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WEIGHTED ISOPERIMETRIC INEQUALITIES

AND APPLICATIONS TO ELLIPTIC EQUATIONS

F. BROCK1 - F. CHIACCHIO2 - A. MERCALDO2

Abstract. In this paper we study some weighted isoperimetric inequalities relative to cones of
R

N . We give some information on the structure of those measures admitting as isoperimetric set
the intersection of a cone with the ball centered at vertex of the cone. For instance we prove that
when the cone reduces to the half-space R

N
+ =

{

x ∈ R
N : xN > 0

}

and the measure is factorized,

this phenomenon can occur just to measures in the form dµ = axk
N exp

(

c |x|2
)

dx for some a > 0;
k, c ≥ 0. Then we establish an isoperimetric inequality for this class of the measures by proving
that the optimal set is actually an half ball centered at the origin. Finally, via symmetrization
arguments, we apply this last result to the study to a class of degenerate PDE’s.
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1. Introduction

This paper deals with weighted relative isoperimetric inequalities in cones of RN . Let ω be an
open smooth subset of S N−1, the unit sphere of RN , and Ω the cone

(1.1) Ω =

{
x ∈ R

N :
x

|x|
∈ ω

}
.

We consider measures of the type dν = f(x)dx on Ω, where f is a positive function defined in Ω.
According to the usage, for any measurable set G ⊂ Ω, we define the ν -measure of G

(1.2) ν(G) =

∫

G
dν =

∫

G
φ(x)dx

and the ν-perimeter of G relative to Ω

Pν(G,Ω) = sup

{∫

G
div (v(x)φ(x)) dx : v ∈ C1(Ω,RN ), |v| ≤ 1

}
.

We also write Pν(G,R
N ) = Pν(G). Notice that if G is a smooth set, then

Pν(G,Ω) =

∫

∂G∩Ω
φ(x)dHN−1(x).
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The isoperimetric problem reads as

(1.3) Iν(c) = inf{Pν(G,Ω) : G ⊂ Ω, ν(G) = c}, c > 0.

One says that G is an isoperimetric set if ν(G) = c and Iν(c) = Pν(G,Ω).
About these questions we provide two type of results.

Firstly we give various necessary conditions on the function φ for having BR∩Ω as isoperimetric
set for the measure dν. Here and throughout BR and BR(x) denote the ball of radius R centered
at zero and at x respectively. In Theorem 2.1 we prove that if BR ∩Ω is an isoperimetric set then

φ = A(r)B(Θ),

where r = |x| and Θ = x
|x| .

In some specific cases we are able to give the explicit expression of the density of the measure
φ. For instance in Theorem 2.2, when Ω is the half-space

(1.4) Ω = R
N
+ =

{
x = (x1, ..., xN ) ∈ R

N : xN > 0
}
,

we prove that if φ is a smooth factorized function satisfying

(1.5) φ(x) =

N∏

i=1

φi(x)

and if BR ∩R
N
+ is an isoperimetric set, then

(1.6) φ(x) = axkN exp(c |x|2),

for some numbers a > 0, k ≥ 0 and c ≥ 0.
In order to prove these results we derive, among other things, some optimal bounds for weighted

Neumann eigenvalues on the sphere that may have an interest of their own (see Proposition 2.1).
At this point a natural problem to face would be to check if BR ∩Ω is actually an isoperimetric

set for measures of the type (1.6). In Section 3 we provide an affirmative answer to this question.
More precisely the following result holds.

Theorem 1.1. Let D be a measurable subset of RN+ and µ the measure defined by

(1.7) dµ = xkN exp(c |x|2)dx, x ∈ R
N
+ ,

with k, c ≥ 0. Then

Pµ(D) ≥ Pµ(D
⋆) ,

where D⋆ = Br⋆ ∩ R
N
+ , with r⋆ such that µ(D) = µ(D⋆),

Our results are inserted in the wide bibliography related to the isoperimetric problems for
“manifolds with density” (see, for instance, [7], [9], [10], [11], [13], [26], [27], [31], [32]). We just
recall that in [21] it was shown that the isoperimetric set for measures of the type ykdxdy, with
k ≥ 0 and (x, y) ∈ R

2
+, is BR ∩R

2
+, while in [9] and [31] it is proved that the BR are isoperimetric

sets for measures of the type exp(c |x|2)dx in R
N with c ≥ 0.
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The isoperimetric inequality given by Theorem 1.1 can be applied to the study of the following
class of degenerate elliptic equations

(1.8)





−div(A(x)∇u) = xkN exp
(
c |x|2

)
f(x) in D

u = 0 on Γ+,

where D is a bounded domain of RN+ , whose boundary is decomposed in a part Γ0, lying on the

hyperplane {xN = 0} and a part Γ+ contained in R
N
+ . Furthermore we assume that c, k ≥ 0,

A(x) = (aij(x))ij is an N ×N symmetric matrix with measurable coefficients satisfying

(1.9) xkN exp(c |x|2) |ζ|2 ≤ aij(x)ζiζj ≤ ΛxkN exp
(
c |x|2

)
|ζ|2 , Λ ≥ 1,

for almost every x ∈ D and for all ζ ∈ R
N . Finally the datum f belongs to the weighted Lebesgue

space L2(D, dµ) where dµ is the measure defined in (1.7).
The type of degeneracy in (1.9) occurs, for k ∈ N, when one looks for solutions to linear PDE’s

which are symmetric with respect to a group of (k + 1) variables (see, e.g., [8], [21], [33] and the
references therein). The case of noninteger k has been object of investigation, for instance, in
the generalized axially symmetric potential theory (see, e.g., [36] and the subsequent works of A.
Weinstein).

Our aim is to provide optimal bounds for the solution to problem (1.8) by means of sym-
metrization techniques. These methods, through a procedure due to G. Talenti (see [34]), allow
us to estimate the solution of the original problem in terms of the one to a problem characterized
by some symmetry and hence simpler. One of the main tools required for such a procedure is the
isoperimetric inequality with respect to a measure (1.7) which is related to the ellipticity of the
differential operator (see, e.g., [1], [3], [5], [8], [21], [22], [30] and [34]).

Once known the isoperimetric set, we introduce a suitable rearrangement f⋆ of a measurable
function f : D → R with respect to the measure dµ. The function f⋆ : D⋆ → [0,+∞[ is uniquely
defined by the following condition on its level sets{

x ∈ D⋆ : f⋆(x) > t
}
= {x ∈ D : |f(x)| > t}⋆ ∀t ≥ 0.

