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1 Introduction

The domain wall (DW) boundary condition of a statistical model on a finite two-dimensional

lattice was introduced in [1] for the six-vertex model. The partition function of the model

(or DW partition function) was then given in terms of some determinant [2, 3]. Such a deter-

minant representation of the partition function has played an important role in constructing

norms of Bethe states, correction functions [4, 5, 6] and thermodynamical properties of the

six-vertex model [7], and also in the Toda theories [8]. Moreover, it has been proven to be

very useful in solving some pure mathematical problems, such as the problem of alternating

sign matrices [9]. Recently, the determinant representations of the DW partition function

have been obtained for various models [10, 11, 12].

Since the DW partition function is calculated [3] as an inner product of pseudo-vacuum

and some Bethe state which is generated by pseudo-particle creation operators (given by

one-row monodromy matrix related to closed spin chain [5]) on the pseudo-vacuum state,

the computation of the function is simplified dramatically and can be directly calculated in

the so-called F-basis [13] provided by the Drinfeld twist [14] or factorizing F-matrix. Such a

magic F-matrix has been studied extensively for other models [15, 16, 17, 18, 19, 20].

For a two-dimensional statistical model with a reflection end [21], in addition to the local

interaction vertex, a reflecting matrix or K-matrix which describes the boundary interactions

needs to be introduced at the reflection end of the lattice (see figure 4 below). This problem

is closely related to that of open spin chain [22]. The DW partition function of the six-

vertex model with a diagonal reflection end was exactly calculated and expressed in terms

some determinant [21]. Then such an explicit determinant representation was re-derived

[23, 24] by using F-basis of the closed XXZ chain. However, it is well known that to obtain

exact solution of open spin chain with non-diagonal boundary terms is very non-trivial

[25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41] comparing with that of the

one with simple diagonal boundary terms. In this paper, we will investigate the determinant

representation of the DW partition function of the six-vertex model with a non-diagonal

reflection end which is specified by a generic non-diagonal K-matrix found in [42, 43]. The

result will be essential to construct the determinant representations of scalar products of

Bethe states of the open XXZ chain with non-diagonal boundary terms [44].

The paper is organized as follows. In section 2, after introducing our notation and some
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basic ingredients, we construct the four boundary states which specify the DW boundary

condition of the six-vertex model with a non-diagonal reflection end. In section 3, using

the vertex-face correspondence relation we express the DW boundary partition function in

terms of the particular matrix element of the product of face type pseudo-particle creation

operators. In section 4, we present the F-matrix of the open XXZ chain with non-diagonal

boundary terms and give the completely symmetric and polarization free representations of

the pseudo-particle creation operators in the F-basis. In section 5, with the help of the F-

basis provided by the F-matrix we obtain the determinant representation of the DW partition

function. In section 6, we summarize our results and give some discussions. Some detailed

technical proof is given in Appendix A.

2 Six-vertex model with a reflecting end

In this section, we briefly review the DW boundary condition for the six-vertex model with

non-diagonal reflecting end on an N × 2N rectangular lattice.

2.1 The six-vertex R-matrix and associated K-matrix

Throughout, V denotes a two-dimensional linear space. The well-known six-vertex model

R-matrix R(u) ∈ End(V ⊗ V ) [5] is given by

R(u) =









a(u)
b(u) c(u)
c(u) b(u)

a(u)









. (2.1)

The coefficient functions read: a(u) = 1, b(u) = sinu
sin(u+η)

, c(u) = sin η

sin(u+η)
. Here we assume

η is a generic complex number. The R-matrix satisfies the quantum Yang-Baxter equation

(QYBE),

R1,2(u1 − u2)R1,3(u1 − u3)R2,3(u2 − u3) = R2,3(u2 − u3)R1,3(u1 − u3)R1,2(u1 − u2), (2.2)

and the unitarity, crossing-unitarity and quasi-classical properties [28]. We adopt the stan-

dard notations: for any matrix A ∈ End(V ) , Aj (or Aj) is an embedding operator in the

tensor space V ⊗ V ⊗ · · ·, which acts as A on the j-th space and as identity on the other

factor spaces; Ri,j(u) is an embedding operator of R-matrix in the tensor space, which acts

as identity on the factor spaces except for the i-th and j-th ones.
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For a model with reflection end or open spin chain [22], in addition to the R-matrix, one

needs to introduce K-matrix K(u) which satisfies the reflection equation (RE)

R1,2(u1 − u2)K1(u1)R2,1(u1 + u2)K2(u2)

= K2(u2)R1,2(u1 + u2)K1(u1)R2,1(u1 − u2). (2.3)

In this paper, we consider the K-matrix K(u) which is a generic solution to the RE (2.3)

associated the six-vertex model R-matrix [42, 43]

K(u) =

(

k1
1(u) k1

2(u)
k2
1(u) k2

2(u)

)

. (2.4)

The coefficient functions are

k1
1(u) =

2 cos(λ1 − λ2)− cos(λ1 + λ2 + 2ζ)e−2iu

4 sin(λ1 + ζ + u) sin(λ2 + ζ + u)
,

k1
2(u) =

−i sin(2u)e−i(λ1+λ2)e−iu

2 sin(λ1 + ζ + u) sin(λ2 + ζ + u)
,

k2
1(u) =

i sin(2u)ei(λ1+λ2)e−iu

2 sin(λ1 + ζ + u) sin(λ2 + ζ + u)
,

k2
2(u) =

2 cos(λ1 − λ2)e
−2iu − cos(λ1 + λ2 + 2ζ)

4 sin(λ1 + ζ + u) sin(λ2 + ζ + u)
. (2.5)

It is very convenient to introduce a vector λ ∈ V associated with the boundary parameters

{λi},

λ =

2
∑

k=1

λkǫk, (2.6)

where {ǫi, i = 1, 2} form the orthonormal basis of V such that 〈ǫi, ǫj〉 = δij .

