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ON A CONJECTURE OF POMERANCE

L. HAJDU, N. SARADHA, AND R. TIJDEMAN

Dedicated to Professor Schinzel on the occasion of his 75th birthday

1. Introduction

Let k > 1 be an integer. We denote Euler’s totient function by ϕ(k)
and the number of distinct prime divisors of k by ω(k). We say that
k is a P−integer if the first ϕ(k) primes coprime to k form a reduced
residue system modulo k. In 1980, Pomerance [12] proved the finiteness
of the set of P−integers. The following conjecture was proposed by him
in [12].

Conjecture of Pomerance. If k is a P−integer, then k ≤ 30.

This conjecture is still open. Recently, Hajdu and Saradha [7] and
Saradha [17] have given simple conditions under which an integer k is
not a P−integer. By their results, it follows that

• no prime is a P−integer except 2;
• no square or a cube of a prime is a P−integer except 4;
• no integer k with its least prime divisor > log k is a P−integer

except when k ∈ {2, 4, 6}.
It is easy to check that the only P−integers ≤ 30 are 2, 4, 6, 12, 18, 30.
It was checked by computation in [7] that if k is another P−integer,
then k ≥ 5.5 · 105. In Theorem 4.1 we improve this bound to 1011.
In this paper, we give a quantitative version of the finiteness result of
Pomerance and prove the conjecture of Pomerance under the Riemann
Hypothesis. We have

Theorem 1.1. If k is a P−integer, then k < 103500.

Theorem 1.2. Suppose the Riemann Hypothesis holds. Then the only

P−integers are 2, 4, 6, 12, 18, 30.
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Theorem 1.1 depends on results about the zeros of the Riemann zeta
function. Our method of proof differs from the methods used in [7],
[12] and [17]. Our arguments are based on estimates for the number
of primes in intervals. We do not use the Jacosthal function and its
properties as done in the papers mentioned above.

2. Lemmas

Let p1 < p2 < . . . be the increasing sequence of prime numbers. For
any x > 1, let π(x) denote the number of prime numbers not exceeding

x, and Li(x) = limx→∞

∫ 1−ǫ

t=0
dt
log t

+
∫ x

t=1+ǫ
dt
log t

. We put π(x) = 0 for
0 ≤ x ≤ 1.

Lemma 2.1. For any x ∈ R and n ∈ N we have

(i) π(x) > x
log x

+ x
log2 x

+ 2x
log3 x

for x > 88783;

(ii) π(x) < x
log x

+ x
log2 x

+ 2.51x
log3 x

for x > 355991;

(iii) |π(x)− Li(x)| < .4394 x
(logx)3/4

exp

(

−
√

log x
9.646

)

for x ≥ 58;

(iv) if the Riemann Hypothesis holds, then |π(x)−Li(x)| < 1
8π

√
x log x

for x > 2656;
(v) Li(x) > π(x) for x ≤ 1014;
(vi) pn < n(log n+ log logn) for n ≥ 6;
(vii) pn > n log n for n ≥ 1;
(viii) n

ϕ(n)
< 1.7811 log log n+ 2.51

log logn
for n ≥ 3.

Proof. Wemention the references where the estimates from Prime Num-
ber Theory given in the lemma can be found.
(i) Dusart [4], p. 2.
(ii) Dusart [2], p. 40.
(iii) Dusart [2], p. 41.
(iv) Schoenfeld [16], p. 339.
(v) Kotnik [10], p. 59.
(vi) Rosser and Schoenfeld [13], p. 69.
(vii) Rosser and Schoenfeld [13], p. 69.
(viii) Rosser and Schoenfeld [13], p. 72. �

Lemma 2.2. Let x be a real number with x > 712000. Then we have

2π
(x

2

)

− π(x) >
.693x

log2 x
.

Proof. We have, by Lemma 2.1, for x > 712000,

2π(x/2)− π(x) >
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x

log(x/2)
+

x

log2(x/2)
+

2x

log3(x/2)
− x

log x
− x

log2 x
− 2.51x

log3 x
>

x

log x
(

1− log 2
log x

) − x

log x
+

x

log2 x
(

1− log 2
log x

)2 − x

log2 x
− .51x

log3 x
>

x

log x
· log 2
log x

+
x

log2 x
· 2 log 2
log x

− .51x

log3 x
>

.693x

log2 x
.

