \leq 2 W+a \\
(r l, a)=1}} g(r l-a) \\
& \leq \frac{2}{W} \sum_{\substack{r \leq \sqrt{2 W+a} \\
(r, a)=1}} \sum_{\substack{l \\
W+a<r l \leq 2 W+a \\
(l, a)=1}} g(r l-a) \\
& \ll \frac{1}{W} \sum_{\substack{r \leq \sqrt{2 W+a} \\
(r, a)=1}} \sum_{\substack{W<n \leq 2 W \\
n \equiv-a(\bmod r) \\
(n, a)=1}} g(n) \\
& \leq \frac{1}{W} \sum_{\substack{r \leq \sqrt{2 W+a}+a \\
(r, a)=1}} \sum_{\substack{W<n \leq 2 W \\
n \equiv-a(\bmod r)}} g(n) .
\end{aligned}
$$

Since $(r, a)=1, n \equiv-a(\bmod r) \Longrightarrow(n, r)=1$. Then

$$
\begin{aligned}
\sum_{\substack{W<n \leq 2 W \\
n \equiv-a(\bmod r)}} g(n) & =\sum_{\substack{W<n \leq 2 W \\
n \equiv-a(\bmod r) \\
(n, r)=1}} g(n) \\
& =\sum_{\substack{W<n \leq 2 W \\
n \equiv-a(\bmod r) \\
(n, r)=1}} \sum_{d \mid n} \frac{\mu^{2}(d)}{d} \\
& =\sum_{\substack{d \leq 2 W \\
(d, r)=1}} \frac{\mu^{2}(d)}{d} \sum_{\substack{W<n \leq 2 W \\
n \equiv-a(\bmod r) \\
(n, r)=1 \\
d \mid n}} 1 \\
& =\sum_{\substack{d \leq 2 W \\
(d, r)=1}} \frac{\mu^{2}(d)}{d} \sum_{\substack{\frac{W}{d}<k \leq \frac{2 W}{d}}} 1 \\
& =\sum_{\substack{d \leq 2 W \\
(d, r)=1}} \frac{\mu^{2}(d)}{d} \sum_{\substack{(k, r)=1 \\
d=-a(\bmod r)}}^{\sum_{\substack{\frac{W}{d}<k \leq \frac{2 W}{d} \\
(k, r)=1}}^{k \equiv-\bar{d} a(\bmod r)}} 1 \\
& \leq \sum_{\substack{d \leq 2 W \\
(d, r)=1}} \frac{\mu^{2}(d)}{d} \sum_{\substack{\frac{W}{d}<k \leq \frac{2 W}{d} \\
k \equiv-\bar{d} a(\bmod r)}} 1,
\end{aligned}
$$

where \bar{d} is an integer such that $\bar{d} d \equiv 1(\bmod r)$.
We have

$$
\sum_{\substack{\frac{W}{d}<k \leq \frac{2 W}{d} \\ k \equiv-\bar{d} a(\bmod r)}} 1 \ll \frac{W}{d r}+1
$$

Thus

$$
\begin{aligned}
\sum_{\substack{W<n \leq 2 W \\
n \equiv-a(\bmod r)}} g(n) & \ll \sum_{\substack{d \leq 2 W \\
(d, r)=1}} \frac{\mu^{2}(d)}{d}\left(\frac{W}{d r}+1\right) \\
& \leq \frac{W}{r} \sum_{d \leq 2 W} \frac{\mu^{2}(d)}{d^{2}}+\sum_{d \leq 2 W} \frac{\mu^{2}(d)}{d} \\
& \ll \frac{W}{r}+\log 2 W .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
S(a, W) & \ll \frac{1}{W} \sum_{\substack{r \leq \sqrt{2 W+a} \\
(r, a)=1}}\left(\frac{W}{r}+\log 2 W\right) \\
& \leq \frac{1}{W} \sum_{r \leq 2 \sqrt{W}}\left(\frac{W}{r}+\log 2 W\right) \\
& \ll \log 2 W
\end{aligned}
$$

By Lemma 2, we have

$$
\begin{aligned}
& \sum_{V<a \leq 2 V} \frac{1}{\varphi(a)} \sum_{\substack{W<b \leq 2 W \\
(a, b)=1}} \frac{d(a+b)}{\varphi(b)} \\
& \ll \sum_{V<a \leq 2 V} \frac{1}{\varphi(a)} \cdot \log x \\
& \ll \log x .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\sum_{p<x} f_{2}(p) \ll x \log x \sum_{1 \leq i \leq \frac{1}{2} \log _{2} x} \sum_{i \leq j \leq \log _{2} x-i} \frac{1}{1+\log _{2} x-i-j} . \tag{6}
\end{equation*}
$$

We have

$$
\begin{aligned}
& \sum_{1 \leq i \leq \frac{1}{2} \log _{2} x} \sum_{i \leq j \leq \log _{2} x-i} \frac{1}{1+\log _{2} x-i-j} \\
& \leq \sum_{1 \leq i \leq \frac{1}{2} \log _{2}} \sum_{1 \leq h \leq \log _{2} x-2 i+2} \frac{1}{h} \\
& \ll \sum_{1 \leq i \leq \frac{1}{2} \log _{2} x} \log \left(\log _{2} x-2 i+4\right) \\
& \ll \sum_{1 \leq k \leq \frac{1}{2} \log x+1} \log (2 k+8) \\
& \ll \log x \log \log x .
\end{aligned}
$$

So far the proof of Theorem is finished.
Similar discussion can yield

$$
\sum_{1 \leq i \leq \frac{1}{2} \log _{2} x} \sum_{x i \leq j \leq \log _{2} x-i} \frac{1}{1+\log _{2} x-i-j} \gg \log x \log \log x .
$$

In [1],

$$
\sum_{1 \leq i \leq \frac{1}{2} \log _{2} x} \sum_{i \leq j \leq \log _{2} x-i} \frac{1}{1+\log _{2} x-i-j} \ll \log x
$$

is proved, where a factor $\log \log x$ is lost. From the above discussion, it seems reasonable to conjecture

$$
\begin{equation*}
x \log ^{2} x \log \log x \ll \sum_{p<x} f_{2}(p) . \tag{7}
\end{equation*}
$$

References

[1] Terence Tao, On the number of solutions to $\frac{4}{p}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}$, available at http://arxiv.org/abs/1107.1010
[2] R. C. Vaughan, On a problem of Erdös, Straus and Schinzel, Mathematika, 17(1970), 193-198.

Institute of Mathematics, Academia Sinica, Beijing 100190, P. R. China E-mail: jiach@math.ac.cn