2.2 The model

The partition function of a statistical model on a two-dimensional lattice is defined by the

following:

Z =
∑

exp{− E

kT
},

where E is the energy of the system, k is the Boltzmann constant, T is the temperature of

the system, and the summation is taken over all possible configurations under the particular

boundary condition such as the DW boundary condition. The model we consider here has

six allowed local bulk vertex configurations
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Figure 1. Vertex configurations and their associated Boltzmann weights.

and four allowed configurations at each reflection end

1 1

1 12 2

22

b1 b2 b3 b4

Figure 2. Reflection ends and the associated Boltzmann weights.

where 1 and 2 respectively denote the spin up and down states. Each of the six bulk

configurations is assigned a statistical weight (or Boltzmann weight) wi, while each of the

four reflection configurations is assigned a weight bi (see Figs. 1 and 2). Then the partition

function of the model with a reflection end can be rewritten as

Z =
∑

w1
n1 w2

n2 w3
n3 w4

n4 w5
n5 w6

n6 bl11 bl22 bl33 bl44 ,
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where the summation is over all possible configurations with ni and lj being the number of

the vertices of type i and the number of the reflection end of type j respectively. The bulk

Boltzmann weights which we consider here have Z2-symmetry, i.e.,

a ≡ w1 = w2, b ≡ w3 = w4, c ≡ w5 = w6, (2.7)

and the variables a, b, c satisfy a function relation, or equivalently, the local Boltzmann

weights {wi} can be parameterized by the matrix elements of the six-vertex R-matrix R

(2.1) as in figure 3. At the same time, the weights {bi} corresponding to the reflection end

can be parameterized by the matrix elements of the K-matrix K (2.4) as in figure 3.

= R̄
jl
ik(u− ξ), i, j, k, l,= 1, 2.

u

i

j

l k ← ξ

i

j

u

−u
= Ki

j(u)

Figure 3. The Boltzmann weights and elements of the six-vertex R-matrix and K-matrix.

then the corresponding model is called the six-vertex model with a reflection end. Therefore

the partition function of the model is give by

Z =
∑

an1+n2 bn3+n4 cn5+n6bl11 bl22 bl33 bl44 .

In order to parameterize the local bulk Boltzmann weights in terms of the elements of the

R-matrix, one needs to assign spectral parameters u and ξ respectively to the vertical line
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and horizontal line of each vertex of the lattice, as shown in figure 3. In an inhomogeneous

model, the statistical weights are site-dependent. Hence two sets of spectral parameters {uα}
and {ξi} are needed, see figure 4. The horizontal lines are enumerated by indices 1, . . . , N

with spectral parameters {ξi}, while the vertical lines are enumerated by indices 1̄, . . . , N̄

with spectral parameters {ūα} (The 2N parameters {ūα} are assigned as follow: ū2i = ui

and ū2i+1 = −ui, as shown in figure 4.). The DW boundary condition is specified by four

boundary states |Ω(2)(λ)〉, |Ω̄(1)(λ)〉, 〈Ω(1)(λ)| and 〈Ω̄(2)(λ)| (the definitions of the boundary

states will be given later, see (2.32)-(2.35) below). These four states correspond to the

particular choices of spin states on the four boundaries of the lattice .

1

2

N

1̄ 1̄ N̄N̄

ξ1

ξ2

ξN

u1 −u1 uN −uN

|Ω̄(1)(λ)〉

〈Ω̄(2)(λ)|

|Ω(2)(λ)〉〈Ω(1)(λ)|

Figure 4. The six-vertex model with a non-diagonal reflection end under the DW condition.

Some remarks are in order. The boundary states not only depend on the spectral pa-

rameters (|Ω(2)(λ)〉 and 〈Ω(1)(λ)| depend on {ξi}, while |Ω̄(1)(λ)〉 and 〈Ω̄(2)(λ)| depend on

{uα}) but also on two continuous parameters λ1 and λ2. However, after a diagonal similarity
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transformation generated by Diag(1, e−i(λ1+λ2)) and then taking λ1 → +i∞, the correspond-

ing boundary states |Ω(2)(λ)〉 and 〈Ω̄(2)(λ)| (or |Ω̄(1)(λ)〉 and 〈Ω(1)(λ)|) become the state of

all spin down and its dual (or the state of all spin up and its dual) up to some over-all scalar

factors. Moreover after the same similarity transformation and taking the limit the resulting

K-matrix becomes the diagonal matrix solution of the reflection equation (2.3). Hence the

partition function in the limit reduces to that of the six-vertex model [21].

The partition function of the six-vertex model with a non-diagonal reflection end specified

by the generic K-matrixK(u) (2.4) under the DW boundary condition is a function of 2N+3

variables {uα}, {ξi}, λ1, λ2 and ζ , which is denoted by ZN({uα}; {ξi};λ; ζ). Due to the fact

that the local Boltzmann weights of each vertex and reflection end of the lattice are given

by the matrix elements of the six-vertex R-matrix and the associated K-matrix (see figure

3), the partition function can be expressed in terms of the product of the R-matrices, the

K-matrix and the four boundary states

ZN({uα}; {ξi};λ; ζ) = 〈Ω(1)(λ)|〈Ω̄(2)(λ)|
×R1̄,N(u1−ξN) . . .R1̄,1(u1−ξ1)K1̄(u1)R1,1̄(u1+ξ1) . . .RN,1̄(u1+ξN)

...