�

Lemma 2.3. Let x and y be positive real numbers with x > y, x ≥ 59.
Then

2π(x+ y)− π(x)− π(x+ 2y) >

y2

(x+ 2y) log2(x+ 2y)
− 1.7576(x+ 2y)

(log x)3/4
e−

√
log x
9.646 .

Proof. By Lemma 2.1 (iii),

2π(x+ y)− π(x)− π(x+ 2y) >

2Li(x+ y)− Li(x)− Li(x+ 2y)− 1.7576
x+ 2y

(logx)3/4
exp

(

−
√

log x

9.646

)

.

Observe that

2Li(x+ y)− Li(x)− Li(x+ 2y) =

∫ x+y

x

dt

log t
−
∫ x+2y

x+y

dt

log t

=

∫ x+y

x

dt

(

1

log t
− 1

log(t + y)

)

=
y2

ξ log2 ξ

for some ξ with x < ξ < x + 2y, by the mean value theorem applied
twice. Thus

2π(x+ y)− π(x)− π(x+ 2y) >

y2

(x+ 2y) log2(x+ 2y)
− 1.7576

x+ 2y

(log x)3/4
exp

(

−
√

log x

9.646

)

.

�

Lemma 2.4. Suppose the Riemann Hypothesis holds true.

Let x > y > 0, x ≥ 2657. Then

2π(x+ y)− π(x)− π(x+ 2y) >

y2

(x+ 2y) log2(x+ 2y)
− log(x+ 2y)

θ

√

x+ 2y
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where

θ =

{

2π if x+ 2y > 1014

4π if x+ 2y ≤ 1014.

Proof. By Lemma 2.1 (iv) and (v),

2π(x+ y)− π(x)− π(x+ 2y) >

2Li(x+ y)− Li(x)− Li(x+ 2y)− log(x+ 2y)

θ

√

x+ 2y.

The lemma follows in the same way as in the proof of Lemma 2.3. �

3. A criterion for an integer k to be not a P−integer

Suppose k is a P−integer > 30. Let ϕ(k) + ω(k) = T . Then there
are exactly ϕ(k) primes belonging to the set {p1, · · · , pT} which are
coprime to k and form a reduced residue system mod k. The remaining
ω(k) primes in this set divide k. Let

D′
k =

{

i ≤ T : pi (mod k) <
k

2

}

,

D′′
k =

{

i ≤ T : pi (mod k) ≥ k

2

}

and
D′′′

k = {i ≤ T : pi|k} .
Note that |D′′′

k | = ω(k) where |A| denotes the number of elements of a
set A. By the symmetry of the residues about k/2, we get

|D′
k \D′′′

k | = |D′′
k \D′′′

k |
which implies

(1) |D′
k| − |D′′

k| ≤ |D′′′
k | = ω(k).

Let t be an integer such that tk < pT < (t + 1)k. We observe that if
pT ∈ (tk, tk + k

2
) we have

|D′
k| =

t−1
∑

n=0

(

π

(

nk +
k

2

)

− π(nk)

)

+ T − π(tk),

|D′′
k| =

t−1
∑

n=0

(

π(nk + k)− π

(

nk +
k

2

))

and if pT ∈
(

tk + k
2
, tk + k

)

, then

|D′
k| =

t
∑

n=0

(

π

(

nk +
k

2

)

− π(nk)

)

,
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|D′′
k| =

t−1
∑

n=0

(

π(nk + k)− π

(

nk +
k

2

))

+ T − π

(

tk +
k

2

)

.

Thus we get

|D′
k| − |D′′

k| =
t−1
∑

n=0

(

2π

(

nk +
k

2

)

− π(nk)− π(nk + k)

)

+ T − π(tk)

in the former case, and in the latter case

|D′
k|−|D′′

k| =
t
∑

n=0

(

2π

(

nk +
k

2

)

− π(nk)− π(nk + k)

)

+π(tk+k)−T.

Let L(k) = t − 1 in the former case and L(k) = t in the latter. Let
L := L(k). We shall use this parameter L later on without any further
mentioning. Noting that T − π(tk) and π(tk + k) − T are both non-
negative and that ω(k) < log k, we find by (1) the following criterion.