This means that the level sets of f⋆ are half-spheres centered at the origin (therefore isoperimetric
sets w.r.t. dµ) having the same µ−measure of the corresponding level sets of |f |. A few definitions
and properties concerning the notion of rearrangement will be recalled in Section 4. For exhaustive
treatment of this subject see [2], [12], [15], [17], [18] and [20].

Now we can state our pointwise comparison result which allow us to estimate the rearrangement
u⋆ of the weak solution u to problem (1.8) with the weak solution w to problem (1.10) whose data
are symmetric. A pointwise comparison result stated for a general measure can be found in [22].
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Theorem 1.2. Let u be the weak solution to problem (1.8). Let w be the function

w(x) = w⋆(x) =
1

Ck

∫ r⋆

|x|

(∫ ρ

0
f⋆(σ)σN−1+k exp

(
cσ2
)
dσ

)
ρ−N+1−k exp

(
−cρ2

)
dρ,

where Ck denotes the µ-measure of B1 ∩ R
N
+ , which is the weak solution to the problem

(1.10)





−div
(
xkN exp

(
c |x|2

)
∇w
)
= xkN exp

(
c |x|2

)
f⋆ in D⋆

w = 0 on ∂D⋆ ∩R
N
+ .

Then

(1.11) u⋆(x) ≤ w(x) a.e. in D⋆,

and

(1.12)

∫

D
|∇u|q dµ ≤

∫

D⋆

|∇w|q dµ, for all 0 < q ≤ 2.

2. Weighted isoperimetric inequalities in a cone of R
N

In this section we study isoperimetric problems w.r.t. measures, relative to cones in R
N . Notice

that such problems have been studied for instance in [2], [14], [19], [28] and [29]. Our aim here
is to get information on the structure of those measures for which an isoperimetric set is given
by the intersection of a cone with the ball having center at the vertex of the cone. We begin by
fixing some notation that will be used throughout: ωN is the N -dimensional Lebesgue measure of
the unit ball in R

N . For points x ∈ R
N we will often use N -dimensional polar coordinates (r,Θ),

where r = |x| and Θ = x|x|−1 ∈ S N−1. By S
N−1
+ we denote the half sphere,

S
N−1
+ = S

N−1 ∩R
N
+ .

Consider the isoperimetric problem (1.3) where Ω is the cone defined in (1.1) and ν the measure
given by (1.2)

The first result of this section says that, if the isoperimetric set of (1.3) is BR ∩Ω for a suitable
R, then the density of the measure dν is a product of two functions A and B of the variables r
and Θ, respectively.

Theorem 2.1. Consider problem (1.3), with φ ∈ C1(Ω) ∩ C(Ω), φ(x) > 0 for x ∈ Ω. Suppose
that Iν(c) = Pν(BR ∩Ω) for c = ν(BR ∩Ω). Then

(2.1) φ = A(r)B(Θ),

where A ∈ C1((0,+∞)) ∩ C([0,+∞)), A(r) > 0 if r > 0, and B ∈ C1(ω), B(Θ) > 0 for Θ ∈ ω.
Moreover, if φ ∈ C2(Ω), then

(2.2) λ(B,ω) ≥ N − 1 + r2
[
(A′(r))2

(A(r))2
−
A′′(r)

A(r)

]
∀r > 0 ,

where

(2.3) λ(B,ω) := inf

{∫
ω |∇Θu|

2B dΘ∫
ω u

2B dΘ
: u ∈ C1(ω),

∫

ω
uB dΘ = 0, u 6= 0

}
.
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Here ∇Θ denotes the gradient on the sphere.

Remark 2.1. Observe that λ(B,ω) is the first nontrivial eigenvalue of the Neumann problem




−∇Θ (B∇Θu) = λBu in ω

∂u

∂ν
= 0 on ∂ω

where u ∈W 1,2(ω), and ν is the exterior unit normal to ∂ω.

Proof of Theorem 2.1: Let R > 0. For ε ∈ R we define the following measure-preserving
perturbations Gε from BR ∩ Ω:

Gε := {(r,Θ) : 0 < r < R+ εh(Θ) + s(ε), Θ ∈ ω}, |ε| ≤ ε0

where h ∈ C1(ω), and s is to be chosen such that s ∈ C2([−ε0, ε0]), s(0) = 0, and ν(Gε) = ν(BR)
for |ε| ≤ ε0. Writing φ = φ(r,Θ), and

Rε := R+ εh+ s(ε),

we have, for |ε| ≤ ε0,

(2.4) ν(Gε) =

∫

ω

∫ Rε

0
rN−1φ(r,Θ) dr dΘ = ν(BR)

and

(2.5) Pν(Gε,Ω) =

∫

ω
(Rε)N−2φ(Rε,Θ)

√
(Rε)2 + |∇ΘRε|2 dΘ ≥ Pν(BR ∩ Ω,Ω).

Denote s1 := s′(0) and s2 := s′′(0). Equality (2.4) implies

(2.6) 0 =

∫

ω
φ(R,Θ)(h(Θ) + s1) dΘ,

and

(2.7) 0 =

∫

ω
((N − 1)φ(R,Θ) +Rφr(R,Θ)) (h(Θ) + s1)

2 dΘ+ s2R

∫

ω
φ(R,Θ) dΘ.

Using (2.5) we get

(2.8)





(∂Pν(Gε,Ω)/∂ε)|ε=0 = 0

(∂2Pν(Gε,Ω)/∂ε
2)|ε=0 ≥ 0.

The first condition in (2.8) gives

(2.9)

∫

ω
((N − 1)φ(R,Θ) +Rφr(R,Θ)) (h(Θ) + s1) dΘ = 0.

In other words, (2.9) holds for all functions h ∈ C1(ω) satisfying (2.6). Then the Fundamental
Lemma in the Calculus of Variations tells us that there is a number k(R) ∈ R such that

(2.10) φr(R,Θ) = k(R)φ(R,Θ) ∀Θ ∈ ω.
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Integrating this w.r.t. R implies (2.1). Hence (2.6) and (2.7) give

0 =

∫

ω
B(Θ)(h(Θ) + s1) dΘ,(2.11)

0 =

{
N − 1

R
+
A′(R)

A(R)

}
·

∫

ω
B(Θ)(h(Θ) + s1)

2 dΘ+ s2

∫

ω
B(Θ) dΘ.(2.12)

Next assume that φ ∈ C2(Ω). Then, using (2.1) and the second condition in (2.8) a short compu-
tation shows that

0 ≤
{
(N − 2)(N − 1)RN−3A(R) + 2(N − 1)RN−2A′N−1A′′(R)

}
·

·

∫

ω
B(Θ)(h(Θ) + s1)

2 dΘ +

s2
{
(N − 1)RN−2A(R) +RN−1A′(R)

}∫

ω
B(Θ) dΘ +

RN−3A(R)

∫

ω
B(Θ) |∇Θ(h(Θ) + s1|

2 dΘ.