×RN̄,N(uN−ξN) . . . RN̄,1(uN−ξ1)KN̄ (uN)R1,N̄(uN+ξ1) . . . RN,N̄(uN+ξN)

×|Ω̄(1)(λ)〉|Ω(2)(λ)〉. (2.8)

One can rearrange the product of the R-matrices in (2.8) in terms of a product of the so-called

double-row monodromy matrices

ZN({uα}; {ξi};λ; ζ)=〈Ω(1)(λ)|〈Ω̄(2)(λ)|T1̄(u1) . . .TN̄ (uN) |Ω̄(1)(λ)〉|Ω(2)(λ)〉, (2.9)

where the monodromy matrix Tī(u) is given by

Tī(u) ≡ Tī(u; ξ1, . . . , ξN ; ζ) = Rī,N(ui−ξN) . . . Rī,1(ui−ξ1)
×Kī(ui)R1,̄i(ui+ξ1) . . . RN,̄i(ui+ξN). (2.10)

The double-row matrix T(u) has played an important role to construct the transfer matrix

for an open spin chain [22]. The QYBE (2.2) of the R-matrix and the reflection equation

(2.3) of the K-matrix give rise to that the monodromy matrix Tī(u) satisfy the following

exchange relation

Rī,j̄(ui − uj)Tī(ui)Rj̄ ,̄i(ui + uj)Tj̄(uj) = Tj̄(uj)Rī,j̄(ui + uj)Tī(ui)Rj̄,̄i(ui − uj). (2.11)

8



2.3 The boundary states

From the orthonormal basis {ǫi} of V , we define

ı̂ = ǫi − ǫ, ǫ =
1

2

2
∑

k=1

ǫk, i = 1, 2, then
2
∑

i=1

ı̂ = 0. (2.12)

Let h be the Cartan subalgebra of A1 and h∗ be its dual. A finite dimensional diagonalizable

h-module is a complex finite dimensional vector space W with a weight decomposition W =

⊕µ∈h∗W [µ], so that h acts on W [µ] by x v = µ(x) v, (x ∈ h, v ∈ W [µ]). For example, the

non-zero weight spaces of the fundamental representation VΛ1 = C2 = V are

W [̂ı] = Cǫi, i = 1, 2. (2.13)

For a generic m ∈ V , define

mi = 〈m, ǫi〉, mij = mi −mj = 〈m, ǫi − ǫj〉, i, j = 1, 2. (2.14)

Let R(u,m) ∈ End(V ⊗ V ) be the R-matrix of the six-vertex SOS model, which is trigono-

metric limit of the eight-vertex SOS model [45] given by

R(u;m)=

2
∑

i=1

R(u;m)iiiiEii⊗Eii+

2
∑

i 6=j

{

R(u;m)ijijEii⊗Ejj+R(u;m)jiijEji⊗Eij

}

, (2.15)

where Eij is the matrix with elements (Eij)
l
k = δjkδil. The coefficient functions are

R(u;m)iiii = 1, R(u;m)ijij =
sin u sin(mij − η)

sin(u+ η) sin(mij)
, i 6= j, (2.16)

R(u;m)jiij =
sin η sin(u+mij)

sin(u+ η) sin(mij)
, i 6= j, (2.17)

and mij is defined in (2.14). The R-matrix satisfies the dynamical (modified) quantum

Yang-Baxter equation (or the star-triangle relation) [45]

R1,2(u1 − u2;m− ηh(3))R1,3(u1 − u3;m)R2,3(u2 − u3;m− ηh(1))

= R2,3(u2 − u3;m)R1,3(u1 − u3;m− ηh(2))R1,2(u1 − u2;m). (2.18)

Here we have adopted the convention

R1,2(u,m− ηh(3)) v1 ⊗ v2 ⊗ v3 = (R(u,m− ηµ)⊗ id) v1 ⊗ v2 ⊗ v3, if v3 ∈ W [µ]. (2.19)
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Moreover, one may check that the R-matrix satisfies weight conservation condition,

[

h(1) + h(2), R1,2(u;m)
]

= 0, (2.20)

unitary condition,

R1,2(u;m)R2,1(−u;m) = id⊗ id, (2.21)

and crossing relation

R(u;m)klij = εl εj
sin(u) sin((m− ηı̂)21)

sin(u+ η) sin(m21)
R(−u− η;m− ηı̂)j̄ k

l̄ i
, (2.22)

where

ε1 = 1, ε2 = −1, and 1̄ = 2, 2̄ = 1. (2.23)

Define the following functions: θ(1)(u) = e−iu, θ(2)(u) = 1. Let us introduce two inter-

twiners which are 2-component column vectors φm,m−η̂(u) labelled by 1̂, 2̂. The k-th element

of φm,m−η̂(u) is given by

φ
(k)
m,m−η̂(u) = θ(k)(u+ 2mj). (2.24)

Explicitly,

φm,m−η1̂(u) =

(

e−i(u+2m1)

1

)

, φm,m−η2̂(u) =

(

e−i(u+2m2)

1

)

. (2.25)

Obviously, the two intertwiner vectors φm,m−ηı̂(u) are linearly independent for a generic

m ∈ V .

Using the intertwiner vectors, one can derive the following face-vertex correspondence

relation [27]

R1,2(u1 − u2)φ
1
m,m−ηı̂(u1)φ

2
m−ηı̂,m−η(̂ı+̂)(u2)

=
∑

k,l

R(u1 − u2;m)klijφ
1
m−ηl̂,m−η(l̂+k̂)

(u1)φ
2
m,m−ηl̂

(u2). (2.26)

Then the QYBE (2.2) of the vertex-type R-matrix R(u) is equivalent to the dynamical Yang-

Baxter equation (2.18) of the SOS R-matrix R(u,m). For a genericm, we can introduce other

types of intertwiners φ̄, φ̃ which are both row vectors and satisfy the following conditions,

φ̄m,m−ηµ̂(u)φm,m−ην̂(u) = δµν , φ̃m+ηµ̂,m(u)φm+ην̂,m(u) = δµν , (2.27)
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from which one can derive the relations,