Lemma 3.1. The integer k is not a P−integer, if

SL :=

L
∑

n=0

(

2π

(

nk +
k

2

)

− π(nk)− π(nk + k)

)

> log k.

We note that
tk < pT ≤ pk ≤ k log(k log k)

by Lemma 2.1 (vi). Thus

(2) L ≤ t < log(k log k).

On the other hand, using Lemma 2.1 (vii) and (viii), putting h(k) =
1.7811 log log k + 2.51

log log k
, we get

(3) L+ 2 ≥ t+ 1 >
pT
k

≥ pϕ(k)
k

>
log k − log h(k)

h(k)
.

4. A computational result

Theorem 4.1. If 30 < k ≤ 1011, then k is not a P−integer. Further,

if k is even with 30 < k ≤ 2 · 1011 then k is not a P−integer.

Proof. We first prove the statement for k even. In [7] it has been
computationally verified that no integer k with 30 < k < 5.5 · 105 is a
P−integer. Hence we may assume henceforth that

5.5 · 105 ≤ k ≤ 2 · 1011.
To cover this interval, we apply a modified version of the algorithm
used in [7].
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To prove a statement for a given k we apply the following strategy.
We find a prime p > k such that p < pϕ(k) and p (mod k) is also a
prime. Then k is not a P−integer. To make this strategy work on
the whole range for k under consideration, we shall make use of the
following two properties. Let k be an integer with k ≥ 5.5 · 105. Then
we have

(4) π(k + 1) + 100 < ϕ(k)

and

(5) pπ(k+1)+100 < 1.5k.

These assertions can be easily checked e.g. by Magma [1], using parts
(ii), (vi) and (viii) of Lemma 2.1.
First we prove the statement for the even values of k. This is done by

the algorithm below, which is based on the strategy indicated above.

Initialization. Let k0 = 5.5 · 105. Let H be the list of the first 100
primes larger than k0 + 1, i.e. H = [pπ(k0+1)+1, . . . , pπ(k0+1)+100].

Step 1. Check successively for the primes p ∈ H whether p (mod k0) is
also a prime. When such a p is found then by (4), k0 is not a P−integer
- proceed to the next step.

Step 2. Check if k0 + 3 is a prime. If not, then proceed to Step 3.
If so, this is the first element of H . Remove this prime from H , and
append to H the prime pπ(k0+1)+101 which is the next prime to the last
element of H .

Step 3. If k0 < 2 · 1011 then put k0 := k0 + 2, and go to Step 1.

Using this procedure, by a Magma program we could check that
there is no even P−integer in the interval [5.5 · 105, 2 · 1011].
Let now k be odd with 5.5 · 105 < k < 1011. Then by our algorithm

above, using (4) and (5) we know that there exists a prime p satisfying
2k < p < min{3k, pϕ(2k)} such that q := p (mod 2k) is also a prime.
Observe that q < k. Thus as ϕ(k) = ϕ(2k), p is a prime such that
k < p < pϕ(k) and q = p (mod k) is also a prime. Hence k is not a
P−integer and the theorem follows. �

5. Proofs of the theorems

Proof of Theorem 1.1. Let k be an integer with k ≥ 103500. Then by
(3), L > 500. We apply Lemma 2.1 to get

2π(k/2)− π(k) >

k

log(k/2)
+

k

log2(k/2)
+

2k

log3(k/2)
− k

log k
− k

log2 k
− 2.51k

log3 k
.



ON A CONJECTURE OF POMERANCE 7

For n ≥ 1 we apply Lemma 2.3 with x = nk, y = k/2 to find

2π(nk + k/2)− π(nk)− π(nk + k) >

k

4(n+ 1) log2(nk + k)
− 1.7576

nk + k

(lognk)3/4
exp

(

−
√

log(nk)

9.646

)

Put

f0(k) :=
k

log k
2

+
k

log2 k
2

+
2k

log3 k
2

− k

log k
− k

log2 k
− 2.51k

log3 k
− log k,

fn(k) :=
k

4(n+ 1) log2(nk + k)
−1.7576

nk + k

(lognk)3/4
exp

(

−
√

log(nk)

9.646

)

for n ≥ 1. A simple calculation shows that

SL ≥ f0(k) +

L
∑

n=1

fn(k) > 0

for L ≤ 1500. This shows that k is not a P -integer for such L. Hence
we may assume that L > 1500. By (2) we have L < log(k log k). It
suffices to show that

f0(k) +

1500
∑

n=1

fn(k) +

L
∑

n=1501

fn(k) > 0.