Together with (2.12) this implies

0 ≤

{
−(N − 1)RN−3A(R)−RN−1A

′2(R)

A(R)
+RN−1A′′(R)

}
·

·

∫

ω
B(Θ)(h(Θ) + s1)

2 dΘ +

RN−3A(R)

∫

ω
B(Θ)|∇Θ(h(Θ) + s1)|

2 dΘ.

This implies (2.2), in view of (2.11), and the definition of λ(B,ω). ✷

Remark 3.2. The value of λ(B,ω) is explicitly known in some special cases. For instance, if
B ≡ 1, and ω = S N−1, we have

(2.13) λ(1,S N−1) = N − 1,

the eigenvalue has multiplicity N , with corresponding eigenfunctions ui(x) = xi, (i = 1, . . . , N),
so that (2.2) reads as

(2.14) A′2 ≤ A′′(r)A(r),

or equivalently, A is log-convex, that is,

A(r) = eg(r),

with a convex function g. It has been conjectured in [31], Conjecture 3.12, that for weights
φ = A(r), with log-convex A, balls BR, (R > 0), solve the isoperimetric problem in R

2.
After finishing this paper, S. Howe kindly informed us that he has proven this conjecture, together
with some extensions of it (see [16]).
It is interesting to note that Theorem 1.1, whose proof will be the object of the next section, and
Theorem 2.1 imply the following result
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Proposition 2.1. Let k ≥ 0, and

(2.15) B = Bk(Θ) =

(
xN
|x|

)k
, (x ∈ S

N−1
+ ).

Then

(2.16) λ(Bk,S
N−1
+ ) = N − 1 + k,

with corresponding eigenfunctions

(2.17) ui = xi, (i = 1, . . . , N − 1).

Proof: Theorem 1.1, whose proof will be the object of the next section, and Theorem 2.1

imply that (2.2) holds, with ω = S
N−1
+ , A(r) = rkecr

2

, (c ≥ 0), and B(Θ) = Bk(Θ). Hence

λ(Bk,S
N−1
+ ) ≥ N − 1+ k− 2cr2 for all r > 0, which implies that λ(Bk,S

N−1
+ ) ≥ N − 1+ k. The

assertion follows from the identities ui = xi, (i = 1, . . . , N − 1) satisfy
∫

S
N−1

+

|∇Θui|
2Bk dΘ =

∫

S
N−1

+

(ui)
2Bk dΘ,

∫

S
N−1

+

uiBk dΘ = 0, (i = 1, . . . , N − 1). ✷

We add two isoperimetric results that are also interesting in their own right. The first one will be
used in the proof of Theorem 2.2 below.

Lemma 2.1. Let B ∈ C2(S N−1), B(Θ) > 0 on S N−1. Then

(2.18) λ(B,S N−1) ≤ λ(1,S N−1) = N − 1,

with equality only if B = const.

Proof: Let v(Θ) be any eigenfunction for the problem with B ≡ 1, and set vξ(Θ) := v(ξ +Θ),
and uξ(Θ) := v(ξ + Θ)/B(Θ), (ξ ∈ S N−1). Then

∫
S N−1 u

ξB dΘ = 0, and using integration

by parts and the fact that −∆Θv
ξ = (N − 1)vξ , (∆Θ denotes the Laplace-Beltrami operator on

S N−1), we have,

I(ξ) :=

∫

S N−1

B
(
|∇Θu

ξ|2 − (N − 1)[uξ ]2
)
dΘ

=

∫

S N−1

(
|∇Θv

ξ|2

B
−

2vξ∇Θv
ξ · ∇ΘB

B2
+

(vξ)2|∇ΘB|2

B3
−

(N − 1)(vξ)2

B

)
dΘ

=

∫

S N−1

(
−
vξ∆Θv

ξ

B
−
vξ∇Θv

ξ · ∇ΘB

B2
+

(vξ)2|∇ΘB|2

B3
−

(N − 1)(vξ)2

B

)
dΘ

=

∫

S N−1

(
−
vξ∇Θv

ξ · ∇ΘB

B2
+

(vξ)2|∇ΘB|2

B3

)
dΘ

=

∫

S N−1

(
(vξ)2

2
∇Θ ·

(
∇ΘB

B2

)
+

(vξ)2|∇ΘB|2

B3

)
dΘ

= (1/2)

∫

S N−1

(vξ)2∆ΘB

B2
dΘ.(2.19)
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Setting

c :=

∫

S N−1

v2 dΘ,

an integration of (2.19) gives
∫

S N−1

I(ξ) dξ =
c

2

∫

S N−1

∆ΘB

B2
dΘ = −c

∫

S N−1

|∇ΘB|2

B3
dΘ ≤ 0,

with equality if and only if B(Θ) = const. Hence there is a ξ0 ∈ S N−1 such that I(ξ0) ≤ 0, with
equality if and only if B(Θ) = const. ✷

Theorem 2.1 has some further consequences when the cone Ω contains the wedge

W+ := {x = (x1, . . . , xN ) : xi > 0, i = 1, . . . , N},

and if

(2.20) φ(x) =
N∏

i=1

φi(xi),

for some smooth functions φi, (i = 1, . . . , N).
In the following, let

ω+ :=W+ ∩ S
N−1.

We first show

Lemma 2.2. Let φ ∈ C2(W+), and suppose there are functions A,φi ∈ C
2((0,+∞))∩C([0,+∞)),

B ∈ C2(ω+) ∩ C(ω+), such that φi(xi) > 0 for xi > 0, (i = 1, . . . , N), A(r) > 0 for r > 0, and
B(Θ) > 0 for Θ ∈ ω+. Then

(2.21) φ(x) = a

N∏

i=1

xkii e
c|x|2, x ∈W+,

where a > 0, ki ≥ 0, (i = 1, . . . , N), and c ∈ R.

Proof : Differentiating the equation A(r)B(Θ) =
∏N
i=1 φi(xi) w.r.t. r gives

rA′(r)

A(r)
=

N∑

i=1

xiφ
′
i(xi)

φi(xi)
.