2
∑

µ=1

φm,m−ηµ̂(u) φ̄m,m−ηµ̂(u) = id, (2.28)

2
∑

µ=1

φm+ηµ̂,m(u) φ̃m+ηµ̂,m(u) = id. (2.29)

One may verify that the K-matrices K(u) given by (2.4) can be expressed in terms of

the intertwiners and diagonal matrices K(λ|u) as follows

K(u)st =
∑

i,j

φ
(s)
λ−η(̂ı−̂), λ−ηı̂

(u)K(λ|u)ji φ̄(t)
λ, λ−ηı̂(−u). (2.30)

Here the diagonal matrix K(λ|u) is given by

K(λ|u) ≡ Diag(k(λ|u)1, k(λ|u)2) = Diag(
sin(λ1 + ζ − u)

sin(λ1 + ζ + u)
,
sin(λ2 + ζ − u)

sin(λ2 + ζ + u)
). (2.31)

Although the vertex type K-matrix K−(u) given by (2.4) is generally non-diagonal, after the

face-vertex transformation (2.30), the face type counterpart K(λ|u) becomes diagonal. This

fact enabled the authors to apply the generalized algebraic Bethe ansatz method developed

in [30] for SOS type integrable models to diagonalize the transfer matrix of the open XXZ

chain with non-diagonal terms [28, 40].

Now we are in the position to construct the boundary states to specify the DW boundary

condition of the six-vertex model with a non-diagonal reflection end, see figure 4. For any

vector m ∈ V , we introduce four states which live in the two N-tensor spaces of V (one is

indexed by 1, . . . , N and the other is indexed by 1̄, . . . , N̄) or their dual spaces as follows:

|Ω(2)(m)〉 = φ1
m,m−η2̂

(ξ1)φ
2
m−η2̂,m−2η2̂

(ξ2) . . . φ
N

m−η(N−1)2̂,m−ηN 2̂
(ξN), (2.32)

|Ω̄(1)(m)〉 = φ1̄
m−(N−2)η1̂,m−(N−2)η1̂−η1̂

(−u1)φ
1̄
m−(N−4)η1̂,m−(N−4)η1̂−η1̂

(−u2)

× . . . φN̄
m+Nη1̂,m+Nη1̂−η1̂

(−uN), (2.33)

〈Ω(1)(m)| = φ̃1
m,m−η1̂

(ξ1) φ̃
2
m−η1̂,m−2η1̂

(ξ2) . . . φ̃
N
m−η(N−1)1̂,m−ηN 1̂

(ξN), (2.34)

〈Ω̄(2)(m)| = φ̃1̄
m−Nη1̂,m−Nη1̂−η2̂

(u1) φ̃
1̄
m−(N−2)η1̂,m−(N−2)η1̂−η2̂

(u2)

× . . . φ̃N̄

m+η(N−2)1̂,m−η(N−2)1̂−η2̂
(uN). (2.35)

The boundary states which have been used to define the DW boundary condition can be

obtained through the above states by special choices ofm and i (for example, m is specified to

11



λ which is related to the parameters of the K-matrixK(u)). Then the DW partition function

ZN({uα}; {ξi};λ; ζ) of the six-vertex model with a non-diagonal reflection end given by (2.8)

becomes

ZN({uα}; {ξi};λ; ζ) =
φ̃1
λ,λ−η1̂

(ξ1) . . . φ̃
N

λ−(N−1)η1̂,λ−Nη1̂
(ξN) φ̃

1̄
λ−Nη1̂,λ−Nη1̂−η2̂

(u1) . . . φ̃
N̄

λ+(N−2)η1̂,λ+(N−2)η1̂−η2̂
(uN)

×R1̄,N(u1 − ξN) . . . R1̄,1(u1 − ξ1)K1̄(u1)R1,1̄(u1 + ξ1) . . . RN,1̄(u1 + ξN)

...

×RN̄ ,N(uN − ξN) . . .RN̄ ,1(uN − ξ1)KN̄(uN)R1,N̄(uN + ξ1) . . . RN,N̄(uN + ξN)

×φ1
λ,λ−η2̂

(ξ1) . . . φ
N
λ−(N−1)η2̂,λ−Nη2̂

(ξN)φ
1̄
λ−(N−2)η1̂,λ−(N−1)η1̂

(−u1) . . . φ
N̄
λ+Nη1̂,λ+(N−1)η1̂

(−uN).

(2.36)

3 Partition function in terms of the face type mon-

odromy matrix

Let us introduce the face type one-row monodromy matrix

TF (l|u) ≡ T F
0,1...N(l|u)

= R0,N(u− ξN ; l − η

N−1
∑

i=1

h(i)) . . . R0,2(u− ξ2; l − ηh(1))R0,1(u− ξ1; l),

=

(

TF (l|u)11 TF (l|u)12
TF (l|u)21 TF (l|u)22

)

(3.1)

where l is a generic vector in V . The monodromy matrix satisfies the face type quadratic

exchange relation [46, 47]. Applying TF (l|u)ij to an arbitrary vector |i1, . . . , iN〉 in the N-

tensor product space V ⊗N given by

|i1, . . . , iN 〉 = ǫ1i1 . . . ǫ
N
iN
, (3.2)

we have

TF (l|u)ij|i1, . . . , iN〉 ≡ TF (m; l|u)ij|i1, . . . , iN〉

=
∑

αN−1...α1

∑

i′
N
...i′1

R(u− ξN ; l − η

N−1
∑

k=1

ı̂′k)
i i′

N

αN−1 iN
. . .

×R(u− ξ2; l − ηı̂′1)
α2 i

′

2
α1 i2

R(u− ξ1; l)
α1 i

′

1
j i1
|i′1, . . . , i′N〉, (3.3)

12



where m = l − η
∑N

k=1 ı̂k.

