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A Note on Terence Tao’s Paper “On the

Number of Solutions to 2=21 4+ 1 4 17
p n n2 ns

Chaohua Jia

Abstract. For the positive integer n, let f(n) denote the number of positive
integer solutions (n1, ng, ns) of the Diophantine equation

4 1 1 1

n ny no ns

For the prime number p, f(p) can be split into f1(p) + f2(p), where f;(p)(i =1, 2)
counts those solutions with exactly ¢ of denominatorsn, ny, ns divisible by p.
Recently Terence Tao proved that

Z f2(p) < zlog® zloglog .
p<z

with other results. But actually only the upper bound z log? z loglog? z can be
obtained in his discussion. In this note we shall use an elementary method to save

a factor loglog xz and recover the above estimate.

1. Introduction
For the positive integer n, let f(n) denote the number of positive integer

solutions (n1, ng, ng) of the Diophantine equation

4 1 1 1

—= =+ —.

n n1 n9g ns
Erdos and Straus conjectured that for all n > 2, f(n) > 0. It is still an
open problem now although there are some partial results.

In 1970, R. C. Vaughan|[2] showed that the number of n < z for which

f(n) =0 is at most :Eexp(—clogg x), where z is sufficiently large and c is
a positive constant.

Recently Terence Tao[l] studied the situation in which n is the prime

number p. He gave lower bound and upper bound for the mean value of

f(p). Precisely, he split f(p) into f1(p)+ f2(p), where f;(p)(i = 1, 2) counts
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those solutions with exactly ¢ of denominators ni, ne, ng divisible by p. He

proved that

zlog? z < Z fa(p) < xlog? xloglog x (1)
p<x

and
clogx

xlog2x<<2f1(p)<<a:exp( )s

= log log x
where p denotes the prime number, z is sufficiently large and c is a positive

constant. Then he conjectured that for ¢ =1, 2,

> filp) < zlog?a. (2)

p<x

But actually Terence Tao[l] only proved

> falp) < wlog® wloglog® z, (3)

p<z
since there was an error in his discussion. In this note we shall use an
elementary method to save a factor loglog x and recover the upper bound
in the right side of (1).

Theorem. Let p denote the prime number. Then for sufficiently large

x, we have

Z fa(p) < zlog? zloglog z.
p<z

2. The proof of Theorem

Lemma 1. If p(n) is the Euler totient function, then

Here
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where p(d) is the Mobius functions.
Proof. We know that
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Then

It is easy to see

[\
—

gn) =S dd)-

din
Lemma 2. If z > 1, then
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r<n<2x

Proof. By Lemma 1, we have

Z R < g(n)

r<n<2z (p(n) r<n<2x

Lemma 3. Let p denote the prime number. Then the functions f2(p)
is equal to three times the number of triples (a, b, ¢) of positive integers
such that

(a,b) =1, cla+b, 4ablp+c.

One can see Proposition 1.2 of [1].

By some transformation, Terence Tao[l] got
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Here d(n) is the divisor function. It is necessary to keep the condition

(a, b) = 1.
Now we consider the estimate for the sum
V<a<2V ¥ a) W <b<2W (‘D(b)
(a,b)=1
where 1 <V < W < z.
Let
d(a+0b)
Sla, W) = 5
P Y0 ©
(a,b)=1

Then Lemma 1 yields that

S(a, W)y< > dla+b)-

Z g(rl —a)
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Since (r, a) = 1, n = —a(modr) = (n, r) = 1. Then

Yoo ogm= > g

W<n<2W W<n<2W
n=—a(modr) n=—a(modr)
(n,r)=1
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= D X
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(n,r)=1
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d<2W W<n<2W
(d,r)=1 n=—a(modr)
(n,r)=1
dn
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d<2w W<k
(d,r)=1 (k,m)=1
dk=—a(mod )
2
3 p=(d)
=2 Ty 2!
d<2W W<
(d,r)=1 (k,r)=1
k=—da(modr)
2
p~(d)
<> = > %
d<2w W k<2W
(d,r)=1 kEd—Z_a(;nO% )

where d is an integer such that dd = 1(mod ).

We have
W
Yook L
T <k
k=—da(mod r)
Thus
2
p-(d) W
Y. 9 < oo+ 1)
W<n<2W d<2w
n=—a(modr) (d,r)=1
w 12 (d) 12 (d)
<
=7 E T2
d<2w d<2w
< g + log 2W.




It follows that

By Lemma 2, we have

< Z ! log

V<a<2V (,D(CL)

< log x.
Therefore
1
1 . 6
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We have

1
Z Z 1+4+logox—i—7j

1<i<1log, x i<j<logy x—i

< Y >

1§i§% log, @ 1<h<log, x—2i4-2

< Z log(logy x — 2i + 4)
1<i<logy x

< Z log(2k + 8)
1<k<1 logy 2+1

< log xloglog x.

So far the proof of Theorem is finished.

Similar discussion can yield

Z Z L > log = log log x.
1+logyx —i—j

1<i< 1 log, x 1<j<logy z—i



In 1],

1
Z Z .1—Hog2a:—z'—j<<10g3j

1<i< 1 logy ¢ i<j<logy z—i
is proved, where a factor loglogx is lost. From the above discussion, it

seems reasonable to conjecture

wlog2xlogloga: < Zf2(l’)- (7)

p<x
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