For this, we first check by Maple that fn(k) is a strictly monotone
decreasing function of n. Hence it is enough to show that

fn(k) +

f0(k) +
1500
∑

i=1

fi(k)

L− 1500
> 0 for n = log(k log k) and k = 103500.

We check this again with Maple to get the final contradiction. �

Remark. The constant 9.646 which occurs in Lemma 2.1(iii) origi-
nates from a zero-free region of the Riemann-zeta function derived by
Rosser and Schoenfeld ([14] Theorem 1), where the constant appears
as R. The zero-free region has been widened by Kadiri [9] where the
corresponding constant R is 5.69693. If this constant would be substi-
tuted into Lemma 2.1 instead of the constant 9.646 and we follow our
argument, we obtain that if k is a P -integer, then k < 101000. However,
we do not know if this substitution is justified.

Proof of Theorem 1.2. Suppose the Riemann Hypothesis is true. Let k
be an integer with k ≥ 3 · 1013. By Lemma 2.2, we get

2π

(

k

2

)

− π(k) >
.693k

log2 k
> log k > ω(k).
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For n = 1, 2, . . . , ⌊log(k log k)⌋ − 1 we apply Lemma 2.4 with x = nk,
y = k/2 to find

2π

(

nk +
k

2

)

− π(nk)− π(nk + k) >

k

4(n + 1) log2(nk + k)
− log(nk + k)

2π

√
nk + k.

The term on the right hand side of the above inequality is positive if

π
√
k > 2(n+ 1)1.5 log3(nk + k).

This is satisfied, since n < log(k log(k))− 1 and k ≥ 3 · 1013. Hence by
Lemma 3.1, we find that k is not a P−integer.
Next we take k < 3 ·1013. By Theorem 4.1, we may assume k > 1011.

Note that L < log(k log k) ≤ 34. Further

L < log k + log log k < 1.13 log k

giving

k > e.88L > 10.38L.

Define

kL = [10{.38L}]10[.38L].

where [x] and {x} denote the integral and fractional part of any real
number x. Note that for any fixed L with L ≤ 34 if L(k) ≥ L, then
k ∈ [kL, 3 · 1013). Applying Lemma 2.4 with x = nk, y = k/2 we find

SL > 2π(k/2)− π(k)+

+
L
∑

n=1

(

k

4(n+ 1) log2(nk + k)
− log(nk + k)

4π

√
nk + k

)

.

For n = 1, . . . , L, put

Fn(k) :=
1

L

(

k

log(k/2)
+

k

log2(k/2)
+

2k

log3(k/2)

)

− 1

L

(

k

log k
+

k

log2 k
+

2.51k

log3 k
+ log k

)

+
k

4(n+ 1) log2(nk + k)
− log(nk + k)

4π

√
nk + k.

We have, by Lemma 2.1 (i), (ii),

SL − log k >
L
∑

n=1

Fn(k).
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So it is sufficient to show that the right hand side is positive. For this,
we proceed as follows. First, let 29 ≤ L ≤ 34. We calculate the value
kL from its definition above. Thus (L, kL) is one of the pairs from

{(29, 1011), (30, 2·1011), (31, 6·1011), (32, 1012), (33, 3·1012), (34, 8·1012)}.
We check by Maple that all functions Fn(k) are strictly monotone

increasing on [kL, 3 · 1013], and further

L
∑

n=1

Fn(kL) > 0.

Hence by Lemma 3.1, there is no P -integer k with L(k) ∈ [29, 34].
Now we consider k ∈ [1011, 3 · 1013]. Then obviously L(k) > 0. We
may assume 1 ≤ L ≤ 28. We check that all functions Fn(k) are strictly
monotone increasing and the preceding inequality also holds. Hence
we conclude that no integer k ∈ [1011, 3 · 1013] is a P−integer. �
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