Now we compute the partition function ZN({uα}; {ξi};λ; ζ) defined by (2.8). The ex-

pression (2.36) implies that

ZN({uα}; {ξi};λ; ζ)=〈Ω(1)(λ)| φ̃1̄
λ−(N−1)η1̂+η2̂,λ−(N−1)η1̂

(u1)T1̄(u1)φ
1̄
λ−(N−2)η1̂,λ−(N−1)η1̂

(−u1)

...

×φ̃N̄
λ+(N−1)η1̂+η2̂,λ+(N−1)η1̂

(uN)TN̄(uN)φ
N̄
λ+Nη1̂,λ+(N−1)η1̂

(−uN) |Ω(2)(λ)〉.
(3.4)

With the help of the crossing relation (2.22), the face-vertex correspondence relation (2.26)

and the relations (2.27), following the method developed in [30, 48], we find that the par-

tition function ZN({uα}; {ξi};λ; ζ) can be expressed in terms of the face-type double-row

monodromy operators as follows:

ZN({uα}; {ξi};λ; ζ) = 〈1, . . . , 1|T −
F (λ− 2(M − 1)η1̂, λ|u1)

2
1 . . . T −

F (λ, λ|uM)21

×T −
F (λ+ 2η1̂, λ|uM+1)

2
1 . . .T −

F (λ+Nη1̂, λ|uN)
2
1|2, . . . , 2〉. (3.5)

The above double-row monodromy matrix operator T −
F (m, λ|u)21 is given in terms of the

one-row monodromy matrix operator TF (m; l|u)ij [48] as follow:

T −
F (m, λ|u)21 =

sin(m21)

sin(λ21)

N
∏

k=1

sin(u+ ξk)

sin(u+ ξk + η)

×
{

sin(λ1 + ζ − u)

sin(λ1 + ζ + u)
TF (m, λ|u)21TF (m+ η2̂, λ+ η2̂| − u− η)22

− sin(λ2 + ζ − u)

sin(λ2 + ζ + u)
TF (m+ 2η2̂, λ|u)22TF (m+ η1̂, λ+ η1̂| − u− η)21

}

. (3.6)

In the next section we construct the Drinfeld twist (or factorizing F-matrix) in the face

picture for the six-vertex model with a non-diagonal reflection end. In the resulting F-

basis, the pseudo-particle creation operator T −
F given by (3.6) takes completely symmetric

and polarization free form. This polarization free form allows us to construct the explicit

expressions of the partition function ZN({uα}; {ξi};λ; ζ).

4 F-basis

In this section, we give the Drinfeld twist [14] (factorizing F-matrix) on the N -fold tensor

product space V ⊗N and the associated representations of the pseudo-particle creation/annihilation

13



operators in this basis.

4.1 Factorizing Drinfeld twist F

Let SN be the permutation group over indices 1, . . . , N and {σi|i = 1, . . . , N − 1} be the set
of elementary permutations in SN . For each elementary permutation σi, we introduce the

associated operator Rσi

1...N on the quantum space

Rσi

1...N (l) ≡ Rσi(l) = Ri,i+1(ξi − ξi+1|l − η

i−1
∑

k=1

h(k)), (4.1)

where l is a generic vector in V . For any σ, σ′ ∈ SN , operator Rσσ′

1...N associated with σσ′

satisfies the following composition law [19](and references therein):

Rσσ′

1...N(l) = Rσ′

σ(1...N)(l)R
σ
1...N(l). (4.2)

Let σ be decomposed in a minimal way in terms of elementary permutations,

σ = σβ1 . . . σβp
, (4.3)

where βi = 1, . . . , N − 1 and the positive integer p is the length of σ. The composition law

(4.2) enables one to obtain operator Rσ
1...N associated with each σ ∈ SN . The dynamical

quantum Yang-Baxter equation (2.18), weight conservation condition (2.20) and unitary

condition (2.21) guarantee the uniqueness of Rσ
1...N . Moreover, one may check that Rσ

1...N

satisfies the following exchange relation with the face type one-row monodromy matrix (3.1)

Rσ
1...N(l)T

F
0,1...N(l|u) = T F

0,σ(1...N)(l|u)Rσ
1...N(l − ηh(0)), ∀σ ∈ SN . (4.4)

Now, we construct the face-type Drinfeld twist F1...N (l) ≡ F1...N (l; ξ1, . . . , ξN)
1 on the

N -fold tensor product space V ⊗N , which satisfies the following three properties:

I. lower− triangularity; (4.5)

II. non− degeneracy; (4.6)

III. factorizing property : Rσ
1...N (l)=F−1

σ(1...N)(l)F1...N(l), ∀σ ∈ SN . (4.7)

Substituting (4.7) into the exchange relation (4.4) yields the following relation

F−1
σ(1...N)(l)F1...N(l)T

F
0,1...N(l|u) = T F

0,σ(1...N)(l|u)F−1
σ(1...N)(l − ηh(0))F1...N(l − ηh(0)). (4.8)

1In this paper, we adopt the convention: Fσ(1...N)(l) ≡ Fσ(1...N)(l; ξσ(1), . . . , ξσ(N)).
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Equivalently,

F1...N(l)T
F
0,1...N (l|u)F−1

1...N(l − ηh(0)) = Fσ(1...N)(l)T
F
0,σ(1...N)(l|u)F−1

σ(1...N)(l − ηh(0)). (4.9)

Let us introduce the twisted monodromy matrix T̃ F
0,1...N(l|u) by

T̃ F
0,1...N(l|u) = F1...N(l)T

F
0,1...N(l|u)F−1

1...N(l − ηh(0))

=

(

T̃F (l|u)11 T̃F (l|u)12
T̃F (l|u)21 T̃F (l|u)22

)

. (4.10)

Then (4.9) implies that the twisted monodromy matrix is symmetric under SN , namely,