Differentiating once more w.r.t. xi yields

A′(r)

rA(r)
+
A′′(r)

A(r)
−
A′2(r)

A2(r)
=

φ′i(xi)

xiφi(x)
+
φ′′i (xi)

φi(xi)
−

(φ′i(xi))
2

(φi(xi))2
= 4c, (i = 1, . . . , N),

for some number c ∈ R. An integration of these equalities shows that

φi(xi) = aix
ki
i e

cx2i

for some numbers ai > 0, ki ≥ 0, and (2.21) follows.
As pointed out in the Introduction, we can specify the expression of the density φ of the measure,

when the cone Ω is RN+ and φ is factorized.
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Theorem 2.2. Assume Ω = R
N
+ and consider problem (1.3), where φ ∈ C1(RN+ ) ∩ C(RN+ ), and

satisfies (2.20), for some functions φi ∈ C2(R), φi(t) > 0 for t ∈ R, (i = 1, . . . , N − 1), and
φN ∈ C2((0,+∞)) ∩ C([0,∞)), φN (t) > 0 for t > 0. Suppose that Iν(c) = Pν(BR ∩ R

N
+ ,R

N
+ ) for

c = ν(BR ∩ R
N
+ ). Then

(2.22) φ(x) = axkNe
c|x|2 ,

for some numbers a > 0, k ≥ 0 and c ≥ 0.

Proof : By Theorem 2.1 we have φ = A(r)B(Θ) with smooth positive functions A and B, and

(2.23) λ(B,S N−1
+ ) ≥ N − 1 + r2

[
(A′)2

A(r)2
−
A′′(r)

A(r)

]
∀r > 0.

By Lemma 2.2, it follows (2.22) for some numbers a > 0, k ≥ 0 and c ∈ R. Hence, B(Θ) =

[xN |x|
−1]k, and A(r) = arkecr

2

. Therefore (2.23) and 2.16 imply that

N − 1 + k ≥ N − 1 + k − 2cr2 ∀r > 0.

Hence we must have c ≥ 0. ✷

We end this section by analyzing the case where the cone Ω is RN \ {0}.

Theorem 2.3. Assume Ω = R
N \{0} and consider problem (1.3), with φ ∈ C2(RN \{0})∩C(RN ),

φ(x) > 0 for x 6= 0, and satisfies (2.20), where φi ∈ C2(R \ {0}) ∩ C(R), and φi(t) > 0 for t 6= 0,
(i = 1, . . . , N). Suppose that Iν(c) = Pν(BR) for c = ν(BR). Then

(2.24) φ(x) = aec|x|
2

,

for some numbers a > 0, and c ≥ 0.

Proof : By Theorem 2.1 we have φ = A(r)B(Θ) with smooth positive functions A and B, and

(2.25) λ(B,S N−1) ≥ N − 1 + r2
[
(A′)2

A(r)2
−
A′′(r)

A(r)

]
∀r > 0.

By Lemma 2.2, we obtain (2.24) with some numbers a > 0, and c ∈ R, that is, B(Θ) ≡ 1 and

A(r) = aecr
2

. Hence, (2.25) and (2.13) imply that A is log-convex, that is, we must have c ≥ 0. ✷

3. A Dido’s problem

In this section we provide the proof of Theorem 1.1. As pointed out in the Introduction, we
have to find the set having minimum µ−perimeter among all the subsets of RN+ having prescribed
µ−measure, where µ is the measure defined in (1.7). In order to face such a problem we firstly
show a simple inequality for measures defined on the real line related to dµ. Then the isoperimetric
problem is addressed in the plane: the one-dimensional results allow to restrict the search of the
optimal sets among the ones which are starlike with respect to the origin. Finally Theorem 1.1 is
achieved in its full generality.
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3.1. Dido’s problem on the real line. Let R+ = (0,+∞). The following isoperimetric inequality
holds.

Proposition 3.1. Let φ : R+ → R+ be a nondecreasing continuous function, dν = φ(x)dx and M
be a measurable subset of R+. Then

(3.1) Pν(M) ≥ Pν(D(M)),

where D(M) denotes the interval (0, d), with d ≥ 0 chosen such that ν(M) = ν(D(M)).

Proof : By standard approximation arguments, it is sufficient to consider sets M in the form

M = ∪kj=1 (aj , bj) ,

with

0 ≤ aj < aj+1, aj < bj , bj < bj+1 < +∞,

for all j ∈ {1, ..., k − 1} .
By the properties of the weight function ϕ we have that bk ≥ d and hence

Pν(M) =

k∑

j=1

[ϕ(aj) + ϕ(bj)] ≥ ϕ(0) + ϕ(d) = Pν(D(M)).

✷

3.2. Dido’s problem in two dimensions. In our study of the measure dµ, an important role
will be played by the following isoperimetric theorem (see [9] and [31]) relative to the measure

dτ = exp(c |x|2)dx, x ∈ R
m, with m ≥ 1 and c ≥ 0.

Theorem 3.1. If G is any measurable subset of Rm and G⋆,τ is the ball of Rmcentered at the
origin having the same τ−measure of G, then

(3.2) Pτ (G) ≥ Pτ (G
⋆,τ ).

We write (x, y) for points in R
2. We consider in R

2
+ the measure

dµ = yk exp
(
c(x2 + y2)

)
dxdy,

where c ≥ 0 and k ≥ 0. If M is a measurable subset of R
2
+, given any number m > 0, the

isoperimetric problem on R
2
+ reads as:

(3.3) Iµ(m) := inf{Pµ(M), with M : µ(M) = m}.

The following result holds true.

Theorem 3.2. Let m > 0. Then Iµ(m) is attained for the half circle Br ∩ R
2
+, centered at zero,

having µ−measure m. Equivalently there exists r > 0 such that

(3.4) Iµ(m) = Pµ(Br ∩ R
2
+) = exp

(
cr2
)
rk+1

∫ π

0
sink θdθ.
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Proof Step 1: An equivalent isoperimetric problem

Let {Tn}n ⊂ R
2
+ be a minimizing sequence for problem (3.3), i.e.

µ(Tn) = m ∀n ∈ N and lim
n→+∞

Pµ(Tn) = Iµ(m),

where, without loss of generality, we may assume that the sets Tn are smooth.
Let T be a smooth set of R2

+. We denote by S(T ) and D(T ) the Steiner symmetrization in

x-direction, with respect to the measure dµx = exp
(
cx2
)
dx, of T and the Steiner symmetrization

in y-direction, with respect to the measure dµy = ecy
2

yk dy, of T , respectively.
By this we mean that S(T ) is the set in R

2
+ whose cross sections parallel to the x-axis are open

intervals centered at the y−axis whose µx−lengths are equal to those of the corresponding cross
sections of T.

