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A Note on Terence Tao’s Paper “On the

Number of Solutions to 4
p
=

1
n1

+
1
n2

+
1
n3

”

Chaohua Jia

Abstract. For the positive integer n, let f(n) denote the number of positive
integer solutions (n1, n2, n3) of the Diophantine equation

4

n
=

1

n1

+
1

n2

+
1

n3

.

For the prime number p, f(p) can be split into f1(p)+ f2(p), where fi(p)(i = 1, 2)
counts those solutions with exactly i of denominatorsn1, n2, n3 divisible by p.

Recently Terence Tao proved that

∑

p<x

f2(p) ≪ x log2 x log log x.

with other results. But actually only the upper bound x log2 x log log2 x can be

obtained in his discussion. In this note we shall use an elementary method to save

a factor log log x and recover the above estimate.

1. Introduction

For the positive integer n, let f(n) denote the number of positive integer

solutions (n1, n2, n3) of the Diophantine equation

4

n
=

1

n1
+

1

n2
+

1

n3
.

Erdös and Straus conjectured that for all n ≥ 2, f(n) > 0. It is still an

open problem now although there are some partial results.

In 1970, R. C. Vaughan[2] showed that the number of n < x for which

f(n) = 0 is at most x exp(−c log
2

3 x), where x is sufficiently large and c is

a positive constant.

Recently Terence Tao[1] studied the situation in which n is the prime

number p. He gave lower bound and upper bound for the mean value of

f(p). Precisely, he split f(p) into f1(p)+f2(p), where fi(p)(i = 1, 2) counts
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those solutions with exactly i of denominators n1, n2, n3 divisible by p. He

proved that

x log2 x ≪
∑

p<x

f2(p) ≪ x log2 x log log x (1)

and

x log2 x ≪
∑

p<x

f1(p) ≪ x exp(
c log x

log log x
),

where p denotes the prime number, x is sufficiently large and c is a positive

constant. Then he conjectured that for i = 1, 2,

∑

p<x

fi(p) ≪ x log2 x. (2)

But actually Terence Tao[1] only proved

∑

p<x

f2(p) ≪ x log2 x log log2 x, (3)

since there was an error in his discussion. In this note we shall use an

elementary method to save a factor log log x and recover the upper bound

in the right side of (1).

Theorem. Let p denote the prime number. Then for sufficiently large

x, we have ∑

p<x

f2(p) ≪ x log2 x log log x.

2. The proof of Theorem

Lemma 1. If ϕ(n) is the Euler totient function, then

ϕ(n) ≫
n

g(n)
.

Here

g(n) =
∏

p|n
(1 +

1

p
) =

∑

d|n

µ2(d)

d
,

where µ(d) is the Möbius functions.

Proof. We know that

ϕ(n) = n
∏

p|n
(1−

1

p
).
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Then

ϕ(n) = n

∏
p|n(1−

1
p2
)

∏
p|n(1 +

1
p
)
≥

n

g(n)

∏

p

(1−
1

p2
) ≫

n

g(n).

It is easy to see

g(n) =
∑

d|n

µ2(d)

d
.

Lemma 2. If x ≥ 1, then

∑

x<n≤2x

1

ϕ(n)
≪ 1.

Proof. By Lemma 1, we have

∑

x<n≤2x

1

ϕ(n)
≪

∑

x<n≤2x

g(n)

n

=
∑

x<n≤2x

1

n

∑

d|n

µ2(d)

d

=
∑

d≤2x

µ2(d)

d

∑

x<n≤2x
d|n

1

n

=
∑

d≤2x

µ2(d)

d2

∑

x
d
<l≤ 2x

d

1

l

≪
∑

d≤2x

µ2(d)

d2
≪ 1.

Lemma 3. Let p denote the prime number. Then the functions f2(p)

is equal to three times the number of triples (a, b, c) of positive integers

such that

(a, b) = 1, c|a+ b, 4ab|p + c.

One can see Proposition 1.2 of [1].

By some transformation, Terence Tao[1] got

∑

p<x

f2(p) ≪
∑

1≤i≤ 1

2
log2 x

∑

i≤j≤log2 x−i

x

1 + log2 x− i− j
·

·
∑

2i<a≤2i+1

∑

2j<b≤2j+1

(a, b)=1

d(a+ b)

ϕ(a)ϕ(b)
.
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Here d(n) is the divisor function. It is necessary to keep the condition

(a, b) = 1.