T̃ F
0,1...N(l|u) = T̃ F

0,σ(1...N)(l|u), ∀σ ∈ SN . (4.11)

Define the F-matrix:

F1...N(l) =
∑

σ∈SN

2
∑

{αj}=1

∗
N
∏

j=1

P σ(j)
ασ(j)

Rσ
1...N (l), (4.12)

where P i
α is the embedding of the project operator Pα in the ith space with matrix elements

(Pα)kl = δklδkα. The sum
∑∗ in (4.12) is over all non-decreasing sequences of the labels

ασ(i):

ασ(i+1) ≥ ασ(i) if σ(i+ 1) > σ(i),

ασ(i+1) > ασ(i) if σ(i+ 1) < σ(i). (4.13)

From (4.13), F1...N (l) obviously is a lower-triangular matrix. Moreover, the F-matrix is

non-degenerate because all its diagonal elements are non-zero. It was shown [48] that the

F-matrix also satisfies the factorizing property (4.7). Hence, the F-matrix F1...N (l) given by

(4.12) is the desirable Drinfeld twist.

4.2 Completely symmetric representations

Direct calculation shows [48] that the twisted operators T̃F (l|u)ji defined by (4.10) indeed

simultaneously have the following polarization free forms. Here we present the results for

the relevant operators for our purpose

T̃F (l|u)22 =
sin(l21 − η)

sin (l21 − η + η〈H, ǫ1〉)
⊗i

(

sin(u−ξi)
sin(u−ξi+η)

1

)

(i)

, (4.14)

T̃F (l|u)21 =
N
∑

i=1

sin η sin(u−ξi+l12)

sin(u−ξi+η) sin l12
Ei

12 ⊗j 6=i

(

sin(u−ξj) sin(ξi−ξj+η)

sin(u−ξj+η) sin(ξi−ξj)

1

)

(j)

. (4.15)
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Applying the above operators to the arbitrary state |i1, . . . , iN 〉 given by (3.2) leads to

T̃F (m, l|u)22 =
sin(l21 − η)

sin (l2 −m1 − η)
⊗i

(

sin(u−ξi)
sin(u−ξi+η)

1

)

(i)

, (4.16)

T̃F (m, l|u)21 =
N
∑

i=1

sin η sin(u− ξi + l12)

sin(u− ξi + η) sin l12

×Ei
12 ⊗j 6=i

(

sin(u−ξj) sin( ξi−ξj+η)

sin(u−ξj+η) sin(ξi−ξj)

1

)

(j)

. (4.17)

It then follows that the pseudo-particle creation operator (3.6) in the F-basis has the following

completely symmetric polarization free form:

T̃ −
F (m, λ|u)21 =

sinm12

sin(m1 − λ2)

N
∏

k=1

sin(u+ ξk)

sin(u+ ξk + η)

×
N
∑

i=1

sin(λ1 + ζ − ξi) sin(λ2 + ζ + ξi) sin 2u sin η

sin(λ1 + ζ + u) sin(λ2 + ζ + u) sin(u− ξi + η) sin(u+ ξi)

×Ei
12 ⊗j 6=i

(

sin(u−ξj) sin(u+ξj+η) sin(ξi−ξj+η)

sin(u−ξj+η) sin(u+ξj) sin(ξi−ξj)

1

)

(j)

. (4.18)

5 Determinant representation of the partition function

In this section we compute the DW partition function ZN({uα}; {ξi};λ; ζ) from its expression

(3.5) and the expansion of the twisted operator T̃ −
F (m, λ|u)21 (4.18) given in the previous

section.

5.1 Symmetric expression of the partition function

From the definitions of the F-matrix F1...N (l) given by (4.12), we can show that the state

|2, . . . , 2〉 and the dual state 〈1, . . . , 1| are invariant under the action of F1...N(l), namely,

F1...N(l)|2, . . . , 2〉 = |2, . . . , 2〉, (5.1)

〈1, . . . , 1|F1...N(l) = 〈1, . . . , 1|. (5.2)

Hence the DW partition function ZN({uα}; {ξj};λ; ζ) can be expressed in terms of the twisted

operator T̃ −
F (m, λ|u)21 as follow

ZN({uα}; {ξi};λ; ζ) =〈1, . . . , 1|T −
F (λ−(N−2)η1̂, λ|u1)

2
1 . . .T −

F (λ+Nη1̂, λ|uN)
2
1|2, . . . , 2〉
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=〈1, . . . , 1|F1...N(λ−Nη1̂) T −
F (λ− (N − 2)η1̂, λ|u1)

2
1 . . .

×T −
F (λ+Nη1̂, λ|uN)

2
1 F

−1
1...N(λ+Nη1̂) |2, . . . , 2〉

=〈1, . . . , 1|T̃ −
F (λ−(N−2)η1̂, λ|u1)

2
1 . . . T̃ −

F (λ+Nη1̂, λ|uN)
2
1|2, . . . , 2〉.

Substituting the polarization free expression (4.18) of the twisted operator T̃ −
F (m, λ|u)21 into

the above equation, we have

ZN ({uα}; {ξi};λ; ζ) =
M
∏

k=1

sin(λ12 + 2kη) sin(λ12 − 2kη + η)

sin(λ12 + kη) sin(λ12 − kη + η)

N
∏

l=1

N
∏

i=1

sin(ui + ξl)

sin(ui + ξl + η)
〈1, . . . , 1|

×
N
∑

i=1

sin(λ1+ζ−ξi) sin(λ2+ζ+ξi) sin 2u1 sin η

sin(λ1+ζ+u1) sin(λ2+ζ+u1) sin(u1−ξi+η) sin(u1+ξi)
Ei

12⊗j 6=i

(

sin(u1−ξj) sin(u1+ξj+η) sin(ξi−ξj+η)
sin(u1−ξj+η) sin(u1+ξj) sin(ξi−ξj)

1

)

(j)

...