The set D(T ) is defined in a similar way: its intersection with the cross sections parallel to the
y-axis are open intervals with an endpoint lying on the x-axis whose µy− lengths are equal to
those of the corresponding cross sections of Mn.

Now consider the sequence of sets Mn = D(S(Tn)). By Proposition 3.1 and Theorem 3.1 we
have that Pµ(D(S(Tn))) ≤ Pµ(Tn) and by Cavalieri’s principle µ(D(S(Tn))) = µ(Tn). Therefore
Mn is still a minimizing sequence for (3.3). Under the effect of the symmetrization, the sets Mn

can lose regularity on one hand, in general they are not more then locally Lipschitz continuous, on
the other they acquire some nice geometrical properties. Firstly they are all starlike with respect
to the origin. So, introducing polar coordinates (r, θ) by x = r cos θ and y = r sin θ, we have

(3.5) Mn = {(r, θ) : 0 ≤ r < ρn(θ), θ ∈ (0, π)}, ∀n ∈ N,

for some functions ρn(θ) : (0, π) → (0,+∞) .
Moreover it holds that

(i) the functions ρn(θ) are locally Lipschitz in (0, π) ,

(ii) ρn(θ) = ρn(π − θ),∀n ∈ N,∀θ ∈ (0, π),

(iii) xn(θ) =
ρn(θ)

cos θ
and yn(θ) =

ρn(θ)

sin θ
are nonincreasing and nondecreasing, respectively, in

(0, π/2).

From these considerations, in view of finding the infimum in (3.3), we may assume that the
minimizing sequence is in the form (3.5) with conditions (i)-(iii) in force. Clearly, under these
conditions, the set Mn, its µ-measure and µ-perimeter are uniquely determined by the function
ρn(θ). Indeed, setting z := sink θ, θ ∈ [0, π],

F (r) :=

∫ r

0
exp

(
ct2
)
tk+1 dt

and

G(r, p) := exp
(
cr2
)
rk
√
r2 + p2, (r > 0, p ∈ R),

we find that

µ(Mn) =

∫ π

0
F (ρn)z dθ =: µ(ρn),
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and

Pµ(Mn) =

∫ π

0
G(ρn, ρ

′
n)z dθ =: Pµ(ρn).

With this notations, the isoperimetric problem (3.3) then reads as

(3.6) Minimize Pµ(ρ) over K = {ρ : (0, π) → (0,+∞) : ρ satisfies (i)-(iii) and µ(ρ) = m}.

Step 2: The minimum is achieved

Let {ρn}n be a minimizing sequence for problem ( 3.6). From condition (iii) we easily get that

(3.7) − ρn(θ) cot θ ≤ ρ′n(θ) ≤ ρn(θ) tan θ a.e. on (0, π/2), n ∈ N.

Set

y0n := sup
θ∈(0,π/2)

yn(θ) = yn(π/2).

We claim that

(3.8) sup
n∈N

y0n := y0 < +∞.

We have for any fixed n ∈ N

Pµ(ρn) = 2

∫ π/2

0
exp

[
c
(
x2n(θ) + y2n(θ)

)]
ykn(θ)

√
x′2n (θ) + y′2n (θ)dθ

≥ 2

∫ π/2

0
exp

[
cy2n(θ)

]
ykn(θ)y

′
n(θ)dθ = 2

∫ y0n

0
exp

(
ct2
)
tkdt.

We get (3.8) observing that {Pµ(ρn)}n is a bounded sequence.
From (3.7) and (3.8) we deduce that for any θ in (0, π/2) it holds

(3.9) ρn(θ) =
yn(θ)

sin θ
≤
yn(π/2)

sin θ
≤

y0

sin θ
∀n ∈ N.

Using (3.9) and again (3.7), for any fixed δ ∈ (0, π/2) we get

(3.10) sup
θ∈(δ,π/2−δ)

{
ρn(θ),

∣∣ρ′n(θ)
∣∣} ≤ Cδ,

where Cδ is a constant depending only on δ.
Hence there exists a function ρ locally Lipschitz continuous on (0, π/2) and a, not relabeled,

subsequence of ρn, such that

ρn → ρ uniformly on compact subsets of (0, π/2),(3.11)

ρ(θ) = ρ(π − θ) ∀θ ∈ (0, π/2),(3.12)

−ρ(θ) cot θ ≤ ρ′(θ) ≤ ρ(θ) tan θ a.e. on (0, π/2).(3.13)

Now we want to show that the limit set M = {(r, θ) : 0 ≤ r < ρ(θ), θ ∈ (0, π)} satisfies

(3.14) µ(ρ) = m, and Pµ(ρ) = Iµ(m),

or in other words that the infimum in (3.6) is achieved on M.



WEIGHTED ISOPERIMETRIC INEQUALITIES AND APPLICATIONS TO ELLIPTIC EQUATIONS 13

In the next subsection we will conclude the proof of the Theorem by showing that M is an
half-circle centered at the origin.

We claim that, for any θ ∈ (0, π/2), the following uniform estimate holds

(3.15) φn(θ) ≡ exp
(
cyn(θ)

2
)
yn(θ)

k

∫ xn(θ)

0
exp

(
ct2
)
dt ≤ C

To this purpose we consider the set

M̃n = {(x, y) ∈Mn : y ≤ yn(θ)} .

It is easy to verify that

1

2

(
Pµ(Mn)− Pµ(M̃n)

)

=

∫ π/2

θ
exp

(
c
(
x2n(θ) + y2n(θ)

))
yn(θ)

k
√
x′2n (θ) + y′2n (θ)dθ −

∫ xn(θ)

0
exp

(
c
(
t2 + y2n(θ)

))
ykn(θ)dt

≥

∫ π/2

θ
exp

(
c
(
x2n(θ) + y2n(θ)

))
yn(θ)

k
(
−x′n(θ)

)
dθ −

∫ xn(θ)

0
exp

(
c
(
t2 + y2n(θ)

))
ykn(θ)dt

= 0.

Therefore

C ≥ Pµ(Mn) ≥ Pµ(M̃n) ≥ 2ykn(θ) exp
(
cy2n(θ)

) ∫ xn(θ)

0
exp

(
ct2
)
dt.

Now (3.8) and (3.15) allow to deduce

(3.16) m = lim
n→+∞

µ(ρn) = µ( lim
n→+∞

ρn) = µ(ρ).