Now we consider the estimate for the sum

∑

V <a≤2V

1

ϕ(a)

∑

W<b≤2W
(a, b)=1

d(a+ b)

ϕ(b)
, (4)

where 1 ≤ V ≤ W ≤ x.

Let

S(a, W ) =
∑

W<b≤2W
(a, b)=1

d(a+ b)

ϕ(b)
. (5)

Then Lemma 1 yields that

S(a, W ) ≪
∑

W<b≤2W
(a, b)=1

d(a+ b) ·
g(b)

b

≪
1

W

∑

W<b≤2W
(a, b)=1

d(a+ b)g(b)

=
1

W

∑

W+a<k≤2W+a
(k, a)=1

d(k)g(k − a)

=
1

W

∑

W+a<rl≤2W+a
(rl, a)=1

g(rl − a)

≤
2

W

∑

r≤
√
2W+a

(r, a)=1

∑

l
W+a<rl≤2W+a

(l, a)=1

g(rl − a)

≪
1

W

∑

r≤
√
2W+a

(r, a)=1

∑

W<n≤2W
n≡−a(mod r)

(n, a)=1

g(n)

≤
1

W

∑

r≤
√
2W+a

(r, a)=1

∑

W<n≤2W
n≡−a(mod r)

g(n).
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Since (r, a) = 1, n ≡ −a(mod r) =⇒ (n, r) = 1. Then

∑

W<n≤2W
n≡−a(mod r)

g(n) =
∑

W<n≤2W
n≡−a(mod r)

(n, r)=1

g(n)

=
∑

W<n≤2W
n≡−a(mod r)

(n, r)=1

∑

d|n

µ2(d)

d

=
∑

d≤2W
(d, r)=1

µ2(d)

d

∑

W<n≤2W
n≡−a(mod r)

(n, r)=1
d|n

1

=
∑

d≤2W
(d, r)=1

µ2(d)

d

∑

W
d
<k≤ 2W

d

(k, r)=1
dk≡−a(mod r)

1

=
∑

d≤2W
(d, r)=1

µ2(d)

d

∑

W
d
<k≤ 2W

d

(k, r)=1
k≡−d̄a(mod r)

1

≤
∑

d≤2W
(d, r)=1

µ2(d)

d

∑

W
d
<k≤ 2W

d

k≡−d̄a(mod r)

1,

where d̄ is an integer such that d̄d ≡ 1(mod r).

We have ∑

W
d
<k≤ 2W

d

k≡−d̄a(mod r)

1 ≪
W

dr
+ 1.

Thus

∑

W<n≤2W
n≡−a(mod r)

g(n) ≪
∑

d≤2W
(d, r)=1

µ2(d)

d
(
W

dr
+ 1)

≤
W

r

∑

d≤2W

µ2(d)

d2
+

∑

d≤2W

µ2(d)

d

≪
W

r
+ log 2W.
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It follows that

S(a, W ) ≪
1

W

∑

r≤
√
2W+a

(r, a)=1

(
W

r
+ log 2W )

≤
1

W

∑

r≤2
√
W

(
W

r
+ log 2W )

≪ log 2W.

By Lemma 2, we have

∑

V <a≤2V

1

ϕ(a)

∑

W<b≤2W
(a, b)=1

d(a+ b)

ϕ(b)

≪
∑

V <a≤2V

1

ϕ(a)
· log x

≪ log x.

Therefore

∑

p<x

f2(p) ≪ x log x
∑

1≤i≤ 1

2
log2 x

∑

i≤j≤log2 x−i

1

1 + log2 x− i− j
. (6)

We have

∑

1≤i≤ 1

2
log2 x

∑

i≤j≤log2 x−i

1

1 + log2 x− i− j

≤
∑

1≤i≤ 1

2
log2 x

∑

1≤h≤log2 x−2i+2

1

h

≪
∑

1≤i≤ 1

2
log2 x

log(log2 x− 2i+ 4)

≪
∑

1≤k≤ 1

2
log2 x+1

log(2k + 8)

≪ log x log log x.

So far the proof of Theorem is finished.

Similar discussion can yield

∑

1≤i≤ 1

2
log2 x

∑

i≤j≤log2 x−i

1

1 + log2 x− i− j
≫ log x log log x.
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In [1], ∑

1≤i≤ 1

2
log2 x

∑

i≤j≤log2 x−i

1

1 + log2 x− i− j
≪ log x

is proved, where a factor log log x is lost. From the above discussion, it

seems reasonable to conjecture

x log2 x log log x ≪
∑

p<x

f2(p). (7)
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