×
N
∑

i=1

sin(λ1+ζ−ξi) sin(λ2+ζ+ξi) sin 2uN sin η

sin(λ1+ζ+uN) sin(λ2+ζ+uN) sin(uN−ξi+η) sin(uN+ξi)
Ei

12⊗j 6=i

(

sin(uN−ξj) sin(uN+ξj+η) sin(ξi−ξj+η)
sin(uN−ξj+η) sin(uN+ξj) sin(ξi−ξj)

1

)

(j)

×|2, . . . , 2〉.

Expanding the last sum term of the above equation which corresponds to the contribution
associated with the spectral parameter uN yields

ZN ({uα}; {ξi};λ; ζ) =
M
∏

k=1

sin(λ12 + 2kη) sin(λ12 − 2kη + η)

sin(λ12 + kη) sin(λ12 − kη + η)

N
∏

l=1

N
∏

i=1

sin(ui + ξl)

sin(ui + ξl + η)

×
N
∑

i=1

sin(λ1+ζ−ξi) sin(λ2+ζ+ξi) sin 2uN sin η

sin(λ1+ζ+uN) sin(λ2+ζ+uN) sin(uN−ξi+η) sin(uN+ξi)
N−1
∏

l=1

sin(ul − ξi) sin(ul + ξi + η)

sin(ul − ξi + η) sin(ul + ξi)

×
∏

j 6=i

sin(ξj − ξi + η)

sin(ξj − ξi)
〈1, . . . , 1|

×
N
∑

l 6=i

sin(λ1+ζ−ξl) sin(λ2+ζ+ξl) sin 2u1 sin η

sin(λ1+ζ+u1) sin(λ2+ζ+u1) sin(u1−ξl+η) sin(u1+ξl)
Ei

12⊗j 6=l,i

(

sin(u1−ξj) sin(u1+ξj+η) sin(ξl−ξj+η)
sin(u1−ξj+η) sin(u1+ξj) sin(ξl−ξj)

1

)

(j)

...

×|2, . . . , 2〉.

Iterating the above procedure, we obtain the complete symmetric expression of the partition

function ZN({uα}; {ξi};λ; ζ)

ZN({uα}; {ξi};λ; ζ) =
M
∏

k=1

sin(λ12 + 2kη) sin(λ12 − 2kη + η)

sin(λ12 + kη) sin(λ12 − kη + η)

N
∏

l=1

N
∏

i=1

sin(ui + ξl)

sin(ui + ξl + η)

×ZN ({uα}; {ξi};λ; ζ), (5.3)
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where the normalized partition function ZN({uα}; {ξi};λ; ζ) is

ZN({uα}; {ξi};λ; ζ)=
∑

σ∈SN

N
∏

n=1

{

sin(λ1+ζ−ξiσ(n)
) sin(λ2+ζ+ξiσ(n)

) sin(2un) sin η

sin(λ1+ζ+un) sin(λ2+ζ+un) sin(un−ξiσ(n)
+η) sin(un+ξiσ(n)

)

×
N
∏

k>n

sin(un − ξiσ(k)
) sin(un + ξiσ(k)

+ η) sin(ξiσ(n)
− ξiσ(k)

+ η)

sin(un − ξiσ(k)
+ η) sin(un + ξiσ(k)

) sin(ξiσ(n)
− ξiσ(k)

)

}

. (5.4)

5.2 Recursive relation and the determinant representation

From the expression (5.4) of the partition function ZN ({uα}; {ξi};λ; ζ), it is easy to check

that the partition function is a symmetric function of {uα} and {ξi} separatively. Moreover,

we can derive that the partition function ZN ({uα}; {ξi};λ; ζ) satisfy the following recursive

relation

ZN({uα}; {ξi};λ; ζ) =
N
∑

i=1

sin(λ1+ζ−ξi) sin(λ2+ζ+ξi) sin(2uN) sin η

sin(λ1+ζ+uN) sin(λ2+ζ+uN) sin(uN−ξi+η) sin(uN+ξi)

×
N−1
∏

l=1

sin(ul − ξi) sin(ul + ξi + η)

sin(ul − ξi + η) sin(ul + ξi)

∏

j 6=i

sin(ξj − ξi + η)

sin(ξj − ξi)

×ZN−1({uα}α6=N ; {ξj}j 6=i;λ; ζ). (5.5)

One can show that the initial condition: Z0({uα}; {ξi};λ; ζ) = 1 and the recursive relation

(5.5) uniquely determinate the partition function ZN({uα}; {ξi};λ; ζ) for any positive integer

N . This fact allows us to obtain the following determinant representation of the normalized

partition function ZN({uα}; {ξi};λ; ζ):

ZN({uα}; {ξi};λ; ζ) =
∏N

α=1

∏N

i=1 sin(uα − ξi) sin(uα + ξi + η) detN ({uα}; {ξi})
∏

α>β sin(uα−uβ) sin(uα+uβ+η)
∏

k<l sin(ξk−ξl) sin(ξk+ξl)
, (5.6)

where the N ×N matrix N ({uα}; {ξi}) is given by

N ({uα}; {ξi})α,j =
sin η sin(λ1 + ζ − ξj)

sin(uα − ξj) sin(uα + ξj + η) sin(λ1 + ζ + uα)

× sin(λ2 + ζ + ξj) sin(2uα)

sin(λ2 + ζ + uα) sin(uα − ξj + η) sin(uα + ξj)
. (5.7)

The proof of this representation is relegated to Appendix A.