The detailed proof of (3.16), in spite of its elementary character, is a bit long. Therefore we prefer
to postpone it in the Appendix.

On the other hand the lower semicontinuity of the perimeter gives

Iµ(m) = lim
n→+∞

Pµ(ρn) ≥ Pµ(ρ),

but ρ ∈ K therefore Iµ(m) = Pµ(ρ).

Step 3: The optimal set is a half-circle

Standard calculus of variations then shows that there is a number γ ∈ R - a Lagrangian multiplier
- such that (see also [21])

lim
θ→0

Gp sin
k θ = lim

θ→π
Gp sin

k θ = 0,(3.17)

zGr −
d

dθ
(zGp) = γzF ′ in D′(0, π).(3.18)

Here and in the following, values of F , G and their derivatives are taken at ρ and (ρ, ρ′), respectively.

We note that the fact that x(θ) = ρ(θ)
cos θ and y(θ) = ρ(θ)

sin θ are nonincreasing and nondecreasing,
respectively, in (0, π) easily implies that

(3.19) ρ(θ) ≥ C > 0 in (0, π).
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From (3.11), (3.19) and the equation (3.18) we easily deduce that ρ is smooth on (0, π/2). Inte-
grating equation (3.18) over (π − t, t), (with t ∈ (0, π/2)), gives

2Gp(ρ(t), ρ
′(t)) sink t =

∫ t

π−t

(
Gr − γF ′

)
zdθ

Passing to the limit t ր (π/2) this shows that ρ′(π/2) = 0. This means that ρ is smooth on the
whole interval (0, π).

Now we want to show that ρ is bounded in (0, π). By the previous considerations it suffices
to examine the behavior of ρ at zero. To this aim we integrate equation (3.18) over (ε, t), where
0 < ε < t < (π/2), obtaining

Gp(ρ(t), ρ
′(t)) sink t−Gp(ρ(ε), ρ

′(ε)) sink ε =

∫ t

ε

(
Gr − γF ′

)
z dθ.

Passing to the limit εց 0 and taking into account (3.17) this means that

(3.20) Gp(ρ(t), ρ
′(t)) sink t =

∫ t

0

(
Gr − γF ′

)
z dθ.

Assume that ρ is unbounded at zero. Then there exists a sequence tn ց 0 such that ρ(tn) → +∞
and ρ′(tn) ≤ 0, n ∈ N. From (3.20) we then have that

(3.21) 0 ≥

∫ tn

0

(
−γρ+

(
2cρ+

k + 1

ρ

)√
ρ2 + ρ′2 +

ρ√
ρ2 + ρ′2

)
ρk exp

(
cρ2
)
z dθ, n ∈ N.

On the other hand, (3.13) tells us that ρ(tn) cos tn ≤ ρ(θ) cos θ for θ ∈ (0, tn). Hence the integrand
in (3.21) is positive for large n. This gives a contradiction and the claim is proved.

Having proved that ρ is bounded, the identity (3.20) shows that

(3.22)
ρ′(t)

t
is bounded on (0, π), and ρ′(0) = 0.

Finally, using the equation (3.18), we find that

ρ′′ is bounded on (0, π).

Now, since ρ is a minimizer of (3.6), the second variation of Pµ at ρ in K is nonnegative. This
means that

(3.23) 0 ≤

∫ π

0

(
Grrκ

2 + 2Grpκκ
′ +Gppκ

′2 − γF
′′

κ2
)
z dθ,

for any k ∈ C1([0, π]) such that

(3.24)

∫ π

0
F ′κz dθ = 0,

and, by density, for any κ ∈W 1,∞(0, π).
Observe that, by the symmetry property (3.12), the function ρ′, which has been shown to belong

to W 1,∞(0, π), satisfies (3.24).



WEIGHTED ISOPERIMETRIC INEQUALITIES AND APPLICATIONS TO ELLIPTIC EQUATIONS 15

On the other hand, dividing (3.18) by z and then differentiating yields

(3.25) Grrρ
′ +Grpρ

′′

−
d

dθ

(
Grpρ

′ +Gppρ
′′
)
−
(
Gprρ

′ +Gppρ
′′
) z′
z
−Gp

(
z′

z

)′

= γF ′′ρ′ in (0, π).

Multiplying (3.25) by ρ′z and then integrating by parts we obtain

(3.26)

∫ π

0
Gpρ

′

(
z′

z

)′

dθ =

∫ π

0

(
Grrρ

′2 + 2Grpρ
′ρ′′ +Gppρ

′′2 − γF
′′

ρ′2z dθ
)
zdθ.

Together with (3.23), with κ = ρ′, this shows that

(3.27) 0 ≤

∫ π

0
Gpρ

′

(
z′

z

)′

z dθ = −kπ

∫ π

0
exp

(
cρ2
)
ρk
(
ρ2 + ρ

′2
)−1/2

ρ
′2 sink−2 θ dθ.

This implies that ρ′ = 0 in [0, π], hence ρ is constant in [0, π], and the result follows. ✷

3.3. The N-dimensional case. Proof of Theorem 1.1. Let (x′, xN ) = (x1, .., xN−1, xN ) de-
note a point in R

N and let D be a smooth subset of RN+ having finite µ-measure.
For any fixed t > 0 we consider the (N−1)−dimensional slicesDt ofD parallel to the hyperplane

{xN = 0}

Dt =
{
x′ ∈ R

N−1 : (x′, t) ∈ D
}
.

By transforming each Dt into D
⋆,τ
t the set D becomes a set, Dc, with cylindrical symmetry. At

this point we recall (see for instance Theorem 4.2 of [4]) that the isoperimetric property of the
slices carries over the whole set, therefore

Pµ(D) ≥ Pµ(D
c).

Now we consider the set T of R
2
+ obtained by intersecting Dc with any (N − 1)−dimensional

hyperplane containing the xN−axis. The measure µ and the set Dc are both rotational invariant
with respect to the first (N − 1) coordinates. That allows us to apply Theorem 3.2 to the set T
obtaining an half-circle, whose complete rotation about the xN−axis provides the set D⋆. By the
consideration above we have that

Pµ(D
c) ≥ Pµ(D

⋆),

i.e. the claim.

4. Application to a class of degenerate elliptic equations

4.1. Notation and preliminary results. We introduce the notion of weighted rearrangement
with respect to the measure

dµ = xkN exp(c |x|2)dx,

with c, k ≥ 0. Let D be a measurable subset of RN+ . The distribution function of u : D → R, with
respect to dµ, is the function mµ defined by

mµ(t) = µ ({x ∈ D : |u(x)| > t}) , ∀t ≥ 0.

The decreasing rearrangement of u is the function u∗ defined by

u∗(s) = inf {t ≥ 0 : mµ(t) ≤ s} , ∀s ∈ (0, µ (D)] .
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Let Ck be the µ-measure of B1 ∩ R
N
+ and ψ (r) be the function defined by

ψ (r) =

∫ r

0
exp

(
ct2
)
tN+k−1dt.

We recall that D⋆ is the half-sphere of RN centered at the origin having the same µ−measure as
D. Or equivalently

(4.1) D⋆ = Br⋆ ∩ R
N
+ ,

where

(4.2) r⋆ = ψ−1

(
µ(D)

Ck

)
.

The rearrangement u⋆ of u is the following function

u⋆(x) = u∗ (Ckψ (|x|)) , ∀x ∈ D⋆.

The isoperimetric inequality we have proved in the previous section can be also stated as follows

Pµ(D) ≥ Iµ(µ(D)),

where Iµ(τ) is the function such that Pµ(D
⋆) = Iµ(µ(D

⋆)), or equivalently

(4.3) Iµ(τ) = Ck exp

(
c

[
ψ−1

(
τ

Ck

)]2)[
ψ−1

(
τ

Ck

)]N+k−1

.

Now we introduce the weighted Sobolev W 1,2(D, dµ) the set of the measurable functions u
satisfying the following two conditions

(i)

∫

D
|∇u|2 dµ +

∫

D
u2dµ < +∞,

(ii) There exists a sequence of functions un ∈ C1(D) such that un(x) = 0 on the set ∂D\ {xN = 0}
and

lim
n→∞

(∫

D
|∇ (un − u)|2 dµ +

∫

D
(un − u)2 dµ

)
= 0.

Any nonnegative function belonging to the spaceW 1,2(D, dµ) satisfies the following Pólya-Szegö
- type inequality (see, e.g., [35])

Theorem 4.1. Let u be a nonnegative function in W 1,2(D, dµ). Then the following inequality
holds true

(4.4)

∫

D
|∇u|2dµ ≥

∫

D⋆

|∇u⋆|2dµ.

Since, by Cavalieri’s principle, rearrangement preserves the Lp norms, we have that the Rayleigh-
Ritz quotient decreases under rearrangement i.e.

∫
D |∇u|2dµ∫
D u

2dµ
≥

∫
D⋆ |∇u⋆|2dµ
∫
D⋆ (u⋆)

2
dµ

, ∀u ∈W 1,2(D, dµ).
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The following Poincarè type inequality, which clearly states the continuous embedding ofW 1,2(D, dµ)
in L2(D, dµ), is a consequence of some one-dimensional inequalities contained in [25].

Corollary 4.1. There exists a constant C, depending on D only, such that for any u ∈W 1,2(D, dµ)
it holds ∫

D
u2dµ ≤ C

∫

D
|∇u|2 dµ.

The functional space W 1,2(D, dµ) will be equipped with the norm

‖u‖2W 1,2(D,dµ) =

∫

D
|∇u|2 dµ.

4.2. Comparison result. Now we apply the above results in order to get sharp estimates for the
solution to problem (1.8). By a weak solution to such a problem we mean a function u belonging
to W 1,2(D, dµ) such that

(4.5)

∫

D
A(x)∇u∇χdµ =

∫

D
fχdµ,

for every χ ∈ C1(D̄) such that χ = 0 on the set ∂D \ {xN = 0}.

Proof of Theorem 1.2 Note that the existence of a unique solution to problems (1.8) and (1.10)
is ensured by the Lax and Milgram Theorem. Arguing, for instance, as in [34] or in [8] (see also
[22]), we get

(4.6) 1 ≤

{
[Iµ (mu(t))]

−2
∫ mu(t)

0
f∗(σ)dσ

}
(
−m′

u(t)
)

and

(4.7) u∗ (s) ≤

∫ µ(D)

s

(
I−2
µ (l)

∫ l

0
f∗(σ)dσ

)
dl,

Using (4.3) in (4.7) we obtain

u⋆ (x) ≤
1

Ck
2

∫ µ(D)

Ckψ(|x|)

{
exp

(
−2c

[
ψ−1

(
l

Ck

)]2)(
ψ−1

(
l

Ck

))−2N−2k+2 ∫ l

0
f∗(σ)dσ

}
dτ

=
1

Ck

∫ r⋆

|x|
exp

(
−cη2

)
η−N−k+1

(∫ Ckψ(η)

0
f∗(σ)dσ

)
dη

(
η := ψ−1

(
l

Ck

))

=

∫ r⋆

|x|
exp

(
−cη2

)
η−N−k+1

(∫ η

0
f∗(Ckψ(ξ))ξ

N+k−1 exp
(
cξ2
)
dξ

)
dη (σ := Ckψ(ξ))

=

∫ r⋆

|x|
exp

(
−cη2

)
η−N−k+1

(∫ η

0
f⋆(ξ)ξN+k−1 exp

(
cξ2
)
dξ

)
dη

= w(x).
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Now let us show (1.12). By using the same chain of inequalities contained in [34] or in [8] we
get

(
−
d

dt

∫

|u|>t
|∇u| dµ

)2

≤
(
−m′

u(t)
)
(
−
d

dt

∫

|u|>t
|∇u|2 dµ

)
.

On the other hand Hölder inequality implies

−
d

dt

∫

|u|>t
|∇u|q dµ ≤

(
−
d

dt

∫

|u|>t
|∇u|2 dµ

)q/2(
−
d

dt

∫

|u|>t
dµ

)1−q/2

≤

(∫

|u|>t
|f |dµ

)q/2 (
−m′

u(t)
)1−q/2

.

Then Hardy inequality and (4.6) give

−
d

dt

∫

|u|>t
|∇u|q dµ ≤

(∫ mu(t)

0
f∗(s)ds

)q/2 (
−m′

u(t)
)1−q/2

≤ (I(mu(t)))
−q

(∫ mu(t)

0
f∗(s)ds

)q (
−m′

u(t)
)
.