Finally, we obtain the determinant representation of the partition function ZN({uα}; {ξi};λ; ζ)
defined in (2.8) of the six-vertex model with a non-diagonal reflection end under the DW
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boundary condition from the expression (5.3)

ZN({uα}; {ξi};λ; ζ) =

M
∏

k=1

sin(λ12 + 2kη) sin(λ12 − 2kη + η)

sin(λ12 + kη) sin(λ12 − kη + η)

N
∏

l=1

N
∏

i=1

sin(ui + ξl)

sin(ui + ξl + η)

×
∏N

α=1

∏N

i=1 sin(uα − ξi) sin(uα + ξi + η) detN ({uα}; {ξi})
∏

α>β sin(uα−uβ) sin(uα+uβ+η)
∏

k<l sin(ξk−ξl) sin(ξk+ξl)
,

(5.8)

where the N ×N matrix N ({uα}; {ξi}) is given by (5.7).

6 Conclusions

We have studied the partition function ZN({uα}; {ξi};λ; ζ) of the six-vertex model with

a non-diagonal reflection end, where the corresponding K-matrix K(u) given by (2.4) is a

generic non-diagonal solution of the RE, under the DW boundary condition. The DW bound-

ary condition is specified by four boundary states (2.32)-(2.35) which are two-parameter gen-

eralization of the all-spin-down and all-spin-up states and their dual states. With the help

of the F-basis provided by the Drinfeld twist for the open XXZ spin chain with non-diagonal

boundary terms, we obtain the the complete symmetric expression (5.3)-(5.4) of the parti-

tion function. Such an explicit expression allows us to derive its the recursive relation (5.5).

Solving the recursive relation, we obtain the determinant representation (5.8) of the partition

function ZN({uα}; {ξi};λ; ζ). The determinant representation of the partition function will

play an important role to construct determinant representations of scalar products between

an on-shell Bethe state and a general state (or an off-shell Bethe state) of the open XXZ

chain with non-diagonal boundary terms [44].
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Appendix A: Proof the determinant representation (5.6)

In this appendix, we prove the determinant representation (5.6) of the normalized parti-

tion function ZN({uα}; {ξi};λ; ζ) defined in (5.3). Let us introduce two series functions

{BI({uα}; {ξi};λ; ζ) | I = 1, . . . , N} and {FI({uα}; {ξi};λ; ζ) | I = 1, . . . , N} which are given

respectively by

BI({uα}; {ξi};λ; ζ) =

I
∏

l=1

sin(λ1+ζ+ul) sin(λ2+ζ+ul)

sin(λ1+ζ−ξl) sin(λ2+ζ+ξl) sin 2ul

ZI({uα}; {ξi};λ; ζ), (A.1)

FI({uα}; {ξi};λ; ζ) =

∏I

α=1

∏I

j=1 sin(uα − ξj) sin(uα + ξj + η)
∏

α>β sin(uα−uβ) sin(uα+uβ+η)
∏

k<l sin(ξk−ξl) sin(ξk+ξl)

×det
∣

∣

∣

∣

sin η

sin(uα−ξj) sin(uα+ξj+η) sin(uα−ξj+η) sin(uα+ξj)

∣

∣

∣

∣

. (A.2)

Then the proof of (5.6) is equivalent to the following identification

BI({uα}; {ξi};λ; ζ) = FI({uα}; {ξi};λ; ζ), for any positive integer I. (A.3)

We shall prove the above equation by induction.

• From direct calculation, we can show that (A.3) holds for the case of N = 1, namely,

B1(u1; ξ1;λ; ζ) = F1(u1; ξ1;λ; ζ) =
sin η

sin(u1 − ξ1 + η) sin(u1 + ξ1)
.

• Suppose that (A.3) holds for the case of I ≤ N − 1. We are to prove that it is satisfied

also for the case of N as follows. It is easy to check that both BN ({uα}; {ξi};λ; ζ) and
FN({uα}; {ξi};λ; ζ) are symmetric functions of {uα}. Hence it is sufficient to prove

that as function of uN they are equal to each other. The recursive relation (5.5) of

ZN({uα}; {ξi};λ; ζ) implies that BN ({uα}; {ξi};λ; ζ) satisfies the following relation

BN ({uα}; {ξi};λ; ζ)=
N
∑

i=1

sin η

sin(uN−ξi+η) sin(uN+ξi)

N−1
∏

l=1

sin(ul−ξi) sin(ul+ξi+η)

sin(ul−ξi+η) sin(ul+ξi)

×
∏

j 6=i

sin(ξj−ξi+η)
sin(ξj−ξi)

BN−1({uα}α6=N ; {ξj}j 6=i;λ; ζ). (A.4)

The determinant representation of the function FN ({uα}; {ξi};λ; ζ) implies that it sat-

isfies the following recursive relation

FN({uα};{ξi};λ; ζ)=
N
∑

i=1

sin η

sin(uN−ξi+η) sin(uN+ξi)

N−1
∏

l=1

sin(ul−ξi) sin(ul+ξi+η)

sin(uN−ul) sin(uN+ul + η)
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×
∏

j 6=i

sin(uN−ξj) sin(uN+ξj+η)

sin(ξj−ξi) sin(ξj+ξi)
FN−1({uα}α6=N ;{ξj}j 6=i;λ; ζ). (A.5)

The determinant representation (A.2) and its recursive relation (A.5) of the function

FN({uα}; {ξi};λ; ζ) and the recursive relation (A.4) of BN({uα}; {ξi};λ; ζ) imply that

these two functions, as function of uN , have the same simple poles located at 2:

ξi − η, −ξi mod(
√
−1π), i = 1, . . . , N. (A.6)

Direct calculation shows that the residues of the two functions at each simple pole

(A.6) are indeed the same. Moreover we can show that

BN ({uα}; {ξi};λ; ζ) |uN→∞ = 0 = FN({uα}; {ξi};λ; ζ) |uN→∞

Thanks to the Liouville theorem, we can conclude that (A.3) actually holds for the

case of N .

Finally we have completed the proof of (5.6).
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