Integrating the last inequality between 0 and +∞, we get

∫

D
|∇u|q dµ =

∫ +∞

0

[
−
d

dt

∫

|u|>t
|∇u|2 dµ

]
dt

≤

∫ +∞

0
(Iµ(mu(t)))

−q

(∫ mu(t)

0
f∗(σ)dσ

)q (
−m′

u(t)
)
dt

≤

∫ µ(D)

0
(Iµ(s))

−q

(∫ s

0
f∗(σ)dσ

)q
ds.
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Now a straightforward calculation yields

∫

D
|∇u|q dµ ≤ Ck

∫ µ(D)

0
exp

(
−qc

[
ψ−1

(
s

Ck

)]2)[
ψ−1

(
s

Ck

)]−q(N+k−1)(∫ s

0
f∗(σ)dσ

)q
ds

= C2
k

∫ R⋆

0
exp

(
−qcη2

)
η−q(N+k−1)

(∫ Ckψ(η)

0
f∗(σ)dσ

)q
exp

(
cη2
)
ηN+k−1dη

= C2
k

∫ R⋆

0
exp

(
(1− q)cη2

)
η(1−q)(N+k−1)

(∫ Ckψ(η)

0
f∗(σ)dσ

)q
dη

= C2
k

∫ R⋆

0

(∫ η

0
f∗(Ckψ(ρ))Ck exp

(
cρ2
)
ρN+k−1dρ

)q
exp

(
(1− q)cη2

)
η(1−q)(N+k−1)dη

= C2+q
k

∫ R⋆

0

(∫ η

0
f⋆(ρ) exp

(
cρ2
)
ρN+k−1dρ

)q
exp

(
(1− q)cη2

)
η(1−q)(N+k−1)dη

=

∫

D
|∇w|q dµ.
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5. Appendix

Here we provide, with all the notation of Section 2 in force, the detailed proof of (3.16).

Proof of (3.16) Setting

φ(θ) ≡ exp
(
cy(θ)2

)
y(θ)k

∫ x(θ)

0
exp

(
ct2
)
dt,

from (3.10) we deduce that, up to a subsequence, a.e. θ in (0, π/2) it holds

(5.1)





xn(θ) → x(θ)
yn(θ) → y(θ)
φn(θ) → φ(θ),

where {φn(θ)}n is the sequence defined in (3.15).
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Our claim is therefore

(5.2)
(
m = lim

n→∞
µ(ρn) =

)
lim
n→∞

∫ π/2

0
φny

′
ndθ =

∫ π/2

0
φy′dθ (= µ(ρ)) .

Estimates (3.8) and (3.10) imply

(5.3) y′n ⇀ y′ weakly in Lp(δ, π/2 − δ) ∀p > 1 and ∀δ > 0.

In order to prove (5.2), we firstly show that

(5.4) lim
n→∞

∫ π/2−δ

δ
φny

′
ndθ =

∫ π/2−δ

δ
φy′dθ, ∀δ > 0.

We have

(5.5)

∫ π/2−δ

δ
(φny

′
n − φy′)dθ =

∫ π/2−δ

δ
(φn − φ)y′ndθ +

∫ π/2−δ

δ
φ(y′n − y′)dθ.

By Lebesgue’s dominated convergence Theorem, taking into account of (5.3), (3.15) and (5.1), we
get

(5.6) lim
n→∞

∫ π/2−δ

δ
(φn − φ)y′ndθ = 0, ∀δ > 0,

and

(5.7) lim
n→∞

∫ π/2−δ

δ
φ(y′n − y′)dθ = 0, ∀δ > 0.

At this point (5.4) is an immediate consequence of (5.5), (5.6) and (5.7).
Now we claim that

(5.8) ∀ǫ > 0 ∃δǫ > 0 :

∫ δ

0
φny

′
ndθ < ǫ ∀δ < δǫ and ∀n ∈ N

and

(5.9) ∀ǫ > 0 ∃δǫ > 0 :

∫ π/2

π/2−δ
φny

′
ndθ < ǫ ∀δ < δǫ and ∀n ∈ N.

Let us show, for instance, (5.8). Since 0 ≤ φn ≤ C ∀n ∈ N, it suffices to show that

∀ǫ > 0 ∃δǫ > 0 :

∫ δ

0
y′ndθ < ǫ ∀δ < δǫ and ∀n ∈ N.

We argue by absurd. If (5.8) was not true then ∃ǫ > 0 and ∃δn ց 0+ :

ρn(δn) sin δn = yn(δn) ≥ yn(δn)− yn(0) ≥

∫ δn

0
y′ndθ ≥ ǫ ∀n ∈ N.

It follows that xn(δn) = ρn(δn) cos δn > ǫ cot δn and finally lim
n→∞

xn(δn) = +∞. The uniform

estimate (3.15) would guarantee that

exp
(
cy2n(δn)

)
ykn(δn)

∫ xn(δn)

0
exp

(
ct2
)
dt ≤ C ∀n ∈ N,
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a contradiction since yn(δn) ≥ ǫ ∀n ∈ N and lim
n→∞

xn(δn) = +∞.

Now let δǫ > 0 such that

(5.10)

∫ δ

0
φny

′
ndθ +

∫ π/2

π/2−δ
φny

′
ndθ < ǫ ∀δ < δǫ and ∀n ∈ N.

We set
∫ π/2

0
φny

′
ndθ =

(∫ δ

0
φny

′
ndθ +

∫ π/2

π/2−δ
φny

′
ndθ

)
+

∫ π/2−δ

δ
φny

′
ndθ with δ < δǫ.

Recalling (5.2), we have

lim sup
n→∞

∫ π/2

0
φny

′
ndθ ≤ lim sup

n→∞

(∫ δ

0
φny

′
ndθ +

∫ π/2

π/2−δ
φny

′
ndθ

)
+ lim sup

n→∞

∫ π/2−δ

δ
φny

′
ndθ

≤ ǫ+

∫ π/2−δ

δ
φy′dθ ≤ ǫ+

∫ π/2

0
φy′dθ

Since ǫ is can be taken arbitrarily small we have

(5.11) lim sup
n→∞

∫ π/2

0
φny

′
ndθ ≤

∫ π/2

0
φy′dθ.

On the other hand

lim inf
n→∞

∫ π/2

0
φny

′
ndθ ≥ lim inf

n→∞

(∫ δ

0
φny

′
ndθ +

∫ π/2

π/2−δ
φny

′
ndθ

)
+ lim inf

n→∞

∫ π/2−δ

δ
φny

′
ndθ

≥

∫ π/2−δ

δ
φy′dθ ∀δ < δǫ.

It follows that

(5.12) lim inf
n→∞

∫ π/2

0
φny

′
ndθ ≥

∫ π/2

0
φy′dθ.

Finally the claim (5.2) follows from (5.11) and (5.12). ✷
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